首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(20):30356-30366
Calcium hexaluminate (CA6) porous ceramics were prepared by gel-casting method, with α-Al2O3 and CaCO3 as raw materials and polymethyl methacrylate (PMMA) microspheres as pore-forming agent. The effects of the amount of pore-forming agent PMMA microspheres on the phase composition, bulk density, apparent porosity, flexural strength, microstructure, thermal shock stability and thermal conductivity of CA6 porous ceramics were systematically studied. The pores of CA6 porous ceramics are mainly formed by the burning loss of PMMA microspheres and the decomposition of organic matter. Adding an appropriate amount of PMMA microspheres as pore-forming agent has a positive effect on the thermal shock stability of CA6 porous ceramics. When the amount of pore-forming agent is 15 wt%, the volume density of CA6 porous ceramics is 1.33 g/cm3, the porosity is 63%, the flexural strength is 13.9 MPa, the thermal shock times can reach 9 times, and the thermal conductivity is 0.293 W/(m·K), which can meet the application in refractory, ceramics or high temperature cement industries.  相似文献   

2.
Herein, a simple, versatile, and low-cost approach has been proposed to realize the green utilization of secondary aluminum dross, the hazardous solid waste, namely directly sintering dry-pressed green bodies from secondary aluminum dross to fabricate porous ceramics according to high-temperature foaming process spontaneously without adding spare foaming agents. Aluminum nitride (AlN) in secondary aluminum dross was employed to realize high-temperature foaming due to its oxidation, which makes traditional AlN and salts removal process needless. Moreover, near-zero shrinkage or even expansion during sintering of porous ceramics have occurred because in-situ foaming process together with the oxidation of Al particles well offset the sintering shrinkage. After sintering at 1400°C for 2 h, porous ceramics composed of α-Al2O3 and spinel phases with open porosity of 37.91%, sintering expansion rate of 1.13%, flexural strength of 45.67 MPa, and thermal conductivity of 0.97 W/(m·K) have been prepared. Cenospheres as pore-forming agents have been added to further improve the porosity, and alumina-based porous ceramics with open porosity of 28.39%–43.20% and flexural strength of 15.80–52.48 MPa have been obtained. This effective solution for recycling secondary aluminum dross could supply high-performance porous ceramics, which is expected to be applied in the fields of light-weight structural components and thermal insulations.  相似文献   

3.
Excessive sintering shrinkage leads to severe deformation and cracking, affecting the microstructure and properties of porous ceramics. Therefore, reducing sintering shrinkage and achieving near-net-size forming is one of the effective ways to prepare high-performance porous ceramics. Herein, low-shrinkage porous mullite ceramics were prepared by foam-gelcasting using kyanite as raw material and aluminum fluoride (AlF3) as additive, through volume expansion from phase transition and gas generated from the reaction. The effects of AlF3 content on the shrinkage, porosity, compressive strength, and thermal conductivity of mullite-based porous ceramics were investigated. The results showed that with the increase of content, the sintering shrinkage decreased, the porosity increased, and mullite whiskers were produced. Porous mullite ceramics with 30 wt% AlF3 content exhibited a whisker structure with the lowest shrinkage of 3.5%, porosity of 85.2%, compressive strength of 3.06 ± 0.51 MPa, and thermal conductivity of 0.23 W/(m·K) at room temperature. The temperature difference between the front and back sides of the sample reached 710°C under high temperature fire resistance test. The low sintering shrinkage preparation process effectively reduces the subsequent processing cost, which is significant for the preparation of high-performance porous ceramics.  相似文献   

4.
The capillary and thermal performance of porous Si3N4 ceramics with nearly spherical pore structure has been investigated by altering the addition and diameter of pore-forming agent polymethyl methacrylate (PMMA) in this work. An exponential model is used to evaluate the liquid uptake capacity of porous Si3N4 ceramics. Porous Si3N4 ceramics fabricated by 5 μm PMMA with 40 wt.% addition possess the lowest capillary time constant and show the best capillary performance owing to the perfect balance between friction resistance and capillary force. The thermal conductivity of porous Si3N4 ceramics is significantly impacted by their porosity. Alexander model with an exponent of .96 is suitable for predicting the thermal conductivity of porous Si3N4 ceramics due to its R-squared up to .99. Moreover, with the addition and diameter of PMMA decrease, the flexural strength of porous Si3N4 ceramics increases. These results support the application of porous Si3N4 ceramics in the field of mass and heat transfer.  相似文献   

5.
By utilising soaked millet as a shrinkable pore-forming agent, porous silicon carbide-alumina (SiC-Al2O3) ceramics were prepared via gelcasting. The fabrication of SiC-Al2O3 ceramics based on oxidised and unoxidised coarse-grained SiC was also studied. The water swelling, drying shrinkage, and low-temperature carbonisation of the millet were investigated. We found that the shrinkage of the soaked millet was greater than that of gel body during drying, which left large gaps that prevented shrinkage stresses from destroying the gel body. Low-temperature carbonisation of the millet should be performed slowly at 220–240?°C because its expansion rate increases to 45% at 250?°C, resulting in the cracking of samples. At a constant sintering temperature, the flexural strength of the SiC-Al2O3 ceramics prepared with SiC powders oxidised at 1000?°C was the highest, indicating that oxidised powders can successfully decrease the required sintering temperature and improve the flexural strength of composite ceramics. Based on our optimised process, porous SiC-Al2O3 ceramics were sintered at 1500?°C for 2?h. When their skeletons were fully developed, their pore sizes were in the range of 1.5–2?mm. Their porosity and flexural strength were 60.2–65.1% and 8.3–10.5?MPa, respectively.  相似文献   

6.
Porous CaSiO3 ceramics were prepared via a solid-state reaction method using CaCO3 and SiO2 as raw materials and active carbon as a pore-forming agent. The results indicated that porous CaSiO3 ceramics could be obtained under a low sintering temperature of 1320?°C. The addition of active carbon significantly affected the volume density, microstructure, pore size distribution and mechanical strength of porous CaSiO3 ceramics. With the increase of active carbon content, the volume density decreased, meanwhile the pore size and porosity increased gradually. Besides, the three-point bending tests demonstrated that the mechanical strength was decreased with increasing active carbon content. However, all the porous ceramics still exhibited high mechanical strength. These results implied that the increase of active carbon content not only enlarged the pore size and enhanced the porosity, but also kept a remarkable mechanical strength of porous CaSiO3 ceramics. Therefore, these rationally designed CaSiO3 porous ceramics will be a highly potential material in various applications due to its high mechanical strength, low sintering temperature and narrow pore size distribution.  相似文献   

7.
Adding pre-foamed colloidal alumina to ultrastable Al2O3-stabilised foams can be a path towards partially counteracting the firing shrinkage of these materials and producing macroporous ceramics with smaller pores. Nevertheless, this system still presents a long setting time and high sintering-induced shrinkage, which hinders the production of larger samples and reduces its porosity. In the present work, it was observed that adding calcium aluminate cement suspension (CACS) and CaCO3 (calcite) to the aforementioned system can speed up its solidification kinetics, improve its mechanical strength and reduce its shrinkage after firing, maintaining high porosity and smaller pore sizes. By using these raw materials, samples with an average pore size below 60 μm, total porosity above 70%, and a narrower pore size distribution were attained after thermal treatment at 1600 °C for 5h. Moreover, due to the in situ formation of calcium hexaluminate, their shrinkage after sintering was almost halved (from ~20% to 11%).  相似文献   

8.
Porous mullite matrix ceramics have excellent thermal and mechanical properties suitable for applications such as in thermal insulation. However, their applications are limited by processing defects from nonuniform sintering shrinkage and the trade-off between high porosity (preferred for low thermal conductivity) and high mechanical strength. Herein, we seek to minimize the sintering shrinkage by near-net-size preparation and improve the strength by in situ formed whisker network structure. Gelcasting forming technology and pressureless sintering were used to prepare porous mullite matrix ceramics using kyanite and α-Al2O3 powders as the starting materials and using MoO3 to promote the growth of mullite whiskers. The results showed that the sintering shrinkage could be compensated by the volume expansion from solid-state reaction during reaction sintering. The in situ formed three-dimensional (3D) whisker network further reduced sintering shrinkage and effectively improved the strength of the ceramics. An ultralow sintering shrinkage of .78% was achieved. The near-net-shape porous mullite matrix ceramics strengthened by 3D whisker network had a high porosity of 63.9%, a high compressive strength of 83.8 MPa and a high flexural strength of 53.5 MPa.  相似文献   

9.
《Ceramics International》2023,49(19):31228-31235
Porous Si3N4 ceramics are highly regarded as ideal materials for radomes due to their unique characteristics. However, the slurry used for the preparation of porous Si3N4 ceramics suffers from a low cure depth, making it challenging to fabricate ceramic components using DLP technology. In this study, porous Si3N4 ceramics were prepared by combining DLP technology with pore-forming agent method. The addition of polymethyl methacrylate (PMMA) powders with lower refractive index than that of Si3N4 powders can improve the penetration depth of ultraviolet light in the Si3N4 slurry. A systematic study was conducted to investigate the influence of the addition of PMMA powders on the properties of Si3N4 slurries and porous Si3N4 ceramics. When PMMA powders were added at 10 wt%, the slurry with a lowest viscosity of 0.13 Pa s (the shear rate is 30 s−1) and cure depth of 40.0 μm (the exposure energy is 600 mJ/cm2) was obtained. With the increase of PMMA content, porous Si3N4 ceramics experienced a gradual decrease in both the flexural strength and bulk density, while the porosity increased from 14.41% to 27.62%. Specifically, when 20 wt% PMMA was added, the resulting porous Si3N4 ceramics had a lowest bulk density (2.41 g/cm3), a maximum porosity (27.62%), and a flexural strength (435.87 MPa). The study is of great significance in establishing an experimental foundation for fabricating porous Si3N4 ceramics by using DLP technology.  相似文献   

10.
陈晨  于景媛  李强 《硅酸盐通报》2021,40(1):241-251
本文采用添加造孔剂法制备孔隙呈现梯度分布的多孔载Ag羟基磷灰石(Ag-HA)陶瓷.研究了造孔剂分布、烧结温度和载Ag含量对梯度多孔Ag-HA陶瓷孔隙度的影响.分析了烧结产物的物相组成和微观形貌,测量了烧结后梯度多孔Ag-HA陶瓷的压缩性能和抗菌性能.研究结果表明:随着中间层造孔剂含量增加,梯度多孔Ag-HA陶瓷的孔隙度...  相似文献   

11.
《Ceramics International》2021,47(24):33978-33987
In this work, a novel and facile technique based on using KCl as space holders, along with partial sintering (at 1900 °C for 30 min), was explored to prepare porous ZrB2–SiC ceramics with controllable pore structure, tunable compressive strength and thermal conductivity. The as-prepared porous ZrB2–SiC samples possess high porosity of 45–67%, low average pore size of 3–7 μm, high compressive strength of 32–106 MPa, and low room temperature thermal conductivity of 13–34 W m−1 K−1. The porosity, pore structure, compressive strength and thermal conductivity of porous ZrB2–SiC ceramics can be tuned simply by changing KCl content and its particle size. The effect of porosity and pore structure on the thermal conductivity of as-prepared porous ZrB2–SiC ceramics was examined and found to be consistent with the classical model for porous materials. The poring mechanism of porous ZrB2–SiC samples via adding pore-forming agent combined with partial sintering was also preliminary illustrated.  相似文献   

12.
Porous SiC ceramics have been used in high temperature flue gas filtration fields because of their excellent properties such as high strength, high temperature resistance, corrosion resistance, and long service time. This work reports the porous SiOC-bonded SiC ceramics prepared at low temperature. The properties of porous SiC ceramics were first investigated with silicone resin content from 10 to 25 wt%, and then the effects of different pore-forming agent contents on the behaviors of porous SiC ceramics were discussed by adjusting poly (methyl methacrylate) PMMA microbeads from 5 to 20 wt%. The prepared porous SiC ceramics showed apparent porosity from 17.3% to 57.7%, compressive strength from 6 to 216 MPa, and Darcy permeability k1 ranging from 7.02 × 10−14 to 1.45 × 10−12 m2. The corrosion behavior of porous SiC ceramics was investigated in acidic and alkaline media. The porous SiC ceramics showed better corrosion resistance in acidic solutions.  相似文献   

13.
Porous YSZ ceramics reinforced by different fibers were prepared by gel‐casting with 15% solid content and pressureless sintering. The four kinds of fibers (mullite, aluminosilicate, Al2O3, and YSZ fibers) were added into the YSZ ceramics with the same 10% vol content. After sintered at 1500°C for 2 h, aluminosilicate and mullite fibers could not be found in the samples of porous YSZ ceramics, which showed they reacted with YSZ ceramics at high temperature, while YSZ and Al2O3 fibers still kept perfect after sintering. Furthermore, the influences of fiber content, sintering temperature, porosity of matrix materials on compressive strength and porosity of the porous YSZ ceramics were studied. The results showed that Al2O3 fiber showed more obvious reinforcing effect than YSZ fiber on porous YSZ ceramics. The fiber‐reinforcing effects depend on fiber content, sintering temperature, and porosity of matrix materials. The fiber addition can improve the shrinkage behavior of porous ceramics during sintering and strengthen the skeleton of porous ceramics.  相似文献   

14.
《Ceramics International》2019,45(15):18865-18870
Near-net-shape mullite ceramics with high porosity were prepared from ultra-low cost natural aluminosilicate mineral kaolin as raw material and polystyrene micro-sphere (PS) as pore-forming agent. Microstructure, flexural strength, thermal conductivity and dielectric properties of the ceramics were systematically researched. Results show that the porous mullite ceramics possess fibrous skeleton structure formed by a large quantity of interlocked mullite whiskers, which results in good mechanical properties and low-to-zero sintering shrinkage. Flexural strength of the porous mullite ceramics can be up to 41.01 ± 1.12 MPa, even if the porosity is as high as 62.44%. The dielectric constant and loss tangent of the porous mullite ceramics at room temperature are lower than 2.61 and 5.9 × 10−3, respectively. Besides, dielectric constant is very stable with the rising of temperature, and the dielectric loss can be consistently lower than 10−2 when the temperature is not higher than 800 °C. In addition, thermal conductivity at room temperature is as low as 0.163 W/m/K when the porosity of mullite ceramics is 80.05%. The infiltration of SiO2 aerogels (SiO2 AGs) can further decrease the thermal conductivity to 0.075 W/m/K, while has just little effects on the dielectric properties. Excellent mechanical, thermal and dielectric properties show that the porous mullite ceramics have potential applications in radome fields. The porous mullite ceramics prepared from kaolin not only have low cost, but also can achieve near-net-shape.  相似文献   

15.
《Ceramics International》2022,48(17):24496-24504
Ultra-low shrinkage porous TiB2-based ceramics reinforced by the TiB whiskers are firstly fabricated through the in-situ reaction between TiB2 and Ti at a low temperature (1450 °C). The growth of TiB whiskers with a high aspect ratio at pore channels is achieved through a vapor-solid growth mechanism, while low aspect ratio TiB whiskers at pore walls are dominated by a solid-state reaction diffusion growth, forming bimodal distribution whiskers in porous TiB2-based ceramics. The overlapping TiB whiskers with low-speed growth at particle contact points can significantly inhibit the shrinkage and improve the strength of porous TiB2-based ceramics. When the solid content is fixed at 20 vol% and target TiB content changes from 0 to 80 vol%, the porous ceramics show slight sintering shrinkage (from 1.1 to 4.7%) and high porosity (from 79.3 to 73.7%) while keeping high compressive strength of 1.8–18.2 MPa, which is higher than most reported porous ceramics at the same porosity.  相似文献   

16.
The joint process consisting of pressureless sintering and chemical vapor infiltration (CVI) was developed to prepare porous Si3N4 ceramics with controlled microstructure. Lu2O3 and phenolic resin acted as sintering aid and pore-forming agent, respectively. The 5 wt% Lu2O3-doped ceramics using 12–57 vol% phenolic resin attained a porosity ranging from 46% to 53%. With increasing the resin content, the average pore size increased from 1 to 2 μm. The porous ceramic infiltrated with CVI Si3N4 had an improved microstructure. The decreased pore size and porosity led to an increase in flexural strength, and the densified surface led to an improved surface hardness.  相似文献   

17.
The significant shrinkage of porous ceramics after sintering has produced a number of issues with their use and development. As a result, we proposed an in-situ hollow sphere method for producing non-shrinkage alumina porous ceramics. The obtained green samples were made up of Al2O3 and Al powders, with pores emerging inside the materials due to the Kirkendall effect of Al particles after sintering. The expansion of hollowing particles exactly offsets the shrinkage generated by sintering throughout the process. When 50 vol. % Al powder (10 µm) is added, the linear shrinkage rate of the sample after sintering at 1500 °C can reach −3.47 %, and its apparent porosity and flexural strength are 30.69 % and 44.03 MPa, respectively. According to approximate calculations, the pores formed by the oxidation of Al powder are smaller than the initial size of Al powder. This method suggests a novel approach for producing controlled shrinkage porous ceramics.  相似文献   

18.
《Ceramics International》2017,43(10):7461-7468
In this study, porous macro- and micro-cellular wollastonite-based ceramics was synthesized. A ceramic precursor, methylhydrocyclosiloxane, together with micro-sized CaCO3, was used as a starting material. After 20 min of ultrasound treatment, and calcination at 250 °C for 30 min, different pore-forming agents were added to the as-obtained powders. Differential thermal analysis was used to determine characteristic temperatures of processes occurring within powders during heating. Based on the obtained results, the sintering regime was set up. The prepared mixtures were pressed into pallets and sintered at 900 °C. During the sintering regime, porous wollastonite-based ceramics was obtained. The phase composition of the sintered samples, as well as the microstructures, were analyzed by using X-ray diffraction and SEM. A two-phase system was detected in all samples, CaSiO3 wollastonite and Ca2SiO4 larnite, and their ratio varied with each pore-forming agent. It was observed that the addition of different pore-forming agents resulted in significantly different microstructures. In a batch test, the influence of pH, the contact time and the initial ion concentration on the adsorption efficiency of As+5, Cr+6and phosphate ions on the synthesized adsorbents were studied. Time-dependent adsorption is best described by the pseudo-second-order kinetic model and the Weber-Morris model, which predict intra-particle diffusion as a rate-controlling step of the overall process. High adsorption capacities, 21.93, 23.88, and 27.29 mg g–1, were obtained for the CaCO3-siloxane-nanocellulose sorbent, and similar/lower capacities were obtained for the CaCO3-siloxane-PMMA and CaCO3-siloxane-cotton wool adsorbents.  相似文献   

19.
In this paper we show examples of microstructures of porous oxide ceramics prepared by traditional slip casting (TSC) and starch consolidation casting (SCC) and present results obtained using different microstructural characterization techniques; Archimedes method (open and total porosity), shrinkage measurement, mercury intrusion porosimetry (pore size distribution) and microscopic methods – optical microscopy with microscopic image analysis (pore size distribution) and scanning electron microscopy (detailed investigation of the local microstructure). In particular, microstructures are compared for porous ceramics from the system Al2O3–ZrO2 prepared with rice and corn starch. It is shown that maximum values of the total porosity of porous ceramics prepared with starch as a pore-forming agent were approx. 50%. A major finding by using SEM with respect to starch-produced porous ceramics is the existence of pore fillings in the form of small sintered ceramic shell inside the pores, as a result of starch granule shrinkage during the drying and burn-out steps.  相似文献   

20.
In this paper, novel porous Si3N4 ceramics were prepared by aqueous gelcasting using Si3N4 poly-hollow microspheres as pore-forming agent. The effect of Si3N4 poly-hollow microsphere content on the phase composition, microstructure, shrinkage, porosity and mechanical properties of the prepared porous Si3N4 ceramics were investigated. It is found that there is only β-Si3N4 phase in all the prepared porous Si3N4 ceramics. Meanwhile, the SEM results show that the pores in the porous Si3N4 ceramics distribute uniformly, the added Si3N4 poly-hollow microspheres and the basal body contact closely. With the increase of Si3N4 poly-hollow microsphere content, the shrinkage of the porous Si3N4 ceramics decreases gradually, and the porosity of the porous Si3N4 ceramics decreases firstly and then increases. Furthermore, the flexural strength and fracture toughness of the porous Si3N4 ceramics decrease with the increase of the Si3N4 poly-hollow microsphere content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号