首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
As a new type of high-entropy material, most of the current work has focused on the synthesis and characterization of mechanical properties of high-entropy diboride ceramics (HEBs). In this work, single-phase HEBs with 5–9 cations were prepared by spark plasma sintering with self-synthesized HEB powders through the boro/carbothermal reduction method. The distribution of the metal elements in the obtained HEBs was homogeneous. Due to the phonon scattering caused by the inherent lattice distortion in the HEBs, the thermal conductivity of the ceramics decreased with the increased configurational entropy or the number of cation kinds. However, this study reveals that the degree of reduction in thermal conductivity for the HEBs demonstrate a weakened tendency with cation kinds of more than 6.  相似文献   

2.
The strong covalent bonds and low self-diffusion coefficients of high-entropy diboride (HEBs) and diboride-carbide (HEB-HEC) ceramics render their densification difficult, which limits their applications. Here, we used an ultra-fast high-temperature sintering technique to synthesize and densify several HEBs and HEB-HEC (containing 5–8 cations) ceramics within an isothermal duration of 1 min and a total sintering period of 6 min. All ceramics formed a single-phase or dual-phase high-entropy solid solution, and showed high density, high hardness and good fracture toughness. The rapid densification mechanisms were determined, and the preferential occupancy of metal cations in HEB and HEC phases was explained using a simplified ideal solution model. A good fracture toughness in the range of 3.6–5.4 MPa·m1/2 resulted from crack deflection or blunting and bridging of the rod-like diboride or boron-rich phase. This paper presents a simple, economical, and efficient method for the synthesis and densification of high-entropy ceramics and other advanced materials.  相似文献   

3.
Synthesis of the powders is critical for achieving the extensive applications of high-entropy carbides (HECs). Previously reported studies focus mainly on the high-temperature (>2000 K) synthesis of HEC micro/submicropowder, while the low-temperature synthesis of HEC nanopowders is rarely studied. Herein we reported the low-temperature synthesis of HEC nanopowders, namely (Ta0.25Nb0.25Ti0.25V0.25)C (HEC-1), via molten salt synthesis for the first time. The synthesis possibility of HEC-1 nanopowders was first theoretically demonstrated by analyzing lattice size difference and chemical reaction thermodynamics based on the first-principle calculations, and then the angular HEC-1 nanopowders were successfully synthesized via molten salt synthesis at 1573 K. The as-synthesized nanopowders possessed the single-crystal rock-salt structure of metal carbides and high compositional uniformity from nanoscale to microscale. In addition, their formation mechanism was well interpreted by a classical molten salt-assisted growth.  相似文献   

4.
The relationship between the chemical elements of high-entropy boride (HEB) ceramics and their hardness is important for the prediction of high-hardness HEB ceramics. In this work, by designing four HEB ceramics with different chemical elements, the effect of lattice parameter difference factor (δ, represents the difference-degree in lattice parameters among the five individual constitute diborides) on phase composition and lattice-distortion, and the effect of rule of mixture (ROM) average hardness and lattice-distortion on HEB ceramics hardness were studied. The results indicated that, as δ value increases, more severe lattice-distortion occurs inside the HEB ceramics, and a single solid-solution is difficult to be formed. Furthermore, lattice-distortion and the ROM average hardness codetermine the HEB ceramics hardness. The greater lattice-distortion brings about significantly higher hardness for HEB ceramics than their ROM average hardness. Among the four HEBs, (Hf0.2Zr0.2Ta0.2V0.2Nb0.2)B2 exhibits the high hardness of 26 GPa measured using a load of 9.8 N.  相似文献   

5.
First principles calculations were conducted on (HfTiWZr)B2 high entropy diboride (HEB) composition, which indicated a low formation energy and promising mechanical properties. The (HfTiWZr)B2 HEBs were synthesized from the constituent borides and elemental boron powders via high energy ball milling and spark plasma sintering. X-ray diffraction analyses revealed two main phases for the sintered samples: AlB2 structured HEB phase and W-rich secondary phase. To investigate the performance of multi-phase microstructures containing a significant percentage of the HEB phase was focused in this study. The highest microhardness, nanohardness, and lowest wear volume loss were obtained for the 10 h milled and 2050 °C sintered sample as 24.34 ± 1.99 GPa, 32.8 ± 1.9 GPa and 1.41 ± 0.07 × 10?4 mm3, respectively. Thermal conductivity measurements revealed that these multi-phase HEBs have low values varied between 15 and 23 W/mK. Thermal gravimetry measurements showed their mass gains below 2% at 1200 °C.  相似文献   

6.
The structures of W- and W-Mo-containing high-entropy borides (HEBs) are systematically studied by combining atomic-resolution transmission electron microscopy imaging, electron diffraction, and chemical analysis. We reveal that W or W-Mo addition in HEBs leads to segregation of these elements to the grain boundaries (GBs). In the meantime, W- or W-Mo-rich precipitates also form along the GBs. Crystallographic analysis and atomic-scale imaging show that the GB precipitates in both W- and W-Mo-containing HEBs have a cube-on-cube orientation relationship with the matrix. With further strain analysis, the coherency of the precipitate/matrix interface is validated. Nanoindentation tests show that the simultaneous GB segregation and coherent precipitation, as a supplement to the grain hardening, provide additional hardening of the HEBs. Our work provides an in-depth understanding of the GB segregation and precipitation behaviors of HEBs. It suggests that GB engineering could be potentially used for optimizing the performance of high-entropy ceramics.  相似文献   

7.
High-entropy transition metal borides often have high mechanical strengths and high electrical conductivities at ambient conditions, making them good candidates for applications in emerging areas. However, how the electrical properties of high-entropy borides (HEBs) change at high pressure remains largely unknown. In this work, we found that the electrical resistivities and their temperature coefficients of two newly synthesized HEBs, (Ta0.2Nb0.2Zr0.2Cr0.2Ti0.2)B2 and (Ta0.167Nb0.167Zr0.167Hf0.167Ti0.167Cr0.167)B2, changed significantly at high pressure. Their resistivities increase linearly with the increasing temperature at both the ambient pressure and a relatively-low high pressure (~ 0.5 – 5 GPa). However, the temperature coefficient of resistivity in the latter case is about ten times of that at ambient pressure. At higher pressures (> ~ 0.5 GPa), the electrical resistivity decreases exponentially with the increasing pressure. The quinary HEB is more conductive than the senary HEB. These findings would be indispensable to developing their applications in harsh and/or extreme conditions.  相似文献   

8.
Glass Physics and Chemistry - This paper describes the low-temperature polymer-salt synthesis of ZnO–Ag nanopowders and presents the results of studying their structure, morphology, and...  相似文献   

9.
Magnesium aluminate spinel (MAS) has a wide range of technological applications owing to its exceptional mechanical properties and good chemical stability. MAS phase diagrams indicate that only stoichiometric MgAl2O4 is stable at ∼25°C and Mg2+ and Al3+ exhibit solubility in nonstoichiometric MAS only at temperatures higher than ∼1200°C. In this study, the synthesis of nonstoichiometric single-phase spinel nanopowders at low temperatures is reported, and the role of the chemical distribution of Al3+ and Mg2+ excess on the stability of these nanopowders is examined. We performed selective lixiviation to examine the surface segregation of Mg2+ and Al3+ in nonstoichiometric MAS to investigate its effect on interfacial solubility and consequently the stability of nonstoichiometric MAS. Furthermore, we plotted an experimental phase diagram of nano MAS that predicts the crystallite size limits for the nonstoichiometric single-phase MAS.  相似文献   

10.
High entropy metal diborides (HEBs) represent a radically new approach to extend the chemical composition window of ultra-high temperature ceramics (UHTCs). In this work, arc-melting was used to produce dense HEBs starting from UHTC powders. In order to understand the influence of each individual diboride within the quinary system (HfB2, ZrB2, TiB2, TaB2 and CrB2), we investigated five quaternary equimolar solid solutions e.g. Hf-Zr-Ti-Ta, Hf-Zr-Ti-Cr, Hf-Zr-Ta-Cr, Hf-Ti-Ta-Cr, Zr-Ti-Ta-Cr and the overall quinary equimolar combination. Arc-melting allowed a rapid screening of favorable and unfavorable combinations. The produced HEBs were free from undesired oxides and characterized by linear variation of lattice parameters typical of diborides and binary solid solutions. Because of evaporation during arc melting, CrB2 was hardly found in the solid solution, suggesting that vapor pressure should be taken into account when designing HEB compositions especially for operating temperatures exceeding 2000 °C. Finally, Vickers microhardness ranged between the typical values of starting diborides.  相似文献   

11.
Five single-phase WB2- and MoB2-containing high-entropy borides (HEBs) have been made via reactive spark plasma sintering of elemental boron and metals. A large reactive driving force enables the full dissolution of 10−20 mol. % WB2 to form dense, single-phase HEBs, including (Ti0.2Zr0.2Hf0.2Mo0.2W0.2)B2, (Ti0.2Ta0.2Cr0.2Mo0.2W0.2)B2, (Zr0.2Hf0.2Nb0.2Ta0.2W0.2)B2, and (Zr0.225Hf0.225Ta0.225Mo0.225W0.1)B2; the successful fabrication of such single-phase WB2-containing HEBs has not been reported before. In the processing science, this result serves perhaps the best example demonstrating that the phase formation in high-entropy ceramics can strongly depend on the kinetic route. A scientifically interesting finding is that HEBs containing softer WB2 and/or MoB2 components are significantly harder than (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2 (with harder binary boride components). This exemplifies that high-entropy ceramics can achieve unexpected properties.  相似文献   

12.
Nanostructured barium titanate ceramics   总被引:1,自引:0,他引:1  
Dense nanocrystalline ceramics can be obtained starting from non-agglomerated nanopowders and using low-temperature sintering processes. The preparation and the properties of Barium Titanate (BaTiO3) ceramics and thick films are reported: ceramics were prepared by Spark Plasma Sintering (SPS) at 800 °C of nanopowders produced by a wet chemical process, while films were fabricated by airflow deposition (AD) of mixed fine and coarse powders at room temperature followed by isothermal firing.Ferroelectric ordering was found in both the ceramics and the sintered films by a.c. impedance. The transition from ferroelectric to paraelectric state was broadened over a wide temperature range with Curie-Weiss parameters strongly depressed in comparison to coarse-grained ceramics.  相似文献   

13.
《Ceramics International》2019,45(12):14568-14575
Aluminum nitride (AlN) nanopowders were synthesized through sol-gel route by reduction-nitridation reaction in a temperature range of 1000 °C-1300 °C in NH3 for 2 h. Effects of combustion atmosphere on characteristics and nitridation reaction of the precursor were systematically investigated. It was found that the precursor combusted in argon, with the features of higher carbon content and smaller specific surface area, was completely converted to AlN after being calcined at 1300 °C without additional carbon removal process. The TEM and FESEM images showed that the completed nitridation product was primarily composed of nearly spherical AlN granules with sizes of 20–30 nm. In addition, the formation process and potential mechanism of AlN low-temperature synthesis were proposed on the basis of thermodynamics calculations. The AlN ceramic was prepared by calcining the AlN green body at 1600 °C for 4 h with pressureless and additive free sintering. The relative density and Vickers hardness of the sintered sample were calculated to be 98.5% and 11.97 GPa, respectively, which attested to excellent sinterability of the synthesized AlN nanopowders.  相似文献   

14.
《Ceramics International》2021,47(20):28866-28873
Magnetic nanoparticles of magnetite structure were obtained by the aqueous chemical synthesis, namely: using the chemical co-precipitation from the 1:2 M ratio mix of the iron chlorides (II, III) water solution with the ammonia used as precipitation agent as well as with oleic acid. Obtained nanopowders were studied using the X-Ray diffraction, infrared spectroscopy, scanning and transmission electron microscopy, low-temperature nitrogen absorption, and small-angle X-Ray scattering methods in order to determine the influence of synthesis techniques (homogenization procedure, separation methods – decantation, vacuum filtration, rotary evaporation, or magnetic separation), on the phase composition, size, morphology and magnetic parameters of the nanoparticles. It was demonstrated that the value of the specific surface area of nanoparticles with the average size of 10–20 nm is relatively high (75–132 m2/g) and their shape is lamellar or rod-shaped as well as cylindrical (round). The technique of separating nanoparticles from the mother liquor had a dominant effect on the morphology of nanoparticles. Dynamic and Electrophoretic Light Scattering methods showed that homogenization procedure, separation methods and especially surface modification with oleic acid affect the size and surface charge of the nanopowders.  相似文献   

15.
A series of dual-phase high-entropy ultra-high temperature ceramics (DPHE-UHTCs) are fabricated starting from N binary borides and (5-N) binary carbides powders. > ∼99 % relative densities have been achieved with virtually no native oxides. These DPHE-UHTCs consist of a hexagonal high-entropy boride (HEB) phase and a cubic high-entropy carbide (HEC) phase. A thermodynamic relation that governs the compositions of the HEB and HEC phases in equilibrium is discovered and a thermodynamic model is proposed. These DPHE-UHTCs exhibit tunable grain size, Vickers microhardness, Young’s and shear moduli, and thermal conductivity. The DPHE-UHTCs have higher hardness than the weighted linear average of the two single-phase HEB and HEC, which are already harder than the rule-of-mixture averages of individual binary borides and carbides. This study extends the state of the art by introducing dual-phase high-entropy ceramics (DPHECs), which provide a new platform to tailor various properties via changing the phase fraction and microstructure.  相似文献   

16.
Series of single-phase Ni1  xZnxFe2O4 (x = 0.20, 0.35, 0.50 and 0.60) nanopowders with average particle size of ∼ 35 nm have been synthesized by using oxalate based precursor method. Precursor powders were synthesized by reacting aqueous solutions of metal nitrates and oxalic acid by using different total metal ions: oxalic acid molar ratios and then evaporating them to dryness. Pure, single-phase Ni-Zn ferrite nanopowder was formed by calcining the precursor with total metal ion: oxalic acid ratio of 1:0.125 at a temperature of 850 °C. The synthesized nanopowders were characterized by using X-ray diffraction, Thermo-gravimetric and Differential Scanning Calorimetric analysis, Transmission Electron Microscope and Scanning Electron Microscope. Room temperature DC resistivity of the nanopowders was measured with respect to temperature by the two-probe method and was of the order of ∼ 107 Ωcm. Room temperature saturation magnetization was measured by using Vibrating Sample Magnetometer and it varied between 34-49 emu/g depending on the composition. This aqueous solution based method provides a simple and cost-effective route to synthesize single phase, Ni-Zn ferrite nanopowders.  相似文献   

17.
《Ceramics International》2017,43(16):13781-13785
Reducing the formation temperature of single-phase multioxides is one of the classic challenges in ceramic processing, including wet-chemical synthesis routes. Toward pursuing this aim for diopside (MgCaSi2O6), the merit of different sol-gel and coprecipitation processes using the related chloride precursors followed by calcination was compared from the viewpoints of crystallinity and homogeneity. In accordance to the results, the use of the sol-gel techniques, directed with/without an alkaline catalyst, gave rise to the unfavorable creation of multiphase and low-crystallinity structures. Regarding the coprecipitation methods, the one-step addition of a precipitant agent is accompanied by an indirect low-temperature formation of nano-diopside, while a direct crystallization into this phase was explored in the dropwise condition, albeit with a lower crystallinity. Thus, by employing a suitable synthesis processing, it is feasible to take control of a wide range of nanoparticulate diopside-based structures achieved after a low-temperature calcination.  相似文献   

18.
This paper describes research on a simple low-temperature synthesis route to prepare bismuth ferrite nanopowders by the polymeric precursor method using bismuth and iron nitrates. BiFeO3 (BFO) nanopowders were characterized by means of X-ray diffraction analyses, (XRD), Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy (Raman), thermogravimnetric analyses (TG-DTA), ultra-violet/vis (UV/Vis) and field emission scanning electron microscopy (FE-SEM). XRD patterns confirmed that a pure perovskite BiFeO3 structure with a rhombohedral distorted perovskite structure was obtained by heating at 850 °C for 4 hours. Typical FT-IR spectra for BFO powders revealed the formation of a perovskite structure at high temperatures due to a metal–oxygen bond while Raman modes indicated oxygen octahedral tilts induced by structural distortion. A homogeneous size distribution of BFO powders obtained at 850 °C for 4 hours was verified by FE-SEM analyses.  相似文献   

19.
As the main candidates in the field of ultra-high temperature ceramics, high entropy carbides/borides (HECs/HEBs) have good oxidation resistance properties, high hardness, as well as excellent thermal and electrical conductivities, which are the focused points of research nowadays. In the current study, (Hf,Ta,Zr,Nb,Mo,Ti)C powders were successfully synthesized by a three-step process, including the mixing process of raw oxides and carbon black with spaying Fe(NO3)3 solution, carbothermal reduction and subsequent calcium posttreatment. For the preparation of (Hf,Ta,Zr,Nb,Mo,Ti)B2 powders, during the calcium posttreatment process, equal stoichiometric ratio of B4C was added for the purpose of boriding reaction. The relevant X-ray diffraction and SEM characterizations indicate the successful preparations of face-centered cubic HECs and hexagonal HEBs. However, slight Mo local segregation was found in the prepared (Hf,Ta,Zr,Nb,Mo,Ti)B2 powders. The iron generated from Fe(NO3)3 promotes the solid solution process between monocarbides during the carbothermal reduction process via the dissolution-diffusion-precipitation mechanism. In the calcium posttreatment process, the liquid calcium ensures the boriding reaction take place at a low temperature. In addition, the residual carbon could be combined with calcium to generate CaC2 which is easy to be removed by acid leaching, and meanwhile, the added Fe could also be finally eliminated to produce pure HEC/HEB powders. The current method does not require the long-time high energy ball milling of raw materials, but only simple and mild mixing is enough. Therefore, such a facile route has a great potential application prospect for industrially preparing high entropy phase powders in a large scale.  相似文献   

20.
Carbon encapsulated SnO2 composites were prepared by a thermal evaporation and decomposition of malic acid (C4H6O5) at low temperature to demonstrate their potential use for application in lithium ion batteries. The solution-based chemical approach was effective for coating amorphous C layers on the surface of SnO2 nanopowders without significant oxygen reduction. The desirable crystalline structure and oxygen stoichiometry of SnO2 were maintained, while amorphous C homogeneously encapsulated SnO2 nanopowders. The strong enhancement on the anodic reversible capacity and cyclic performance was discussed for the C-encapsulated SnO2 composites. It is expected that the low-temperature processing can be a new general route for preparing composites with C from economic point of view.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号