首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Titanium carbide ceramics with different contents of boron or B4C were pressureless sintered at temperatures from 2100 °C to 2300 °C. Due to the removal of oxide impurities, the onset temperature for TiC grain growth was lowered to 2100 °C and near fully dense (>98%) TiC ceramics were obtained at 2200 °C. TiB2 platelets and graphite flakes were formed during sintering process. They retard TiC grains from fast growth and reduced the entrapped pores in TiC grains. Therefore, TiC doped with boron or B4C could achieve higher relative density (>99.5%) than pure TiC (96.67%) at 2300 °C. Mechanical properties including Vickers’ hardness, fracture toughness and flexural strength were investigated. Highest fracture toughness (4.79 ± 0.50 MPa m1/2) and flexural strength (552.6 ± 23.1 MPa) have been obtained when TiC mixed with B4C by the mass ratio of 100:5.11. The main toughening mechanisms include crack deflection and pull-out of TiB2 platelets.  相似文献   

2.
In this study, chromium carbide (Cr3C2) was selected as the sintering additive for the densification of boron carbide (B4C). Cr3C2 can react with B4C and form graphite and CrB2 in situ, which is considered to be effective for the sintering of B4C composites. The sintering behavior, microstructure development and mechanical properties of B4C composites were studied. The density of B4C composite increased with the increase of Cr3C2 content and sintering temperature. The formation of liquid phase could effectively improve the densification of B4C composites. The abnormal grains began to appear at 2080 °C. The bending strength could reach 440 MPa for the 25 wt% and 30 wt% Cr3C2 samples after sintering at 2070 °C.  相似文献   

3.
The effects of the boron carbide (B4C) content and sintering atmosphere on the electrical, thermal, and mechanical properties of porous silicon carbide (SiC) ceramics were investigated in the porosity range of 58.3%–70.3%. The electrical resistivities of the nitrogen-sintered porous SiC ceramics (∼10–1 Ω·cm) were two orders of magnitude lower than those of argon-sintered porous SiC ceramics (∼101 Ω·cm). Both the thermal conductivities (3.3–19.8 W·m–1·K–1) and flexural strengths (8.1–32.9 MPa) of the argon- and nitrogen-sintered porous SiC ceramics increased as the B4C content increased, owing to the decreased porosity and increased necking area between SiC grains. The electrical resistivity of the porous SiC ceramics was primarily controlled by the sintering atmosphere owing to the N-doping from the nitrogen atmosphere, and secondarily by the B4C content, owing to the B-doping from the B4C. In contrast, the thermal conductivity and flexural strength were dependent on both the porosity and necking area, as influenced by both the sintering atmosphere and B4C content. These results suggest that it is possible to decouple the electrical resistivity from the thermal conductivity by judicious selection of the B4C content and sintering atmosphere.  相似文献   

4.
This work presents the results of studies on the preparation of single-phase polycrystalline tantalum carbide and niobium carbide. It has been found that it is possible to obtain polycrystals with high density in the pressureless sintering process at temperatures up to 2000 °C and therefore relatively low temperatures such as for the compounds with one of the highest melting points; TaC – 3985 °C and NbC – 3600 °C. Only carbon as a sintering additive was used. The main role of carbon is to reduce of oxide contamination. It has been shown that the determination of the amount of carbon required to reduce oxide contamination is only possible through the experimental method.  相似文献   

5.
The aim of this study was to produce dense, single phase polycrystals. The research was carried out on the submicron tungsten carbide powder without additives, with either a carbon or tungsten additive and on the powder with both additives. The primary task of carbon was to reduce surface oxide impurities which passivate WC grains; tungsten in turn bounds free carbon in the WC. The authors manufactured fine-grained, dense (96–98% T.D.) and single-phase WC polycrystals, using the technique of pressureless sintering at the temperature not exceeding 2000 °C. A positive effect of carbon addition on tungsten carbide sinterability was observed, whereby a dense, fine-grained polycrystals can be obtained at 1900 °C. It was also observed that a significant excess of temperature of sintering process resulted in a strong abnormal grain growth of WC grains.  相似文献   

6.
李少峰 《佛山陶瓷》2022,32(1):16-19
以部分碳化钛为增强相投入到碳化硅基体材料中,并投入微量炭黑和碳化硼为烧结活化剂,利用无压固相烧结技术制造了碳化硅基陶瓷复合材料。评测了其力学性能,凭借扫描电镜(SEM)观测了试样的断口形貌与表观形貌,并探讨了其氧化行为。结果表明:在碳化硅中投加部分碳化钛,对复合材料的力学性能有非常大地益处,于9 wt%时达到顶峰,弯曲强度497 MPa,相对密度98.9%,断裂韧性4.79 MPa·m1/2。复合材料的显微组织构造紧致密实,TiC颗粒在SiC材料中的离散作用而激发的钉扎效果和裂纹偏移转向为其主要的增韧原理。在设定的氧化条件下(1200℃保温2 h),试样表面形成了一层较为致密并可以弱化氧化进程的氧化膜层。  相似文献   

7.
In this paper, the novel boron nitride micron tubes (BNMTs) were used to reinforce commercial boron carbide (B4C) ceramics prepared via spark plasma sintering technology. The effects of the sintering parameters, sintering temperature, the holding time, and the BNMTs content on the microstructure and mechanical properties of B4C/BNMTs composite ceramics were studied. The results indicated that adding a proper amount of BNMTs could inhibit the grain growth of B4C and improve the fracture toughness of the B4C/BNMTs composite ceramics. The prepared composite ceramic sample with 5 wt% BNMTs at 1850°C, 8 min and 30 MPa displayed the best mechanical properties. The relative density, hardness, fracture toughness, and bending strength of the samples were 99.7% ± .1%, 35.62 ± .43 GPa, 6.23 ± .2 MPa m1/2, and 517 ± 7.8 MPa, respectively. Therein, the corresponding value of hardness, fracture toughness, and bending strength was increased by 10.3%, 43.59%, and 61.5%, respectively, than that of the B4C/BNMTs composite ceramic without BNMTs. It was proved that the high interface binding energy and bridging effect between boron carbide and BNMTs were the toughening principle of BNMTs.  相似文献   

8.
The effect of small Al addition on pressureless-sintering and mechanical properties of B4C ceramic was analyzed. Different amounts of aluminium powder, from 0% to 5 wt%, were added to the base material and pressureless-sintering was conducted at 2050 and 2150 °C under argon atmosphere. Microstructure, crystalline phases, density evolution, fracture strength, elastic modulus, hardness and fracture toughness were analyzed and correlated to Al additions and firing temperature. Density and grain size of sintered samples increased significantly with Al load while the effect of sintering temperature was less evident; 94% dense material was obtained by adding 4 wt% Al. Bending strength, hardness and fracture toughness of sintered B4C samples were shown to increase for Al content up to 4 wt% while further additions resulted in a decrease of the mechanical resistance. Conversely, elastic modulus showed an increase with Al load especially between 1 and 3 wt%.  相似文献   

9.
Simultaneous synthesis and densification of boron carbide and boron carbide- graphene nano platelets (GNP) were carried out by reactive spark plasma sintering of amorphous boron and graphene nano platelets at temperature ranging from 1200 to 1600?°C, pressure of 50?MPa and heating rate of 50?°C/min and 100?°C/min. X-ray diffraction and Raman spectroscopy confirmed the formation of required phases. Electron microscopic images revealed the formation of sub-micron and nano sized grains of plate like morphology. Sintered product with high relative density of 96%TD was achieved at a temperature of 1600?°C and heating rate of 50?°C/min for B4C stoichiometric composition and also exhibited maximum hardness of 21.10?GPa.  相似文献   

10.
ABSTRACT

Boron carbide (B4C) ceramics has many outstanding performance, such as extremely high hardness, low density, high melting point, high elastic modulus, high thermoelectromotive force, high chemical resistance, high neutron absorption cross section, high impact and excellent wear resistance. Therefore, B4C ceramics can be used in various industrial applications, such as lightweight ceramic armour, high temperature thermocouples, neutron absorber, reactor control rods in nuclear power engineering, polishing media for hard materials, abrasive media for lapping and grinding, and wear resistant components (blasting nozzles, die tips and grinding wheels). Pressureless sintering is the method with industrialised application value for B4C ceramics, however, it is impossible to sinter pure B4C ceramics to high densities without additives by pressureless sintering. So sintering additives must be used to promote the densification of B4C ceramics. The different sintering additives used to promote the densification of boron carbide will be described in this review, including carbon additives, metallic additives, oxide additives, non-oxide additives, combined additives and rare earth oxide additives. Finally, the recent research trends for sintering methods and sintering additives of B4C ceramics will also be proposed.  相似文献   

11.
The high sintering temperature of pure B4C considerably limits its widespread application, thus searching an effective sintering aid is critical. In this work, B4C-based ceramic with 1 vol.% nonequiatomic Fe50Mn30Co10Cr10 medium entropy alloy as a sintering aid were fabricated at 1900-2000°C by spark plasma sintering (SPS) under applied pressure, and their mechanical properties were examined and compared with pure B4C ceramic sintered at same condition. The maximal flexural strength of 255.59 MPa, microhardness of 2297.6 Hv0.2 and fracture toughness of 3.62 MPa m1/2 could be obtained at optimized SPS pressure of 50 MPa, which were all higher than those of pure B4C ceramic. To better understand the densification kinetics mechanisms, the densification ratio as a function of SPS temperature and pressure was theoretically analyzed using steady creep model. It was found that densification controlled by grain-boundary sliding at lower pressure transferred to power law creep regime at higher pressure, which were proved by the dislocation net shown in transmission electron microscopy image.  相似文献   

12.
The effects of B4C content on the specific stiffness and mechanical and thermal properties of pressureless-sintered SiC ceramics were investigated. SiC ceramics containing 2.5 wt% C and 0.7–20 wt% B4C as sintering aids could be sintered to ≥ 99.4% of the theoretical density at 2150 °C for 1 h in Ar. The specific stiffness of SiC ceramics increased from 136.1 × 106 to 144.4 × 106 m2‧s−2 when the B4C content was increased from 0.7 to 20 wt%. The flexural strength and fracture toughness of the SiC ceramics were maximal with the incorporation of 10 wt% B4C (558 MPa and 3.69 MPa‧m1/2, respectively), while the thermal conductivity decreased from ∼154 to ∼83 W‧m−1‧K−1 when the B4C content was increased from 0.7 to 30 wt%. The flexural strength and thermal conductivity of the developed SiC ceramic containing 20 wt% B4C were ∼346 MPa and ∼105 W‧m−1‧K−1, respectively.  相似文献   

13.
Submicrometer boron carbide powders were synthesized using rapid carbothermal reduction (RCR) method. Synthesized boron carbide powders had smaller particle size, lower free carbon, and high density of twins compared to commercial samples. Powders were sintered using spark plasma sintering at different temperatures and dwell times to compare sintering behavior. Synthesized boron carbide powders reached >99% TD at lower temperature and shorter dwell times compared to commercial powders. Improved microhardness observed in the densified RCR samples was likely caused by the combination of higher purity, better stoichiometry control, finer grain size, and a higher density of twin boundaries.  相似文献   

14.
This paper presents the results of experiments on pressureless sintering of boron carbide with varying addition of zirconia (ZrO2: 0–30 wt.%). Green pellets were densified by sintering at 2275 °C in vacuum for 60 min and characterized by measurement of density, hardness, thermal conductivity and microstructure. Samples prepared with the addition of ≥5 wt.% ZrO2 showed higher densities in the range of 93–96% ρth, compared to 86.63% ρth for boron carbide only. Addition of ZrO2 was found to increase the hardness of sintered samples and regardless of ZrO2 content, the hardness values ranged between 30 and 31.5 GPa. XRD of the sintered pellets showed the presence of ZrB2. Optical microscope as well as electron probe microanalysis (EPMA) showed the presence of two phases, grey matrix with white precipitates. EPMA analysis of second phase revealed the presence of Zirconium in this phase. Fractography of boron carbide with 25% ZrO2 showed the failure to be by mixed fracture (transgranular and intergranular). Thermal conductivity values of the samples measured in the temperature range of 400–1000 °C were marginally higher with the addition of ZrO2.  相似文献   

15.
采用无压烧结方法制备了碳化硅密封件样品,讨论了对其性能有较大影响的工艺参数。借助SEM分析手段观察了其显微结构,并测试了其力学性能和体积密度。实验结果表明:以酚醛树脂和淀粉混合物为粘结剂,通过添加1~4w t%炭黑2~4w t%B4C,在2100~2150℃、保温0.5~2h条件下得到了力学性能良好的碳化硅制品。其肖氏硬度达到110,抗折强度350 M Pa,弹性模量300 G Pa,密度最高可达3.12 g/cm 3。  相似文献   

16.
Pressureless Sintering of Boron Carbide   总被引:4,自引:0,他引:4  
B4C powder compacts were sintered using a graphite dilatometer in flowing He under constant heating rates. Densification started at 1800°C. The rate of densification increased rapidly in the range 1870°–2010°C, which was attributed to direct B4C–B4C contact between particles permitted via volatilization of B2O3 particle coatings. Limited particle coarsening, attributed to the presence or evolution of the oxide coatings, occurred in the range 1870°–1950°C. In the temperature range 2010°–2140°C, densification continued at a slower rate while particles simultaneously coarsened by evaporation–condensation of B4C. Above 2140°C, rapid densification ensued, which was interpreted to be the result of the formation of a eutectic grain boundary liquid, or activated sintering facilitated by nonstoichiometric volatilization of B4C, leaving carbon behind. Rapid heating through temperature ranges in which coarsening occurred fostered increased densities. Carbon doping (3 wt%) in the form of phenolic resin resulted in more dense sintered compacts. Carbon reacted with B2O3 to form B4C and CO gas, thereby extracting the B2O3 coatings, permitting sintering to start at ∼1350°C.  相似文献   

17.
The feasibility of flash sintering boron carbide (B4C) was investigated using a direct current (DC) electric field across different electrodes, field strengths, and thermal profiles. Flash behavior was observed at furnace temperatures as low as 386°C with field strengths of 68-278 V/cm, but only a small channel of the specimen was densified due to hot spot effects. Application of a 2.2 V/cm·s voltage ramp at a constant temperature of 550°C caused uniform heating, but at temperatures too low for sintering. Scalable densification of B4C at low furnace temperatures with flash sintering is theorized to be possible by applying a higher current density through power supply or specimen modifications.  相似文献   

18.
Polycrystalline SiC ceramics with 10 vol% Y2O3-AlN additives were sintered without any applied pressure at temperatures of 1900-2050°C in nitrogen. The electrical resistivity of the resulting SiC ceramics decreased from 6.5 × 101 to 1.9 × 10−2 Ω·cm as the sintering temperature increased from 1900 to 2050°C. The average grain size increased from 0.68 to 2.34 μm with increase in sintering temperature. A decrease in the electrical resistivity with increasing sintering temperature was attributed to the grain-growth-induced N-doping in the SiC grains, which is supported by the enhanced carrier density. The electrical conductivity of the SiC ceramic sintered at 2050°C was ~53 Ω−1·cm−1 at room temperature. This ceramic achieved the highest electrical conductivity among pressureless liquid-phase sintered SiC ceramics.  相似文献   

19.
Spark plasma sintering (SPS) has become a popular technique for the densification of covalent ceramics. The present investigation is focused on the static mechanical properties and dynamic compressive behavior of SPS consolidated boron carbide powder without any sintering additives. Fully dense boron carbide bodies were obtained by a short high temperature SPS treatment. The mechanical properties of the SPS-processed material, namely hardness (32 GPa), Young modulus (470 GPa), fracture toughness KC (3.9–4.9 MPa m0.5), flexural strength (430 MPa) and Hugoniot elastic limit (17–19 GPa) are close or even better than those of hot-pressed boron carbide.  相似文献   

20.
A new strategy was introduced to achieve high volume fraction of tristructural isotropic (TRISO) particles (> 35 vol%) in fully ceramic microencapsulated (FCM) fuels. The proposed strategy requires (1) applying a controlled coating of a SiC matrix on the TRISO particles, (2) forming the coated TRISO particles using cold isostatic pressing, and (3) sintering the formed sample without applied pressure. The strategy was very effective for preventing both the rupture of TRISO particles and matrix cracking during sintering. The thinner the coating layer, the higher the volume fraction of the TRISO particles obtained in the FCM pellets. However, when the coating thickness was extremely thin (≤ 133 μm), radial cracks were observed near the TRISO particles in the SiC matrix after sintering. The maximum TRISO volume fraction (∼35.3 %) was obtained when the coating thickness was ∼215 μm and the TRISO pellets had no cracks in the SiC matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号