首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HfB2, Hf0.95Ta0.05B2, and Hf0.95Ti0.05B2 powders were self-synthesized and the grain sizes were 2.04, 0.36, and 1.15 μm, respectively. The three powders were pressureless sintered from 1700℃ to 2000℃ to study and compare effects of the introduction of TaB2 and TiB2 on the grain growth behavior and kinetics of HfB2. The results revealed that HfB2 showed moderately slow grain growth in the whole process. However, significant grain growth consistently happened in Hf0.95Ti0.05B2 and Hf0.95Ta0.05B2 at 1900℃ or above. Eventually, the grain size of Hf0.95Ti0.05B2 increased to almost the same as HfB2, but Hf0.95Ta0.05B2 still possessed smaller grains due to the finest original powders. The grain growth exponent was determined to be ~3, and the dominant growth rate-controlling mechanism was volume diffusion. The average activation energy of HfB2, Hf0.95Ta0.05B2, and Hf0.95Ti0.05B2 for grain growth at 1700℃-2000℃ was 191 ± 34, 678 ± 73, and 321 ± 61 kJ/mol, respectively.  相似文献   

2.
《Ceramics International》2021,47(2):2255-2260
This study firstly developed Hf1-xVxB2 (x = 0, 0.01, 0.02, 0.05) powders, which were derived from borothermal reduction of HfO2 and V2O5 with boron. The results revealed that significantly refined Hf1-xVxB2 powders (0.51 μm) could be obtained by solid solution of VB2, and x ≥ 0.05 was a premise. However, as the content of V-substitution for Hf increased, Hf1-xVxB2 ceramics sintered by spark plasma sintering at 2000 °C only displayed a slight densification improvement, which was attributed to the grain coarsening effect induced by the solid solution of VB2. By incorporating 20 vol% SiC, fully dense Hf1-xVxB2-SiC ceramics were successfully fabricated using the same sintering parameters. Compared with HfB2-SiC ceramics, Hf0.95V0.05B2-20 vol% SiC ceramics exhibited an elevated and comparable value of Vickers hardness (23.64 GPa), but lower fracture toughness (4.09 MPa m1/2).  相似文献   

3.
Densification, microstructure, and mechanical properties of spark plasma sintered HfB2 and HfB2-SiC ceramics using HfB2 powders from borothermal reduction and boro/carbothermal reduction were investigated and compared. It was found that HfB2ceramics obtained by boro/carbothermal reduction exhibited a significantly higher sinterability compared to that by borothermal reduction. Inversely, HfB2-SiC ceramics obtained by borothermal reduction exhibited a refined microstructure and better mechanical properties (Vickers hardness: 23.60 ± 2.43 GPa; fracture toughness: 5.89 ± 0.30 MPa.m1/2) than that by boro/carbothermal reduction. These results indicated that optimal fabrication of HfB2-based ceramics could be achieved by the selection of synthetic route of HfB2 powders.  相似文献   

4.
A theoretical calculation combined with experiment was used to study high-entropy (Hf0.2Ti0.2Mo0.2Ta0.2Nb0.2)B2 (HEB-HfTiMoTaNb). The theoretical calculation suggested HEB-HfTiMoTaNb could be stable over a wide temperature range. Then, a novel solvothermal/molten salt-assisted borothermal reduction method was proposed to efficiently pre-disperse transitional metal atoms in a precursor and synthesize (Hf0.2Ti0.2Mo0.2Ta0.2Nb0.2)B2 nanoscale powders at 1573 K for 6 h, which is nearly 300 K lower than previous reports. The characterization results indicated that the as-synthesized nanoscale HEB-HfTiMoTaNb powder was hexagonal single-phase with homogeneous elements distribution and uniform size, and the oxygen content of the particles is 0.97 wt%. Simultaneously, the mechanical properties, anisotropic nature, and thermal properties of HEB-HfTiMoTaNb were investigated by density functional theory (DFT) calculations. The Cannikin's law was adopted to explain the improvement of comprehensive mechanical properties. In addition, a significant reduction of thermal conductivity was observed for HEB-HfTiMoTaNb and it only was 1/15 of the value of HfB2. This work suggests a reliable technique for synthesis of nanosized HEB powders and discovery of high-entropy materials under the guidance of first-principle theory.  相似文献   

5.
TiB2 powders were synthesized by borothermal reduction in nanoscale TiO2 with boron under vacuum. Reaction processes were investigated, and the effect of by‐product B2O3 was evaluated. Results showed that TiO2 was firstly reduced by boron to form TiBO3 and Ti2O3, and then to produce TiB2 and B2O3 with increasing temperature. The reaction processes of TiB2 powders synthesis included two‐step reduction in TiO2 by boron and the removal of B2O3. The presence of B2O3, which was previously reported as the most important factor in promoting the coarsening of ZrB2 and HfB2 powders by borothermal reduction, did not lead to significant coarsening of TiB2 powders. Due to the minor effect of B2O3, TiB2 powders with small particle size and low oxygen content could be prepared by direct heat treatment of TiO2 and boron at 1550°C under vacuum for 1 h. The particle size and oxygen content of synthesized TiB2 powders were ~0.9 μm and ~1.7 wt%, respectively.  相似文献   

6.
Borothermal reduction processes of Ta2O5 with boron under vacuum were investigated. Ta2O5 reacted with boron to form various borides (TaB2, Ta3B4, and TaB), depending on the boron/Ta2O5 molar ratio and temperature. In order to prepare pure TaB2 powders, two routes were developed. The first route was one‐step heat treatment at 1550°C. With boron/Ta2O5 molar ratio of 9.0, pure TaB2 powders with strong agglomeration were synthesized by the first route, and the particle size and oxygen content were 0.7 μm and 0.9 wt%, respectively. The second route consisted of two‐step heat treatment at 800°C and 1550°C plus intermediate water washing. With lower boron/Ta2O5 molar ratio of 8.2, pure TaB2 powders with less agglomeration and more uniform distribution were synthesized by the second route, and the particle size and oxygen content were 0.8 μm and 0.8 wt%, respectively. Moreover, the particle size similarity of TaB2 powders by the two routes suggested that byproduct boron oxides, which were previously reported as the most important factor in promoting the coarsening of ZrB2 powders by borothermal reduction, did not lead to the significant coarsening of TaB2 powders.  相似文献   

7.
Hf0.95Nb0.05B2 ceramics and their composites containing 20 vol% SiC were prepared via high-pressure spark plasma sintering in the study. The densification, microstructures, and mechanical properties of the prepared materials were then investigated. It is challenging to achieve full densification of HfB2 ceramics, even with markedly refined Hf0.95Nb0.05B2 solid solution powder under the sintering conditions of 2000 °C/30 MPa. However, under the sintering conditions of 1700 °C/200 MPa, a dense microstructure of Hf0.95Nb0.05B2 ceramics was achieved. Moreover, the Hf0.95Nb0.05B2-20 vol% SiC composite was densified at a lower temperature (1500 °C) and exhibited ultrafine grains (300 nm) and high-density defects, including stacking faults, Lomer-Cottrell locks, and twins, thus resulting in exceptional comprehensive mechanical properties, such as ultra-high hardness (32 GPa) and significantly improved fracture toughness (5.2 MPa.m1/2).  相似文献   

8.
Full densification and fine microstructures are the two key optimization targets of ceramic materials. Although fine Hf0.95Ta0.05B2 powder (∼ 0.36 µm) has been synthesized, it was still difficult to obtain densified Hf0.95Ta0.05B2 ceramics with ultrafine grains (< 1 µm) using conventional high temperature sintering. Increasing sintering pressure could provided higher densification driving force, but it usually negatively promoted grain growth for nanoceramics. Our strategy was to gain the fully dense Hf0.95Ta0.05B2 ceramic under a high pressure at a selected temperature with retarded grain growth. In this work, fully dense Hf0.95Ta0.05B2 ceramic was prepared at 1700 °C under a high pressure of 200 MPa. The limited grain growth was achieved with the average grain size of 0.6 µm. Therefore, the mechanical properties were significantly improved, including Vickers hardness (24.8 GPa) and fracture toughness (4.2 MPa.m1/2), which were ascribed to Hall-Petch and dislocation strengthening mechanism.  相似文献   

9.
The influences of different contents ranging 0–15 wt% of high-entropy boride (HEB) (Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2 on the mechanical properties of SiC-based ceramics using Al2O3-Y2O3 sintering additives sintered by spark plasma sintering process were investigated in this study. The results showed that the introduction of 5 and 10 wt% (Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2 could facilitate the densification and the grain growth of SiC-based ceramics via the mechanism of liquid phase sintering. However, the grain growth of SiC-based ceramics was inhibited by the grain boundary pinning effect with the addition of 15 wt% (Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2. The SiC-based ceramics with 15 wt% (Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2 showed the enhanced hardness (21.9±0.7 GPa) and high toughness (4.88±0.88 MPa·m1/2) as compared with high-entropy phase-free SiC-based ceramics, which exhibited a hardness of 16.6 GPa and toughness of 3.10 MPa·m1/2. The enhancement in mechanical properties was attributed to the addition of higher hardness of HEB phase, crack deflection toughening mechanism, and presence of residual stress due to the mismatch of coefficient of thermal expansion.  相似文献   

10.
Reaction processes, powder characteristics, sinterability, and mechanical properties of TiB2 prepared by borothermal reduction, B4C reduction, and boro/carbothermal reduction were compared. Results showed that TiBO3 and Ti2O3 as the intermediate phases existed in the three reduction processes. The temperature where TiB2 became major phase was lowest during borothermal reduction, resulting in the finest TiB2 particle size, in contrast to the other two methods, especially boro/carbothermal reduction. However, TiB2 powders prepared by B4C reduction and boro/carbothermal reduction after pressureless sintering at 1800°C for 2 hours showed the relatively higher sinterability, due to the lower oxygen content and higher carbon content. Finally, using 5 wt% Ni as sintering additive, hot-pressed TiB2 ceramics from B4C reduction demonstrated higher densification, more fine-grained microstructure and higher mechanical properties, due to the better balance of oxygen/carbon content.  相似文献   

11.
A nano dual-phase powder with great sinterability was synthesized by molten-salt assisted borothermal reductions at 1100 °C using B, ZrO2, HfO2, Ta2O5, Nb2O5 and TiO2 powders as raw materials. Single-phase (Zr0.2Hf0.2Ta0.2Nb0.2Ti0.2)B2 high-entropy ceramic was prepared by spark plasma sintering using the as-synthesized nano dual-phase powder. Oxidation behavior of the (Zr0.2Hf0.2Ta0.2Nb0.2Ti0.2)B2 ceramic was investigated over the range of 30–1400 °C in air and the result indicated that the rapid oxidation of ceramic began at 1300 °C. The phenomenon could be ascribed to the rapid volatilization of B2O3 from oxide scale. A layered structure was formed at the cross section of (Zr0.2Hf0.2Ta0.2Nb0.2Ti0.2)B2 ceramic after oxidation. The relationship between partial pressures of gaseous metal oxides and oxygen partial pressures was calculated, which inferred that the formation of layered structure could be ascribed to the active oxidation of (Zr0.2Hf0.2Ta0.2Nb0.2Ti0.2)B2, the generation of gaseous metal oxides, their outward diffusion and further oxidation.  相似文献   

12.
This study prepared textured (Ti1/3Zr1/3Hf1/3)B2 medium-entropy ceramics for the first time that maintain enhanced flexural strength up to 1800°C using single-phase (Ti1/3Zr1/3Hf1/3)B2 powders, slip casting under a strong magnetic field, and hot-pressed sintering methods. Effects of WC additive and strong magnetic field direction on the phase compositions, orientation degree, microstructure evolution, and high-temperature flexural strength of (Ti1/3Zr1/3Hf1/3)B2 were investigated. (Ti1/3Zr1/3Hf1/3)B2 grain grows along the a,b-axes, resulting in a platelet-like morphology. Pressure parallel and perpendicular to the magnetic field direction can promote the orientation degree and hinder the texture structure formation, respectively. Reaction products of W(B,C) and (Ti,Zr,Hf)C between (Ti1/3Zr1/3Hf1/3)B2 and WC additive can efficiently refine the (Ti1/3Zr1/3Hf1/3)B2 grain size and promote grain orientation. (Ti1/3Zr1/3Hf1/3)B2 ceramics doped with 5 vol.% WC yielded a Lotgering orientation factor of 0.74 through slip casting under a strong magnetic field (12 T) and hot-pressed sintering at 1900°C. Furthermore, cleaning the boundary by W(B,C) and introducing texture can enhance the grain-boundary strength and improve its high-temperature flexural strength. The four-point flexural strength of textured (Ti1/3Zr1/3Hf1/3)B2-5 vol.% WC ceramics was 770 ± 59 MPa at 1600°C and 638 ± 117 MPa at 1800°C.  相似文献   

13.
Spherical (Zr.2Ti.2Ta.2Nb.2Mo.2)B2 powders with a uniform particle size distribution are successfully prepared using a novel industrial approach, which combines spray-drying process and thermal plasma sintering technology together. In this, single-phase (Zr.2Ti.2Ta.2Nb.2Mo.2)B2 powders are first synthesized via a borothermal reduction process using a mixture of individual metallic oxides and boron powders as starting materials. The influence of boron powder content on the structure of prepared powders is researched. Then, (Zr.2Ti.2Ta.2Nb.2Mo.2)B2 granules are prepared after wet-grinding and spray-drying process, which exhibit a spherical shape and homogeneous element distribution. RF induction thermal plasma is finally used to sinter the granulated particle, and the apparent density of sintered spherical powders is increased to 2.57 g/cm3 from 1.43 g/cm3. Such powders are in potential demand for additive manufacturing techniques, and the successful synthesis of spherical (Zr.2Ti.2Ta.2Nb.2Mo.2)B2 powders may guide the way toward the preparation of many other spherical high-entropy diboride powders.  相似文献   

14.
A nominally pure and dense (Ti0.9Cr0.1)B2 ceramic was produced by spark plasma sintering of powders synthesized by boro/carbothermal reduction of oxides. The synthesized powders were a single phase and had an average particle of 0.4 ± 0.1 μm and an oxygen content of 1.2 wt%. Average Vickers hardness values of the resulting ceramics increased from 25.9 ± 0.8 GPa at a load of 9.81 N, to 46.3 ± 0.8 GPa at a load of 0.49 N. Compared to the nominally pure TiB2 ceramic obtained under the same processing conditions, the (Ti0.9Cr0.1)B2 ceramic had higher values under the same load due to the finer average grain size (2.4 ± 1.0 μm), higher relative density, and solid solution hardening. The results indicated that the Cr addition promoted densification, suppressed grain growth, and improved the hardness of TiB2 ceramics. This is the first report for dense and single-phase (Ti,Cr)B2 ceramics as superhard materials.  相似文献   

15.
(Hf0.2Zr0.2Nb0.2Ta0.2Sc0.2)B2 was designed to improve the densification and solid-solution formation of high-entropy transition metal diborides, and its phase stability was predicted using the energy distribution of the local mixing enthalpy of all possible configurations. It was found that (Hf0.2Zr0.2Nb0.2Ta0.2Sc0.2)B2 are enthalpy-stabilized materials. The two-component metal diborides formed by transition metal diborides (HfB2, ZrB2, TaB2 and NbB2) with ScB2 are thermodynamically favorable, based on the mixing enthalpy. Therefore, the introduction of ScB2 in high-entropy metal diborides is beneficial to reduce the mixing Gibbs free energy during the boro/carbothermal reduction process, which enables the formation of single-phase solid solution at low temperatures. Even high-entropy metal diboride powders with large particle sizes, 25–57 µm, can achieve sintered density up to ~97% due to the introduction of ScB2 in high-entropy metal diborides, owing to its weakening action on the TM d - B p and the TM dd bonding.  相似文献   

16.
TaB2 powders were synthesized by a molten‐salt assisted borothermal reduction method at 900°C‐1000°C in flowing argon using Ta2O5 and amorphous B as starting materials. The results indicated that the presence of liquid phase, such as B2O3 and NaCl/KCl, accelerated the mass transfer of reactant species and resulted in the complete finish of the reaction at low temperatures. The obtained TaB2 powders exhibited a flow‐like shape assembled from nanorods grow along [001] direction or c‐axis. The morphology of the synthesized TaB2 powders could be tailored by the amount of B2O3 or NaCl/KCl.  相似文献   

17.
《Ceramics International》2022,48(12):17234-17245
The microstructure and mechanical properties of (Hf0.2Nb0.2Ta0.2Ti0.2Zr0.2)B2 high-entropy boride (HEB) were first predicted by first-principles calculations combined with virtual crystal approximation (VCA). The results verified the suitability of VCA scheme in HEB studying. Besides, single-phase (Hf0.2Nb0.2Ta0.2Ti0.2Zr0.2)B2 ceramics were successfully fabricated using boro/carbothermal reduction (BCTR) method and subsequent spark plasma sintering (SPS); furthermore, the effects of different amounts of B4C on microstructure and mechanical properties were evaluated. Due to the addition of B4C and C, all samples formed single-phase solid solutions after SPS. When the excess amount of B4C increased to 5 wt%, the sample with fine grains exhibited superior comprehensive properties with the hardness of 18.1 ± 1.0 GPa, flexural strength of 376 ± 25 MPa, and fracture toughness of 4.70 ± 0.27 MPa m1/2. Nonetheless, 10 wt% excess of B4C coarsened the grains and decreased the strength of the ceramic. Moreover, the nanohardness (34.5–36.9 GPa) and Young's modulus (519–571 GPa) values with different B4C contents just showed a slight difference and were within ranges commonly observed in high-entropy diboride ceramics.  相似文献   

18.
《Ceramics International》2020,46(17):26581-26589
High-entropy metal boron carbonitride ceramic powders including (Ta0.2Nb0.2Zr0.2Hf0.2W0.2)BCN, (Ta0.2Nb0.2Zr0.2Hf0.2Ti0.2)BCN, and (Ta0.2Nb0.2Zr0.2Ti0.2W0.2)BCN, were successfully synthesized via mechanical alloying at room temperature. Results show that for the first step of 10 h milling, the amorphous BCN phases are observed. After 24 h of second step milling, the as-synthesized high-entropy ceramics exhibit a single face-centered cubic solid solution structure with high compositional uniformity from nano-scale to micron-scale. When heated to 1500 °C for 30min in flowing Ar, the as-prepared high-entropy ceramic powders still show relatively high thermal stability; however, some metals oxides like HfO2 and ZrO2 are detected due to the pre-existing oxides on sample surfaces. After heat treatment, some amorphous phases are still retained. This work suggests a new processing route on the synthesis of high-entropy metal boron carbonitride ceramics.  相似文献   

19.
Starting from metal oxides, B4C and graphite, a suite of high-entropy boride ceramics, formulated (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2, (Hf0.2Zr0.2Mo0.2Nb0.2Ti0.2)B2 and (Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2 derived from boro/carbothermal reduction at 1600 °C were fabricated by spark plasma sintering at 2000 °C. It was found that the synthetic high-entropy boride crystalized in hexagonal structure and the yield of the targeting phase was calculated to be over 93.0 wt% in the sintered ceramics. Benefitting from the nearly full densification (96.3% ˜ 98.5% in relative density) and the refined microstructure, the products exhibited the relatively high Vickers hardness. The indentation fracture toughness was determined to be comparable with the single transition metal-diboride ceramics. It should be noted that the formation of high-entropy boride ceramics were featured with the relatively high hardness at no expense of the fracture toughness.  相似文献   

20.
The introduction of 0.5–1.0 wt.% graphite to the powders prepared by Self-propagating High-temperature Synthesis (SHS) is found to be highly beneficial for the removal of oxide impurities (from 2.7-8.8 wt.% to 0.2–0.5 wt.%) during spark plasma sintering (1950°C/20 min, 20 MPa) of (Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2 and (Hf0.2Mo0.2Ta0.2Zr0.2Ti0.2)B2 ceramics. Concurrently, the consolidation level achieved is enhanced from about 92.5% and 88%, respectively, to values exceeding 97%. While a further increase of graphite slightly improves samples densification, final products become progressively richer of the unreacted carbon.It is assumed that graphite plays a double role during SPS, e.g. not only as a reactant during the carbothermal reduction of oxides contaminant, but also as lubricating agent for the powder particles. The latter phenomenon is likely the main responsible for the densification improvement when 3 wt.% or larger amounts of additive are used. Another positive effect is the crystallite size refinement of the high-entropy phases with the progressive abatement of oxides, to confirm that their presence promotes grain coarsening during the sintering process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号