首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human beings emit many volatile organic compounds (VOCs) of both endogenous (internally produced) and exogenous (external source) origin. Here we present real‐world emission rates of volatile organic compounds from cinema audiences (50‐230 people) as a function of time in multiple screenings of three films. The cinema location and film selection allowed high‐frequency measurement of human‐emitted VOCs within a room flushed at a known rate so that emissions rates could be calculated for both adults and children. Gas‐phase emission rates are analyzed as a function of time of day, variability during the film, and age of viewer. The average emission rates of CO2, acetone, and isoprene were lower (by a factor of ~1.2‐1.4) for children under twelve compared to adults while for acetaldehyde emission rates were equivalent. Molecules influenced by exogenous sources such as decamethylcyclopentasiloxanes and methanol tended to decrease over the course of day and then rise for late evening screenings. These results represent average emission rates of people under real‐world conditions and can be used in indoor air quality assessments and building design. Averaging over a large number of people generates emission rates that are less susceptible to individual behaviors.  相似文献   

2.
Volatile organic compounds (VOCs) emitted from personal care products (PCPs) can affect indoor air quality and outdoor air quality when ventilated. In this paper, we determine a set of simplified VOC species profiles and emission rates for a range of non-aerosol PCPs. These have been constructed from individual vapor analysis from 36 products available in the UK, using equilibrium headspace analysis with selected-ion flow-tube mass spectrometry (SIFT-MS). A simplified speciation profile is created based on the observations, comprising four alcohols, two cyclic volatile siloxanes, and monoterpenes (grouped as limonene). Estimates are made for individual unit-of-activity VOC emissions for dose-usage of shampoos, shower gel, conditioner, liquid foundation, and moisturizer. We use these values as inputs to the INdoor air Detailed Chemical Model (INDCM) and compare results against real-world case-study experimental data. Activity-based emissions are then scaled based on plausible usage patterns to estimate the potential scale of annual per-person emissions for each product type (eg, 2 g limonene person−1 yr−1 from shower gels). Annual emissions from non-aerosol PCPs for the UK are then calculated (decamethylcyclopentasiloxane 0.25 ktonne yr−1 and limonene 0.15 ktonne yr−1) and these compared with the UK National Atmospheric Emissions Inventory estimates for non-aerosol cosmetics and toiletries.  相似文献   

3.
More representative data on source-specific particle number emission rates and associated exposure in European households are needed. In this study, indoor and outdoor particle number size distributions (10–800 nm) were measured in 40 German households under real-use conditions in over 500 days. Particle number emission rates were derived for around 800 reported indoor source events. The highest emission rate was caused by burning candles (5.3 × 1013 h−1). Data were analyzed by the single-parameter approach (SPA) and the indoor aerosol dynamics model approach (IAM). Due to the consideration of particle deposition, coagulation, and time-dependent ventilation rates, the emission rates of the IAM approach were about twice as high as those of the SPA. Correction factors are proposed to convert the emission rates obtained from the SPA approach into more realistic values. Overall, indoor sources contributed ~ 56% of the daily-integrated particle number exposure in households under study. Burning candles and opening the window leads to seasonal differences in the contributions of indoor sources to residential exposure (70% and 40% in the cold and warm season, respectively). Application of the IAM approach allowed to attribute the contributions of outdoor particles to the penetration through building shell and entry through open windows (26% and 15%, respectively).  相似文献   

4.
长沙卷烟厂出口烟车间空调除尘系统的设计和运行   总被引:5,自引:1,他引:5  
卷烟厂卷接包车间空调系统根据节能要求设计,采用表冷器和干蒸汽加湿替代传统的喷淋室和表冷器的处理方式,利用滤筒式过滤器对空气进行高效过滤。空调器采用分散式布置,通过台数控制实现变风量运行。空调系统全部采用DDC控制、运行效果良好,符合设计要求。  相似文献   

5.
An empty, unoccupied basement room in Melton Constable Hall, Norfolk (England), was chosen as a case study to determine whether pentachlorophenol (PCP) treatment of masonry could significantly elevate PCP concentrations in indoor air, thus posing a potential health hazard. This particular room was chosen because it contained a vast quantity of crystalline PCP on the surface of a previously treated wall, and, being rarely used, was less likely to be subject to any external sources of PCP contamination. Analysis of dust debris, airborne particulates, passively deposited suspended particulates and volatile PCP emissions from the contaminated surface showed no evidence that inhalation was a probable route of PCP exposure.  相似文献   

6.
卷烟厂空调研究   总被引:9,自引:0,他引:9  
孙一坚 《暖通空调》2000,30(5):12-14
分析了卷烟厂空调特点,给出了各类设备发热量计算方法,探讨了目前常用的车间气充组织方式对室内温湿度分布的影响,推荐了对新回风采用滤筒过滤的表冷+干蒸汽加湿的空气净化方式,肯定了这些做法的经济和节能意义。  相似文献   

7.
针对目前国内卷烟厂生产车间普遍存在的夏季烟尘大、表冷器积尘不易清洗、排管换热效果差等问题,在调查基础上进行分析,对表冷器结构进行改进,变固定排管为可调排管,并设置滑轨与滑轮;为保证冷冻水均匀分布,设集、分水器。改造后表冷器既便于清洗又便于维护,并能保证车间的温、湿度要求。  相似文献   

8.
There are various emission sources of chemical contaminants, such as volatile organic compounds (VOCs) and ozone and particulate matter. This report is a study into the indoor air of a room containing either a laser printer/ink-jet printer, and the air contaminations were monitored for VOCs, ozone and ultrafine particle. The result confirmed an increase in the concentration of ozone and ultrafine particle numbers in the printing processes of the printer. The emission of VOCs and ozone were measured by the use of a test chamber. The chamber concentrations of styrene, xylenes and ozone were increased in printing process of the laser printer, and pentanol was detected from the ink-jet printer. The results suggest that an office or residential printer may be a source of indoor air contamination. It is necessary for emission from printers to monitor not only VOCs and particle but also ultrafine particles and other contaminants in indoor air.  相似文献   

9.
Solid fuel burning cookstoves are a major source of household air pollution (HAP) and a significant environmental health risk in Sri Lanka. We report results of the first field study in Sri Lanka to include direct measurements of both real‐time indoor concentrations and personal exposures of fine particulate matter (PM2.5) in households using the two most common stove types in Sri Lanka. A purposive sample of 53 households was selected in the rural community of Kopiwatta in central Sri Lanka, roughly balanced for stove type (traditional or improved ‘Anagi’) and ventilation (chimney present or absent). At each household, 48‐h continuous real‐time measurements of indoor kitchen PM2.5 and personal (primary cook) PM2.5 concentrations were measured using the RTI MicroPEM? personal exposure monitor. Questionnaires were used to collect data related to household demographics, characteristics, and self‐reported health symptoms. All primary cooks were female and of an average age of 47 years, with 66% having completed primary education. Median income was slightly over half the national median monthly income. Use of Anagi stoves was positively associated with a higher education level of the primary cook (P = 0.026), although not associated with household income (P = 0.18). The MicroPEM monitors were well‐received by participants, and this study's valid data capture rate exceeded 97%. Participant wearing compliance during waking hours was on average 87.2% on Day 1 and 83.3% on Day 2. Periods of non‐compliance occurred solely during non‐cooking times. The measured median 48‐h average indoor PM2.5 concentration for households with Anagi stoves was 64 μg/m3 if a chimney was present and 181 μg/m3 if not. For households using traditional stoves, these values were 70 μg/m3 if a chimney was present and 371 μg/m3 if not. Overall, measured indoor PM2.5 concentrations ranged from a minimum of 33 μg/m3 to a maximum of 940 μg/m3, while personal exposure concentrations ranged from 34 to 522 μg/m3. Linear mixed effects modeling of the dependence of indoor concentrations on stove type and presence or absence of chimney showed a significant chimney effect (65% reduction; P < 0.001) and an almost significant stove effect (24% reduction; P = 0.054). Primary cooks in households without chimneys were exposed to substantially higher levels of HAP than those in households with chimneys, while exposures in households with traditional stoves were moderately higher than those with improved Anagi stoves. As expected, simultaneously measuring both indoor concentrations and personal exposure levels indicate significant exposure misclassification bias will likely result from the use of a stationary monitor as a proxy for personal exposure. While personal exposure monitoring is more complex and expensive than deploying simple stationary devices, the value an active personal PM monitor like the MicroPEM adds to an exposure study should be considered in future study designs.  相似文献   

10.
基于所建的污染物散发模型,分析了室内温度、传质系数、换气次数对多孔材料污染物散发的影响。结果显示,室内温度对材料内污染物散发的影响非常明显,温度越高,污染物散发时间越短;提高传质系数不能显著加速污染物散发,而降低该值却可以抑制污染物的释放;换气次数对污染物散发影响很小,但可以通过改变换气次数来控制室内污染物浓度。  相似文献   

11.
Indoor air pollution (IAP) is a recognized risk factor for various diseases. This paper examines the role of indoor solid fuel exposure in the risk of mycobacterium tuberculosis (TB) in Delhi Metropolitan, India. Using a cross-sectional design, subjects were screened for a history of active TB and lifelong exposure to IAP sources, such as solid fuel burning and kerosene. The TB prevalence rate in the study area was 1117 per 100 000 population. Every year, increase in solid fuel exposure was associated with a three percent higher likelihood of a history of active TB. Subjects exposed to solid fuel and kerosene use for both heating home and cooking showed significant associations with TB. Age, household expenditure (a proxy of income), lung function, and smoking also showed significant associations with TB. Smokers and solid fuel–exposed subjects were four times more likely to have a history of active TB than non-smoker and unexposed subjects. These finding calls strategies to mitigate solid fuel exposure, such as use of clean cookstove and ventilation, to mitigate the risk of TB which aligns with the United Nations’ goal of “End TB by 2030.”  相似文献   

12.
Many studies have shown that the use of laser printing devices (LPDs) contributes to the release of particles into the indoor environment. However, after more than two decades of research, the physicochemical properties of LPD-emitted particles and the possible health effects from exposure to particles are still heavily debated. We therefore carried out a critical review of the published studies around emissions and health effects of LPD-emitted particles, aiming at elucidating the nature of these particles and their potential health risks. Realizing the varying methodologies of the studies, a classification of the reviewed studies is adopted, resulting in three categories of emission studies (chamber experiment, office/room measurement, and photocopy shop measurement), and three types of health studies (in vitro/animal studies, human studies in the real world, and human studies in controlled settings). The strengths and limitations of each type of study are discussed in-depth, which in turn helps to understand the cause of divergent results. Overall, LPD-emitted particles are mainly condensed or secondary-formed semi-volatile organic compounds (SVOCs), while solid toner particles account for a very small fraction. The health risk from exposure to LPD-emitted particles is small compared with the health risk from exposure to ambient particles.  相似文献   

13.
Although negative air ionizer is commonly used for indoor air cleaning, few studies examine the concentration gradient of negative air ion (NAI) in indoor environments. This study investigated the concentration gradient of NAI at various relative humidities and distances form the source in indoor air. The NAI was generated by single-electrode negative electric discharge; the discharge was kept at dark discharge and 30.0 kV. The NAI concentrations were measured at various distances (10-900 cm) from the discharge electrode in order to identify the distribution of NAI in an indoor environment. The profile of NAI concentration was monitored at different relative humidities (38.1-73.6% RH) and room temperatures (25.2+/-1.4 degrees C). Experimental results indicate that the influence of relative humidity on the concentration gradient of NAI was complicated. There were four trends for the relationship between NAI concentration and relative humidity at different distances from the discharge electrode. The changes of NAI concentration with an increase in relative humidity at different distances were quite steady (10-30 cm), strongly declining (70-360 cm), approaching stability (420-450 cm) and moderately increasing (560-900 cm). Additionally, the regression analysis of NAI concentrations and distances from the discharge electrode indicated a logarithmic linear (log-linear) relationship; the distance of log-linear tendency (lambda) decreased with an increase in relative humidity such that the log-linear distance of 38.1% RH was 2.9 times that of 73.6% RH. Moreover, an empirical curve fit based on this study for the concentration gradient of NAI generated by negative electric discharge in indoor air was developed for estimating the NAI concentration at different relative humidities and distances from the source of electric discharge.  相似文献   

14.
Assessment of personal exposure to PM2.5 is critical for understanding intervention effectiveness and exposure-response relationships in household air pollution studies. In this pilot study, we compared PM2.5 concentrations obtained from two next-generation personal exposure monitors (the Enhanced Children MicroPEM or ECM; and the Ultrasonic Personal Air Sampler or UPAS) to those obtained with a traditional Triplex Cyclone and SKC Air Pump (a gravimetric cyclone/pump sampler). We co-located cyclone/pumps with an ECM and UPAS to obtain 24-hour kitchen concentrations and personal exposure measurements. We measured Spearmen correlations and evaluated agreement using the Bland-Altman method. We obtained 215 filters from 72 ECM and 71 UPAS co-locations. Overall, the ECM and the UPAS had similar correlation (ECM ρ = 0.91 vs UPAS ρ = 0.88) and agreement (ECM mean difference of 121.7 µg/m3 vs UPAS mean difference of 93.9 µg/m3) with overlapping confidence intervals when compared against the cyclone/pump. When adjusted for the limit of detection, agreement between the devices and the cyclone/pump was also similar for all samples (ECM mean difference of 68.8 µg/m3 vs UPAS mean difference of 65.4 µg/m3) and personal exposure samples (ECM mean difference of −3.8 µg/m3 vs UPAS mean difference of −12.9 µg/m3). Both the ECM and UPAS produced comparable measurements when compared against a cyclone/pump setup.  相似文献   

15.
Identifying air pollutants that pose a potential hazard indoors can facilitate exposure mitigation. In this study, we compiled summary results from 77 published studies reporting measurements of chemical pollutants in residences in the United States and in countries with similar lifestyles. These data were used to calculate representative mid-range and upper-bound concentrations relevant to chronic exposures for 267 pollutants and representative peak concentrations relevant to acute exposures for five activity-associated pollutants. Representative concentrations are compared to available chronic and acute health standards for 97 pollutants. Fifteen pollutants appear to exceed chronic health standards in a large fraction of homes. Nine other pollutants are identified as potential chronic health hazards in a substantial minority of homes, and an additional nine are identified as potential hazards in a very small percentage of homes. Nine pollutants are identified as priority hazards based on the robustness of measured concentration data and the fraction of residences that appear to be impacted: acetaldehyde; acrolein; benzene; 1,3-butadiene; 1,4-dichlorobenzene; formaldehyde; naphthalene; nitrogen dioxide; and PM(2.5). Activity-based emissions are shown to pose potential acute health hazards for PM(2.5), formaldehyde, CO, chloroform, and NO(2). PRACTICAL IMPLICATIONS: This analysis identifies key chemical contaminants of concern in residential indoor air using a comprehensive and consistent hazard-evaluation protocol. The identification of a succinct group of chemical hazards in indoor air will allow for successful risk ranking and mitigation prioritization for the indoor residential environment. This work also indicates some common household activities that may lead to the acute levels of pollutant exposure and identifies hazardous chemicals for priority removal from consumer products and home furnishings.  相似文献   

16.
Portable air cleaners are increasingly used in polluted areas in an attempt to reduce human exposure; however, there has been limited work characterizing their effectiveness at reducing exposure. With this in mind, we recruited forty-three children with asthma from suburban Shanghai and deployed air cleaners (with HEPA and activated carbon filters) in their bedrooms. During both 2-week filtration and non-filtration periods, low-cost PM2.5 and O3 air monitors were used to measure pollutants indoors, outdoors, and for personal exposure. Indoor PM2.5 concentrations were reduced substantially with the use of air cleaners, from 34 ± 17 to 10 ± 8 µg/m3, with roughly 80% of indoor PM2.5 estimated to come from outdoor sources. Personal exposure to PM2.5 was reduced from 40 ± 17 to 25 ± 14 µg/m3. The more modest reductions in personal exposure and high contribution of outdoor PM2.5 to indoor concentrations highlight the need to reduce outdoor PM2.5 and/or to clean indoor air in multiple locations. Indoor O3 concentrations were generally low (mean = 8±4 ppb), and no significant difference was seen by filtration status. The concentrations of pollutants and the air cleaner effectiveness were highly variable over time and across homes, highlighting the usefulness of real-time air monitors for understanding individual exposure reduction strategies.  相似文献   

17.
We studied the effect of ventilation and air filtration systems on indoor air quality in a children's day-care center in Finland. Ambient air nitrogen oxides (NO, NO2) and particles (TSP, PM10) were simultaneously measured outdoors and indoors with automatic nitrogen oxide analyzers and dust monitoring. Without filtration nitrogen oxides and particulate matter generated by nearby motor traffic penetrated readily indoors. With chemical filtration 50-70% of nitrogen oxides could be removed. Mechanical ventilation and filtration also reduced indoor particle levels. During holidays and weekends when there was no opening of doors and windows and no particle-generating activity indoors, the indoor particle level was reduced to less than 10% of the outdoor level. At times when outdoor particle concentrations were high during weekdays, the indoor level was about 25% of the outdoor level. Thus, the possible adverse health effects of nitrogen oxides and particles indoors could be countered by efficient filtration. We also showed that inclusion of heat recovery equipment can make new ventilation installations economical.  相似文献   

18.
The influence of air humidification in aircraft, on perception of cabin air quality among airline crew (N = 71) was investigated. In-flight investigations were performed in the forward part and in the aft part on eight intercontinental flights with one Boeing 767 individually, equipped with an evaporation humidifier combined with a dehumidifying unit, to reduce accumulation of condensed water in the wall construction. Four flights had the air humidification active when going out, and turned off on the return flight. The four others had the inverse humidification sequence. The sequences were randomized, and double blind. Air humidification increased relative air humidity (RH) by 10% in forward part, and by 3% in aft part of the cabin and in the cockpit. When the humidification device was active, the cabin air was perceived as being less dry (P = 0.008), and fresher (P = 0.002). The mean concentration of viable bacteria (77-108 cfu/m(3)), viable molds (74-84 cfu/m(3)), and respirable particles (1-8 microg/m3) was low, both during humidified and non-humidified flights. On flights with air humidification, there were less particles in the forward part of the aircraft (P = 0.01). In conclusion, RH can be slightly increased by using ceramic evaporation humidifier, without any measurable increase of microorganisms in cabin air. The cabin air quality was perceived as being better with air humidification. PRACTICAL IMPLICATION: Relative air humidity is low (10-20%) during intercontinental flights, and can be increased by using ceramic evaporation humidifier, without any measurable increase of microorganism in cabin air. Air humidification could increase the sensation of better cabin air quality.  相似文献   

19.
The ability to inexpensively monitor PM2.5 to identify sources and enable controls would advance residential indoor air quality (IAQ) management. Consumer IAQ monitors incorporating low‐cost optical particle sensors and connections with smart home platforms could provide this service if they reliably detect PM2.5 in homes. In this study, particles from typical residential sources were generated in a 120 m3 laboratory and time‐concentration profiles were measured with 7 consumer monitors (2‐3 units each), 2 research monitors (Thermo pDR‐1500, MetOne BT‐645), a Grimm Mini Wide‐Range Aerosol Spectrometer (GRM), and a Tapered Element Oscillating Microbalance with Filter Dynamic Measurement System (FDMS), a Federal Equivalent Method for PM2.5. Sources included recreational combustion (candles, cigarettes, incense), cooking activities, an unfiltered ultrasonic humidifier, and dust. FDMS measurements, filter samples, and known densities were used to adjust the GRM to obtain time‐resolved mass concentrations. Data from the research monitors and 4 of the consumer monitors—AirBeam, AirVisual, Foobot, Purple Air—were time correlated and within a factor of 2 of the estimated mass concentrations for most sources. All 7 of the consumer and both research monitors substantially under‐reported or missed events for which the emitted mass was comprised of particles smaller than 0.3 μm diameter.  相似文献   

20.
The transportation of ambient particulate matter (PM) from outdoor air into the inlet of a mechanical building ventilation system is poorly understood. No studies have examined the effect commonly used commercial air handling unit (AHU) inlet designs have upon the migration of PM from the ambient environment into the building ventilation system, and implications of this on energy consumption and indoor air quality (IAQ). Through the numerical analysis of commercial AHU inlets, the differences in concentration of PM in ambient air and that within AHUs were determined, more commonly referred to as Aspiration Efficiency (AE %). A 20–50% difference in particle concentrations between ambient air and the in-AHU concentration was observed between forward and rear-facing AHUs relative to ambient wind direction and speed, and at the maximum ventilation flow rate. Furthermore, a decrease in the ventilation flow rates resulted in a significant reduction in PM concentrations entering the rear-facing AHU. Increasing the Stoke number led to lower AE as a continuous decrease was observed for both rear-facing inlets. The findings of this paper show that AHU inlet design has significant implications on IAQ and building energy consumption, and scope exists to design these inlets to impact both aspects positively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号