首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
S. Agrawal  S. Yamamoto 《Indoor air》2015,25(3):341-352
Available evidence concerning the association between indoor air pollution (IAP) from biomass and solid fuel combustion and preeclampsia/eclampsia is not available in developing countries. We investigated the association between exposure to IAP from biomass and solid fuel combustion and symptoms of preeclampsia/eclampsia in Indian women by analyzing cross‐sectional data from India's third National Family Health Survey (NFHS‐3, 2005–2006). Self‐reported symptoms of preeclampsia/eclampsia during pregnancy such as convulsions (not from fever), swelling of legs, body or face, excessive fatigue or vision difficulty during daylight, were obtained from 39 657 women aged 15–49 years who had a live birth in the previous 5 years. Effects of exposure to cooking smoke, ascertained by type of fuel used for cooking on preeclampsia/eclampsia risk, were estimated using logistic regression after adjusting for various confounders. Results indicate that women living in households using biomass and solid fuels have two times higher likelihood of reporting preeclampsia/eclampsia symptoms than do those living in households using cleaner fuels (OR = 2.21; 95%: 1.26–3.87; P = 0.006), even after controlling for the effects of a number of potentially confounding factors. This study is the first to empirically estimate the associations of IAP from biomass and solid fuel combustion and reported symptoms suggestive of preeclampsia/eclampsia in a large nationally representative sample of Indian women and we observed increased risk. These findings have important program and policy implications for countries such as India, where large proportions of the population rely on polluting biomass fuels for cooking and space heating. More epidemiological research with detailed exposure assessments and clinical measures of preeclampsia/eclampsia is needed in a developing country setting to validate these findings.  相似文献   

3.
A cross-sectional study was conducted to investigate the impact of solid fuel use for heating and cooking on blood pressure (BP) and hypertension, using data from the China Health and Retirement Longitudinal Study (CHARLS). The primary fuels used for indoor heating and cooking were collected by questionnaires, respectively. Hypertension was defined based on self-report of physician's diagnosis, and/or measured BP, and/or anti-hypertensive medication use. Multivariate logistic regression models were constructed to assess the associations. Among 10 450 eligible participants, 68.2% and 57.2% used indoor solid fuel for heating and cooking, respectively. Compared with none/clean fuel users, solid fuel for heating was associated with elevated BP (adjusted β: 2.02, 95% CI: 1.04–3.01 for systolic BP; adjusted β: 1.36, 95% CI: 0.78–1.94 for diastolic BP) and increased risk of hypertension (adjusted odds ratio: 1.15, 95% CI: 1.03–1.29). The impact of indoor solid fuel for heating on BP was more evident in rural and north residents, and hypertensive patients. We did not detect any significant associations between solid fuel use for cooking and BP/hypertension. Indoor solid fuel use is prevalent in China, especially in the rural areas. Its negative impact on BP suggested that modernization of household fuel use may help to reduce the burden of hypertension in China.  相似文献   

4.
Despite significant investment, childhood malnutrition continues to be a significant public health problem especially in least developed countries. The aim of this study was to find association between household biomass fuel (BMF) use and childhood malnutrition in Bangladesh using data from Demographic and Health Survey 2011. We included a total 6891 children under 5 years of age in the analysis. The prevalence of wasting, underweight, and stunting from BMF using household was 16.1% (n = 997; 95%CI, 15.1–17.3), 39.0% (n = 2399; 95%CI, 37.1–40.9), and 43.3% (n = 2620; 95%CI, 41.6–45.1), respectively. Underweight and stunting were significantly higher among children from households using BMF compared with the children from CF using households (underweight, biomass vs clean fuel: 39.0% vs. 23.5%, < 0.001; stunting, biomass vs clean fuel: 43.3 vs. 31.5%, < 0.001). The use of BMF in the household was significantly associated with underweight (OR = 1.38; 95%CI: 1.10–1.73) and stunting (OR = 1.58; 95%CI: 1.18–1.98) among children <5 years of age after adjusting possible confounders in mixed effect logistic regression analysis. This study found a significant association between chronic childhood malnutrition and household BMF use which is indicating possible alternative risk factor for malnutrition. Further prospective research is required to explore the mechanism of how BMF use results in chronic malnutrition.  相似文献   

5.
The main objective of this study was to evaluate the association between household air pollution with lower tract respiratory infection (LRTI) in children younger than 5 years old and adverse pregnancy outcomes. This retrospective cohort study took place in two cities in Patagonia. Using systemic random sampling, we selected households in which at least one child <5 years had lived and/or a child had been born alive or stillborn. Trained interviewers administered the questionnaire. We included 926 households with 695 pregnancies and 1074 children. Household cooking was conducted indoors in ventilated rooms and the use of wood as the principal fuel for cooking was lower in Temuco (13% vs. 17%). In exposed to biomass fuel use, the adjusted OR for LRTI was 1.87 (95% CI 0.98–3.55; = 0.056) in Temuco and 1.12 (95% CI 0.61–2.05; = 0.716) in Bariloche. For perinatal morbidity, the OR was 3.11 (95% CI 0.86–11.32; = 0.084) and 1.41 (95% CI 0.50–3.97; = 0.518), respectively. However, none of the effects were statistically significant (> 0.05). The use of biomass fuel to cook in traditional cookstoves in ventilated dwellings may increase the risk of perinatal morbidity and LRTI.  相似文献   

6.
Fine particle number concentration (D(p)>10 nm, cm(-3)), mass concentrations (approximation of PM(2.5), microg m(-3)) and indoor/outdoor number concentration ratio (I/O) measurements have been conducted for the first time in 11 urban households in India, 2002. The results indicate remarkable high indoor number and mass concentrations and I/O number concentration ratios caused by cooking. Besides cooking stoves that used liquefied petroleum gas (LPG) or kerosene as the main fuel, high indoor concentrations can be explained by poor ventilation systems. Particle number concentrations of more than 300,000 cm(-3) and mass concentrations of more than 1000 microg m(-3) were detected in some cases. When the number and mass concentrations during cooking times were statistically compared, a correlation coefficient r>0.50 was observed in 63% of the households. Some households used other fuels like wood and dung cakes along with the main fuel, but also other living activities influenced the concentrations. In some areas, outdoor combustion processes had a negative impact on indoor air quality. The maximum concentrations observed in most cases were due to indoor combustion sources. Reduction of exposure risk and health effects caused by poor indoor air in urban Indian households is possible by improving indoor ventilation and reducing penetration of outdoor particles.  相似文献   

7.
Joseph L. Saenz 《Indoor air》2021,31(5):1522-1532
Studies of air pollution and cognition often rely on measures from outdoor environments. Many individuals in low- and middle-income countries are exposed to indoor air pollution from combustion of solid cooking fuels. Little is known about how solid cooking fuel use affects cognitive decline over time. This study uses data from the 2012, 2015, and 2018 Mexican Health and Aging Study (n = 14 245, age 50+) to assess how use of wood or coal for cooking fuel affects cognition of older adults relative to use of gas. It uses latent change score modeling to determine how using solid cooking fuel affected performance in Verbal Learning, Verbal Recall, Visual Scanning, and Verbal Fluency. Solid cooking fuel was used by 17% of the full sample but was more common in rural areas. Solid fuel users also had lower socioeconomic status. Compared to those using gas, solid fuel users had lower baseline scores and faster decline in Verbal Learning (β = −0.18, p < 0.05), Visual Scanning (β = −1.00, p < 0.001), and Verbal Fluency (β = −0.33, p < 0.001). Indoor air pollution from solid cooking fuels may represent a modifiable risk factor for cognitive decline. Policy should focus on facilitating access to clean cooking fuels.  相似文献   

8.
Roy A  Chapman RS  Hu W  Wei F  Liu X  Zhang J 《Indoor air》2012,22(1):3-11
Ambient air pollution has been associated with decreased growth in lung function among children; but little is known about the impact of indoor air pollution. We examined relationships between indoor air pollution metrics and lung function growth, among children (n = 3273) aged 6-13 years living in four Chinese cities. Lung function parameters (FVC and FEV(1) ) were measured twice a year. Questionnaires were used to determine home coal burning and ventilation practices. Generalized estimating equations were used to examine associations. Use of coal as a household fuel was associated with 16.5 ml/year lower (33%, P < 0.001) and 20.5 ml/year lower (39%, P < 0.001) growth in children's FEV(1) and FVC, respectively. FEV(1) growth was 10.2 ml/year higher (20%, P = 0.009), and FVC growth was 17.0 ml/year higher (33%, P < 0.001) among children who lived in houses with the presence of a ventilation device. Among children living in houses where coal was used as a fuel and no ventilation devices were present, adjusted FVC and FEV(1) growth, respectively, were 37% and 61% that of the average growth per year in the full cohort. This suggests that household coal use may cause deficits in lung function growth, while using ventilation devices may be protective of lung development. PRACTICAL IMPLICATIONS: Nearly 3.4 billion people use solid fuels in homes for cooking and/or heating. We report the following findings from a longitudinal study: (i) household coal use is significantly associated with reduction in children's lung function growth and (ii) the use of household ventilation devices is significantly associated with higher lung function growth, particularly among children living in households where coal is used as a fuel. These findings not only provide evidence that indoor coal use impairs children's lung development but also point to the importance of improving ventilation conditions in reducing harmful effects of indoor air pollution sources.  相似文献   

9.
AIMS: The present study aims to assess the biological uptake in children of polycyclic aromatic hydrocarbons measured as 1-hydroxypyrene in urine from children living in city and rural residences. METHODS: 103 children living in Copenhagen and 101 children living in rural residences of Denmark collected urine samples Monday to Friday morning. Each day, the family filled in a printed diary that included questions about the time and activity patterns of the child. Multiple regression analyses were used to identify predictors of the excreted 1-hydroxypyrene level. RESULTS: During the week, the children excreted on average 0.07 [95% CI: 0.01-0.41] micromol urinary 1-hydroxypyrene per mol creatinine. Children living in urban residences excreted 0.02 [95% CI: 0.01-0.05] micromol more 1-hydroxypyrene than children living in rural residences. This was confirmed in the multiple regression analysis showing a 29% (95% CI: 2-64%) higher excretion among urban children than rural children. Moreover, the regression analysis showed that for each hour per day spent outside the children excreted 58% (1.58 [1.22-2.03]) more 1-hydroxypyrene in urine. CONCLUSION: The present study indicates that children living in urban residences are more exposed to PAH than children living in rural residences. Time spent outdoors increased the excretion of 1-hydroxypyrene, which was most evident among urban children. Higher concentrations of ambient air pollution in urban areas may explain this finding. No influence of environmental tobacco smoke, cooking habits, and heating facilities was detected.  相似文献   

10.
在对长沙市70户居住建筑住户的能耗进行为期1年跟踪调查的基础上,从中选择了2户具有代表性的住户,从2006年12月19日至2007年2月27日进行了总能耗及各终端能耗的实测,将总能耗分解成照明、供暖空调、炊事热水、其他家用电器能耗4项终端能耗。居住建筑总能耗主要为供暖空调能耗与炊事热水能耗。导致住户终端能耗分布不同的原因主要为娱乐功能进入居住建筑,其次为住户的能耗设备种类及生活习惯和生活方式的不同。  相似文献   

11.
Poor households in Bangladesh depend heavily on wood, dung and other biomass fuels for cooking. This paper provides a detailed analysis of the implications for indoor air pollution (IAP), drawing on new 24-h monitoring data for respirable airborne particulates (PM10). A stratified sample of 236 households was selected in Dhaka and Narayanganj, with a particular focus on fuel use, cooking locations, structural materials, ventilation practices, and other potential determinants of exposure to IAP. At each household, PM10 concentrations in the kitchen and living room were monitored for a 24-h period during December, 2003-February, 2004. Concentrations of 300 microg/m3 or greater are common in our sample, implying widespread exposure to a serious health hazard. A regression analysis for these 236 households was then conducted to explore the relationships between PM10 concentrations, fuel choices and a large set of variables that describe household cooking and ventilation practices, structure characteristics and building materials. As expected, our econometric results indicate that fuel choice significantly affects indoor pollution levels: natural gas and kerosene are significantly cleaner than biomass fuels. However, household-specific factors apparently matter more than fuel choice in determining PM10 concentrations. In some biomass-burning households, concentrations are scarcely higher than in households that use natural gas. Our results suggest that cross-household variation is strongly affected by structural arrangements: cooking locations, construction materials, and ventilation practices. A large variation in PM10 was also found during the 24-h cycle within households. For example, within the 'dirtiest' firewood-using household in our sample, readings over the 24-h cycle vary from 68 to 4864 microg/m3. Such variation occurs because houses can recycle air very quickly in Bangladesh. After the midday meal, when ventilation is common, air quality in many houses goes from very dirty to reasonably clean within an hour. Rapid change also occurs within households: diffusion of pollution from kitchens to living areas is nearly instantaneous in many cases, regardless of internal space configuration, and living-area concentrations are almost always in the same range as kitchen concentrations. By implication, exposure to dangerous indoor pollution levels is not confined to cooking areas. To assess the broader implications for poor Bangladeshi households, we extrapolate our regression results to representative 600 household samples from rural, peri-urban and urban areas in six regions: Rangpur in the north-west, Sylhet in the north-east, Rajshahi and Jessore in the west, Faridpur in the center, and Cox's Bazar in the south-east. Our results indicate great geographic variation, even for households in the same per capita income group. This variation reflects local differences in fuel use and, more significantly, construction practices that affect ventilation. For households with per capita income 相似文献   

12.
Indoor air pollution (IAP) is a recognized risk factor for various diseases. This paper examines the role of indoor solid fuel exposure in the risk of mycobacterium tuberculosis (TB) in Delhi Metropolitan, India. Using a cross-sectional design, subjects were screened for a history of active TB and lifelong exposure to IAP sources, such as solid fuel burning and kerosene. The TB prevalence rate in the study area was 1117 per 100 000 population. Every year, increase in solid fuel exposure was associated with a three percent higher likelihood of a history of active TB. Subjects exposed to solid fuel and kerosene use for both heating home and cooking showed significant associations with TB. Age, household expenditure (a proxy of income), lung function, and smoking also showed significant associations with TB. Smokers and solid fuel–exposed subjects were four times more likely to have a history of active TB than non-smoker and unexposed subjects. These finding calls strategies to mitigate solid fuel exposure, such as use of clean cookstove and ventilation, to mitigate the risk of TB which aligns with the United Nations’ goal of “End TB by 2030.”  相似文献   

13.
Burning solid fuels to fulfill daily household energy needs results in chronic exposure to household air pollution (HAP), which is among the world's greatest health risks. This paper presents the results of a cross‐sectional study of cookstove usage, fuel consumption, and indoor PM2.5 concentrations in rural and urban Honduran homes cooking with the Envirofit HM‐5000 metal plancha stove (n = 32) as compared to control households using baseline cooking technologies (n = 33). Temperature‐based stove usage measurements showed high HM‐5000 acceptance, with significant displacement of the traditional cookstoves at both the urban (99%, P < .05) and rural study sites (75%, P < .05). However, longer‐term usage data collected in peri‐urban households showed that participants cooked on the HM‐5000 more frequently during the 3‐day monitoring period than during the following 3 weeks. Average indoor PM2.5 was 66% lower in HM‐5000 households as compared to control households (P < .05). Lower indoor PM2.5 concentrations observed in participant homes as compared to control households, supported by high usage and traditional stove displacement, suggest the potential for the HM‐5000 to yield health improvements in adopting Honduran households.  相似文献   

14.
Exposure to particulate matter (PM2.5) from the burning of biomass is associated with increased risk of respiratory disease. In Dhaka, Bangladesh, households that do not burn biomass often still experience high concentrations of PM2.5, but the sources remain unexplained. We characterized the diurnal variation in the concentrations of PM2.5 in 257 households and compared the risk of experiencing high PM2.5 concentrations in biomass and non‐biomass users. Indoor PM2.5 concentrations were estimated every minute over 24 h once a month from April 2009 through April 2010. We found that households that used gas or electricity experienced PM2.5 concentrations exceeding 1000 μg/m3 for a mean of 35 min within a 24‐h period compared with 66 min in biomass‐burning households. In both households that used biomass and those that had no obvious source of particulate matter, the probability of PM2.5 exceeding 1000 μg/m3 were highest during distinct morning, afternoon, and evening periods. In such densely populated settings, indoor pollution in clean fuel households may be determined by biomass used by neighbors, with the highest risk of exposure occurring during cooking periods. Community interventions to reduce biomass use may reduce exposure to high concentrations of PM2.5 in both biomass and non‐biomass using households.  相似文献   

15.
F. Wang  J. Wang  Y. Li  X. Han  H. Hu  C. Yu  J. Yuan  P. Yao  X. Miao  S. Wei  Y. Wang  W. Chen  Y. Liang  H. Guo  X. Zhang  H. Yang  T. Wu  M. He 《Indoor air》2018,28(2):238-246
Experimental and epidemiological studies indicated that ambient air pollution was positively associated with diabetes. Few studies investigated the associations between household air pollution, for example, daily cooking duration and diabetes or prediabetes. We conducted a cross‐sectional study to investigate the associations of daily cooking duration with the prevalence of diabetes and prediabetes among a middle‐aged and elderly population. A total of 26 089 individuals (11 250 males and 14 839 females) derived from the Dongfeng‐Tongji cohort study were included. Daily cooking duration was assessed by questionnaire. Diabetes and prediabetes were identified according to the criterion of American Diabetes Association. No significant association was observed between daily cooking duration and the prevalence risk of diabetes (odds ratio[OR] = 0.97, 95% confidence interval[CI]: [0.81‐1.16], P for trend = .74); however, longer daily cooking duration was associated with higher prevalence risk of prediabetes (OR = 1.26, 95% CI: 1.07‐1.47; P for trend = .003) and hyperglycemia (OR = 1.21, 95% CI: 1.05‐1.41; P for trend = .005). Our study suggested that daily cooking duration was not associated with diabetes but with higher prevalence risk of prediabetes/hyperglycemia in a middle‐aged and elderly Chinese population.  相似文献   

16.
Acute lower respiratory illnesses (ALRI) are the leading cause of death among children <5 years. Studies have found that biomass cooking fuels are an important risk factor for ALRI. However, few studies have evaluated the influence of natural household ventilation indicators on ALRI. The purpose of this study was to assess the association between cooking fuel, natural household ventilation, and ALRI. During October 17, 2004-September 30, 2005, children <5 years living in a low-income neighborhood of Dhaka, Bangladesh, were assessed weekly for ALRI and surveyed quarterly about biomass fuel use, electric fan ownership, and natural household ventilation (windows, ventilation grates, and presence of a gap between the wall and ceiling). Bivariate and multivariate analyses were performed using generalized estimating equations. Six thousand and seventy-nine children <5 years enrolled during the study period (99% participation) experienced 1291 ALRI. In the multivariate model, ≥2 windows [OR = 0.75, 95% CI = (0.58, 0.96)], ventilation grates [OR = 0.80, 95% CI = (0.65, 0.98)], and not owning an electric fan [OR = 1.50, 95% CI = (1.21, 1.88)] were associated with ALRI; gap presence and using biomass fuels were not associated with ALRI. Structural factors that might improve household air circulation and exchange were associated with decreased ALRI risk. Improved natural ventilation might reduce ALRI among children in low-income families. PRACTICAL IMPLICATIONS: The World Health Organization has stated that controlling pneumonia is a priority for achieving the fourth Millennium Development Goal, which calls for a two-third reduction in mortality of children <5 years old compared to the 1990 baseline. Our study represents an important finding of a modifiable risk factor that might decrease the burden of respiratory illness among children living in Bangladesh and other low-income settings similar to our study site. We found that the existence of at least two windows in the child's sleeping room was associated with a 25% decreased ALRI risk. Increasing available natural ventilation within the household in similar settings has the potential to reduce childhood mortality because of acute lower respiratory illnesses.  相似文献   

17.
Black carbon (BC) emissions from solid fuel combustion are associated with increased morbidity and mortality and are important drivers of climate change. We studied BC measurements, approximated by particulate matter (PM2.5) absorbance, in rural Yunnan province, China, whose residents use a variety of solid fuels for cooking and heating including bituminous and anthracite coal, and wood. Measurements were taken over two consecutive 24‐h periods from 163 households in 30 villages. PM2.5 absorbance (PMabs) was measured using an EEL 043 Smoke Stain Reflectometer. PMabs measurements were higher in wood burning households (16.3 × 10?5/m) than bituminous and anthracite coal households (12 and 5.1 × 10?5/m, respectively). Among bituminous coal users, measurements varied by a factor of two depending on the coal source. Portable stoves (which are lit outdoors and brought indoors for use) were associated with reduced PMabs levels, but no other impact of stove design was observed. Outdoor measurements were positively correlated with and approximately half the level of indoor measurements (r = 0.49, P < 0.01). Measurements of BC (as approximated by PMabs) in this population are modulated by fuel type and source. This provides valuable insight into potential morbidity, mortality, and climate change contributions of domestic usage of solid fuels.  相似文献   

18.
Biomass combustion for cooking and heating releases particulate matter (PM2.5) that contributes to household air pollution. Fuel and stove types affect the chemical composition of household PM, as does infiltration of outdoor PM. Characterization of these impacts can inform future exposure assessments and epidemiologic studies, but is currently limited. In this study, we measured chemical components of PM2.5 (water-soluble organic matter [WSOM], ions, black carbon, elements, organic tracers) in rural Chinese households using traditional biomass stoves, semi-gasifier stoves with pelletized biomass, and/or non-biomass stoves. We distinguished households using one stove type (traditional, semi-gasifier, or LPG/electric) from those using multiple stoves/fuels. WSOM concentrations were higher in households using only semi-gasifier or traditional stoves (31%-33%) than in those with exclusive LPG/electric stove (13%) or mixed stove use (12%-22%). Inorganic ions comprised 14% of PM in exclusive LPG/electric households, compared to 1%-5% of PM in households using biomass. Total PAH content was much higher in households that used traditional stoves (0.8-2.8 mg/g PM) compared to those that did not (0.1-0.3 mg/g PM). Source apportionment revealed that biomass burning comprised 27%-84% of PM2.5 in households using biomass. In all samples, identified outdoor sources (vehicles, dust, coal combustion, secondary aerosol) contributed 10%-20% of household PM2.5.  相似文献   

19.
Indoor air pollution (IAP) from biomass fuels contains high concentrations of health damaging pollutants and is associated with an increased risk of childhood pneumonia. We aimed to design an exposure measurement component for a matched case-control study of IAP as a risk factor for pneumonia and severe pneumonia in infants and children in The Gambia. We conducted co-located simultaneous area measurement of carbon monoxide (CO) and particles with aerodynamic diameter <2.5 microm (PM(2.5)) in 13 households for 48 h each. CO was measured using a passive integrated monitor and PM(2.5) using a continuous monitor. In three of the 13 households, we also measured continuous PM(2.5) concentration for 2 weeks in the cooking, sleeping, and playing areas. We used gravimetric PM(2.5) samples as the reference to correct the continuous PM(2.5) for instrument measurement error. Forty-eight hour CO and PM(2.5) concentrations in the cooking area had a correlation coefficient of 0.80. Average 48-h CO and PM(2.5) concentrations in the cooking area were 3.8 +/- 3.9 ppm and 361 +/- 312 microg/m3, respectively. The average 48-h CO exposure was 1.5 +/- 1.6 ppm for children and 2.4 +/- 1.9 ppm for mothers. PM(2.5) exposure was an estimated 219 microg/m3 for children and 275 microg/m3 for their mothers. The continuous PM(2.5) concentration had peaks in all households representing the morning, midday, and evening cooking periods, with the largest peak corresponding to midday. The results are used to provide specific recommendations for measuring the exposure of infants and children in an epidemiological study. PRACTICAL IMPLICATIONS: Measuring personal particulate matter (PM) exposure of young children in epidemiological studies is hindered by the absence of small personal monitors. Simultaneous measurement of PM and carbon monoxide suggests that a combination of methods may be needed for measuring children's PM exposure in areas where household biomass combustion is the primary source of indoor air pollution. Children's PM exposure in biomass burning homes in The Gambia is substantially higher than concentrations in the world's most polluted cities.  相似文献   

20.
The health impact of indoor air pollution in informal settlement households has not been extensively studied in South Africa. This cross‐sectional study investigated the association between asthma and common indoor exposures among schoolchildren from four informal settlements located in two municipalities in the Western Cape Province. A total of 590 children, aged 9‐11 years, were recruited. The International Study of Asthma and Allergies in Childhood (ISAAC) questionnaire was administered to caregivers. Pulmonary function assessment included spirometry and fractional exhaled nitric oxide (FeNO). Phadiatop test for atopy was done. The prevalence of doctor‐diagnosed asthma was 3.4% (n = 20) among whom only 50% were on treatment. The prevalence of current wheeze was 12.9%, and 17.6% had airway obstruction (FEV1 < lower limit of normal), while 10.2% had airway inflammation (FeNO > 35 ppb). In adjusted logistic regression models, dampness, visible mold growth, paraffin use for cooking, and passive smoking were associated with a twofold to threefold increased risk in upper and lower airway outcomes. The strongest association was that of visible mold growth with rhinitis (adjusted odds ratio—aOR 3.37, 95% CI: 1.69‐6.71). Thus, there is a need for improved diagnosis of childhood asthma and Indoor Air Quality in informal settlement households.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号