首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2023,49(19):31627-31633
Orthorhombic In0.5Sc1.5Mo3O12 nanofibers were prepared by electrospinning followed by a heat treatment. The effects of post-annealing temperatures on the phase composition, microstructure and morphology were investigated by XRD, SEM, HRTEM and XPS. Negative thermal expansion (NTE) behaviors of the In0.5Sc1.5Mo3O12 nanofibers were analyzed by high-temperature XRD. Results indicate that the as-prepared In0.5Sc1.5Mo3O12 nanofibers show an amorphous structure with smooth and homogeneous shape. The average diameter of the as-prepared In0.5Sc1.5Mo3O12 nanofibers is around 515 nm. Well crystallized orthorhombic In0.5Sc1.5Mo3O12 nanofibers could be prepared after post-annealing at 550 °C for 2 h with an average diameter of about 192 nm. The crystallinity of In0.5Sc1.5Mo3O12 nanofibers gradually improved with the increase of annealing temperature. However, too high post-annealing temperature leads to a damage of sample's fiber structure. The high-temperature XRD results reveal that In0.5Sc1.5Mo3O12 nanofibers show an anisotropic NTE, and the coefficients of thermal expansion (CTEs) along a-axis and c-axis were −5.95 × 10−6 °C−1 and -3.54 × 10−6 °C−1, while the one along b-axis is 5.61 × 10−6 °C−1. The volumetric CTE of In0.5Sc1.5Mo3O12 nanofibers is −3.90 × 10−6 °C−1 and the linear one is 1.3 × 10−6 °C−1 in 25–700 °C.  相似文献   

2.
In this paper, the i-MAX phase (Mo2/3Y1/3)2AlC ceramic with high purity of 98.29 wt% (1.13 wt% Y2O3 and 0.58 wt% Mo2C) and high relative density of 98.59% was successfully synthesized by spark plasma sintering (SPS) at 1500°C with the molar ratio of n(Mo):n(Y):n(Al):n(C) = 4:2:3.3:2.7. The positions of C atoms in the crystal of (Mo2/3Y1/3)2AlC were determined. Microstructure and physical and mechanical properties of (Mo2/3Y1/3)2AlC ceramic were systematically investigated. It was found that the obtained (Mo2/3Y1/3)2AlC ceramic had an average grain size of 32.1 ± 3.1 μm in length and 14.2 ± 1.7 μm in width. In terms of physical properties, the measured thermal expansion coefficient (TEC) of (Mo2/3Y1/3)2AlC was 8.99 × 10−6 K−1, and the thermal capacity and thermal conductivity at room temperature were 0.43 J·g−1·K−1 and 13.75 W·m−1·K−1, respectively. The room temperature electrical conductivity of (Mo2/3Y1/3)2AlC ceramic was measured to be 1.25 × 106 Ω−1·m−1. In terms of mechanical properties, Vickers hardness under 10 N load was measured as 10.54 ± 0.29 GPa, while flexural strength, fracture toughness, and compressive strength were determined as 260.08 ± 14.18 MPa, 4.51 ± 0.70 MPa·m1/2, and 855 ± 62 MPa, respectively, indicating the promising structural applications.  相似文献   

3.
Bismuth molybdate photocatalysts were controllably prepared via an electrochemical approach at room temperature. The composition and optical property of each product were determined according to the NaOH and Na2MoO4 quantities in the electrolyte. Pure Bi3.64Mo0.36O6.55 was prepared at a NaOH concentration range of 0.2‐0.8 mol L?1, whereas the Bi3.64Mo0.36O6.55/Bi14MoO24 composite was obtained in an electrolyte containing 0.4 mol L?1 NaOH and 0.5 mol L?1 Na2MoO4. The results of rhodamine B degradation under visible light indicated that Bi3.64Mo0.36O6.55 nanoparticles with a size of 10‐50 nm displayed the best photocatalytic efficiency, which was considerably higher than that of composite one and bulk Bi3.64Mo0.36O6.55.  相似文献   

4.
A simple method was developed to synthesize MoO2 and Mo2C nanoparticles via controlling nucleation and growth in carbothermic reduction of commercial MoO3 with carbon black. It was found that the appropriate C/MoO3 molar ratio for preparation of Mo2C was 2.8, and the carbothermic reduction process followed the sequence: MoO3 → transport phase (TP) → MoO2 → Mo2C. It was revealed that the most crucial issues for controlling number of produced particles of product were migration of Mo source and aid of nucleating agent, which can be achieved by using MoO3 and carbon black as starting materials. MoO2 nanosheets with the thickness of 12 nm and lateral size of 60 nm, as well as Mo2C nanoparticles with particle size of 30 nm were prepared via reduction of MoO3 with carbon black. However, MoO2 and Mo2C produced via reducing MoO3 by other kinds of carbon sources (activated carbon, graphite) or gas reductants (10% CH4/H2, CO) had much larger particle sizes of a few micrometers, which were tens of times than those using MoO3 and carbon black, due to the too small amount of formed nuclei. The effects of C/MoO3 molar ratio (0.5-2.8), molybdenum sources and carbon sources on the reaction mechanisms were investigated in detail.  相似文献   

5.
《Ceramics International》2023,49(7):10714-10721
Orthorhombic Sc2(MoO4)3 nanofibers have been prepared by ethylene glycol assisted electrospinning method. The effects of annealing temperature, precursor concentration, spinning distance and solvent on the preparation of Sc2(MoO4)3 nanofibers were characterized by XRD, SEM, HRTEM, EDX and high-temperature XRD. XRD analysis shows as-prepared nanofibers are amorphous. Orthorhombic Sc2(MoO4)3 nanofibers can be fabricated after annealing at different temperatures in 500–800 °C for 2 h. The crystallinity of Sc2(MoO4)3 nanofibers improves and the nanofiber diameter decreases gradually as the annealing temperature increases. However, the nanofiber structure was destroyed at the annealing temperature above 700 °C. Higher precursor concentration results in a slight increase of diameter and decrease in destroying temperature of Sc2(MoO4)3 nanofibers. Spinning distance also affects the diameter of nanofibers, and the nanofiber diameter decreases as the distance increases. One-dimensional orthorhombic Sc2(MoO4)3 nanofibers exhibit anisotropic negative thermal expansion. In 25–700 °C, the coefficients of thermal expansion (CTE) of αa, αb and αc are ?5.81 × 10?6 °C?1, 4.80 × 10?6 °C?1 and -4.33 × 10?6 °C?1, and the αl of Sc2(MoO4)3 nanofibers is ?1.83 × 10?6 °C?1.  相似文献   

6.
The ion conductivities and phase transitions of lanthanum molybdate (La2Mo2O9) substituted with lanthanide rare-earths are investigated using impedance spectroscopy, dilatometry, and X-ray powder diffraction. Among the substituted La2Mo2O9 of 10 mol% Ce, Nd, Sm, Gd, Dy, Er, Yb, the specimens containing Er, and Dy exhibit depressed α–β phase transformation and high conductivities. Their 700 °C conductivities are approximately five to seven times that of La2Mo2O9, around 0.26 S cm−1, comparable with those of (LaSr)(GaMg)O3 and Gd-substituted CeO2. Among the three compositions of 10 mol% Gd, Dy, Er showing depressed phase transition, Er- and Dy-substituted La2Mo2O9 possess relatively low thermal expansion coefficient 11×10−6 K−1, compared with that of the Gd-substituted La2Mo2O9, 18×10−6 K−1, which is near that of La2Mo2O9. Hence, Dy and Er are valuable dopants in improving the La2Mo2O9 properties. Across the lanthanide series, 10 mol%-substituted La2Mo2O9 demonstrates systematic variations in the conductivity–temperature relation. Hysteresis phenomena in both of conductivity and thermal expansion are also observed in those compositions which display phase transition.  相似文献   

7.
《Ceramics International》2023,49(10):15793-15801
The degradation of the cobalt-zinc oxide structure and its poor conductivity during the charge and discharge limit their further applications for lithium ion storage. Herein, ZnCo2O4@carbon nanofiber composite with nano-fibrous structure is obtained by electrospinning, annealing in argon and low-temperature oxidation to effectively overcome the above issue. The active sites of ZnCo2O4 are evenly dispersed inside the carbon nanofibers, which can effectively avoid its aggregation and improve electrical conductivity. Additionally, the stable nanofibrous structure can maintain structural stability. The composite exhibits superior lithium ion storage capacity when being served as anode electrode. The ZnCo2O4@carbon nanofiber electrode possesses a high capacity of 1071 mA h g−1 at 0.1 A g−1. Besides, the electrode shows an outstanding rate capability of 505 mA h g−1 at 3 A g−1 and maintain 714 mA h g−1 after 250 cycles when current density is adjusted to 0.2 A g−1 again. Additionally, the electrode has an outstanding long-cycle performance, which remains a capacity of 447.165 mA h g−1 at 0.5 A g−1 after 500 cycles and 421.477 mA h g−1 at 1 A g−1 after 518 cycles. This result demonstrates that ZnCo2O4@carbon nanofiber composite has potential application prospects in the fields of advanced energy storage.  相似文献   

8.
Recently, a new i-MAX phase with in-plane chemical order has been discovered. In this study, the i-MAX phase (Mo2/3Sc1/3)2AlC and (Mo2/3Lu1/3)2AlC ceramics were synthesized by spark plasma sintering (SPS) with purity up to 96.45 wt% and 95.46 wt%, respectively. Relative densities were up to 98.29 % (M = Sc) and 98.23 % (M = Lu). Microstructure, physical and mechanical properties of (Mo2/3M1/3)2AlC (M = Sc and Lu) ceramics were systematically investigated. Grain sizes of (Mo2/3M1/3)2AlC (M = Sc and Lu) were also counted. The measured coefficients of thermal expansion (CTE) were 8.95 × 10−6 K−1 (M = Sc) and 8.97 × 10−6 K−1 (M = Lu), from 25 °C to 1200 °C. Regarding mechanical properties, the Vickers hardness of (Mo2/3Lu1/3)2AlC was much higher than that of (Mo2/3Sc1/3)2AlC, while the differences in flexural strength, fracture toughness and compressive strength were small. It indicates that both ceramics have good application prospects.  相似文献   

9.
《Ceramics International》2023,49(20):33135-33146
In the work, the temperature-programmed reaction (TPR) between hexagonal-shaped h-MoO3 and high-purity CO under different heating rates was investigated in order to prepare Mo2C. Various technologies such as TG-DTA-DTG, XRD, FESEM, FT-IR and Raman spectrum as well as the thermodynamic calculation were adopted to analyze the experimental data. The results showed that the physically adsorbed water on the sample surface, the residual ammonium and coordinated water in the internal structure of h-MoO3 were successively released as the temperature increased, and then α-MoO3 and Mo4O11 were formed when the temperature arrived at around 791 K. Upon further increasing the temperature, the reduction process occurred and MoO2 will be generated. Thereafter, the carburization reaction was taken place and the subsequent reaction pathways were significantly different at lower and higher heating rates: at lower heating rates (8 and 12 K/min), the carburization process of MoO2 to Mo2C followed MoO2→MoO2+Mo2C→Mo2C + Mo→Mo2C; while at higher heating rates (16 and 20 K/min), the reaction pathways followed MoO2→MoO2+Mo2C→MoO2+Mo2C + Mo + MoOxCy→Mo→Mo2C, single-phase metallic Mo can be generated. The work also discovered that the as-prepared Mo2C always kept the same platelet-shaped morphology as that of the newly-formed MoO2; while due to the removal of oxygen and the decrease of molar volume during the transformation process, the as-prepared Mo2C exhibited a rougher and more porous morphological structure.  相似文献   

10.
《Ceramics International》2017,43(2):2136-2142
ZnFe2O4-graphene composite nanofibers were prepared through electrospinning technique, then with graphene oxide by the facile solvothermal method to get the final products for the first time. The obtained ZnFe2O4 nanofibers composed of numerous same size nanoparticles wrapped by graphene sheets to form a unique nanostructure. When the ZnFe2O4-graphene electrode was evaluated as anode for lithium-ion batteries, good rate capability and long-term cycling stability could be achieved. The ZnFe2O4-graphene electrode exhibited a first discharge capacity of 2166 mAh g−1 cycling at 0.05 C, remained an average reversible capacity of 1000 mAh g−1 after 50 cycles, and kept the high rate capacities of 899, 822, 760 and 711 mAh g−1 at the current rates of 0.5, 1, 2 and 5 C, respectively. The excellent electrochemical performance could be ascribed to the following reasons: the large electrochemical active surface area provided by the composite nanofibers; the graphene sheets decreased the internal resistance of the lithium-ion batteries, which resulted from the electrical conductivity of the graphene sheets; the graphene sheets as conductive network could effectively restrain the agglomeration of ZnFe2O4 nanopaiticals.  相似文献   

11.
《Ceramics International》2016,42(9):10826-10832
ZnO–SnO2 composite nanofibers with different structures were synthesized by a simple electrospinning approach with subsequent calcination at three different temperatures using polyacrylonitrile as the polymer precursor. The electrochemical performance of the composites for use as anode materials in lithium-ion batteries were investigated. It was found that the ZnO–SnO2 composite nanofibers calcined at 700 °C showed excellent lithium storage properties in terms of cycling stability and rate capability, compared to those calcined at 800 and 900 °C, respectively. ZnO–SnO2 composite nanofibers calcined at 700 °C not only delivered high initial discharge and charge capacities of 1450 and 1101 mAh g−1, respectively, with a 75.9% coulombic efficiency, but also maintained a high reversible capacity of 560 mAh g−1 at a current density of 0.1 A g−1 after 100 cycles. Additionally, a high reversible capacity of 591 mAh g−1 was obtained when the current density returned to 0.1 A g−1 after 50 cycling at a high current density of 2 A g−1. The superior electrochemical performance of ZnO–SnO2 composite nanofibers can be attributed to the unique nanofibrous structure, the smaller particle size and smaller fiber diameter as well as the porous structure and synergistic effect between ZnO and SnO2.  相似文献   

12.
《Ceramics International》2021,47(22):31375-31382
Novel Ce2(MoO4)2(Mo2O7) (CMO) ceramics were prepared by a conventional solid-state method, and the microwave dielectric properties were investigated. X-ray diffraction results illustrated that pure Ce2(MoO4)2(Mo2O7) structure formed upon sintering at 600 °C-725 °C. [CeO7], [CeO8], [MoO4], and [MoO6] polyhedra were connected to form a three-dimensional structure of CMO ceramics. Analysis based on chemical bond theory indicated that the Mo–O bond critically affected the ceramics’ performance. Furthermore, infrared-reflectivity spectra analysis revealed that the primary polarisation contribution was from ionic polarisation. Notably, the optimum microwave dielectric properties of εr = 10.69, Q·f = 49,440 GHz (@ 9.29 GHz), and τf = −30.4 ppm/°C were obtained in CMO ceramics sintered at 700 °C.  相似文献   

13.
MoO3/SiO2–Al2O3 catalysts are prepared via flame spray pyrolysis and evaluated in the self-metathesis of propene to ethene and butene. Their specific surface area ranges between 100 and 170 m2 g?1 depending on the MoO3 loading (1–15 wt.%, corresponding to Mo surface density between 0.3 and 6.1 Mo atoms per nm2). The catalysts were characterized by N2-physisorption, X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and time of flight secondary ion mass spectroscopy (ToF-SIMS). The silica–alumina matrix condenses first in the flame and forms non-porous spherical particles of 5–20 nm, followed by the dispersion of Mo oxide at their surface. Depending on the MoO3 loading, different MoOx species are stabilized: dispersed and amorphous molybdates (mono- and oligomeric) at low loadings (<5 wt.%, <1.5 Mo nm?2) and crystalline MoO3 species at higher loadings. Raman spectroscopy suggests the presence of monomeric species for surface densities of 0.3, 0.5 and 0.8 Mo nm?2. The formation of MoOMo bonds is, however, clearly established by ToF-SIMS from surface densities as low as 0.5 Mo nm?2. At 1.5 Mo nm?2, crystallites of β-MoO3 (2–3 nm) are detected and further increasing the loading induces the formation of bigger α- and β-MoO3 crystals (around 20 nm). The speciation of Mo proves to have a marked impact on the metathesis activity of the catalysts. Catalysts with high Mo loading and exhibiting MoO3 crystals are poorly active, whereas catalysts with low Mo loading (<5 wt.%) perform well in the reaction. The catalyst loaded with only 1 wt.% of MoO3 (0.3 Mo nm?2) is the most active, reaching turn over frequencies seven times higher than reference catalysts reported in the literature. Moreover, the specific metathesis activity is clearly inversely correlated to the degree of condensation of the molybdenum oxide phase (as evaluated by ToF-SIMS). The latter finding indicates that monomeric MoOx species are the main active centres in the olefin metathesis.  相似文献   

14.
《Ceramics International》2017,43(4):3769-3773
MoO3/reduced graphene oxide (MoO3/RGO) composites were successfully prepared via a facile one-step hydrothermal method, and evaluated as anode materials for sodium ion batteries (SIBs). The crystal structures, morphologies and electrochemical properties of the as-prepared samples were characterized by X-ray diffraction, field-emission scanning electron microscopy, cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge/discharge tests, respectively. The results show that the introduction of RGO can enhance the electrochemical performances of MoO3/RGO composites. MoO3/RGO composite with 6 wt% RGO delivers the highest reversible capacity of ~208 mA h g−1 at 50 mA g−1 after 50 cycles with good cycling stability and excellent rate performance for SIBs. The excellent sodium storage performance of MoO3/RGO should be attributed to the synergistic effect between MoO3 and RGO, which offers the increased electrical conductivity, the facilitated electron transfer ability and the buffering of volume expansion.  相似文献   

15.
J. Li  C. Zhong  X. Meng  H. Wu  H. Nie  Z. Zhan  S. Wang 《Fuel Cells》2014,14(6):1046-1049
The high‐temperature solid oxide electrolysis cell (SOEC) is one of the most promising devices for hydrogen mass production. To make SOEC suitable from an economical point of view, each component of the SOEC has to be optimized. At this level, the optimization of the oxygen electrode is of particular interest since it contributes to a large extent to the cell polarization resistance. The present paper is focused on an alternative oxygen electrode of Zr0.84Y0.16O2–δ‐Sr2Fe1.5Mo0.5O6–δ (YSZ‐SFM). YSZ‐SFM composite oxygen electrodes were fabricated by impregnating the YSZ matrix with SFM, and the ion‐impregnated YSZ‐SFM composite oxygen electrodes showed excellent performance. For a voltage of 1.2 V, the electrolysis current was 223 mA cm−2, 327 mA cm−2 and 310 mA cm−2 at 750 °C for the YSZ‐SFM10, YSZ‐SFM20, and YSZ‐SFM30 oxygen electrode, respectively. A hydrogen production rate as high as 11.46 NL h−1 has been achieved for the SOEC with the YSZ‐SFM20 electrode at 750 °C. The results demonstrate that YSZ‐SFM fabricated by impregnating the YSZ matrix with SFM is a promising composite electrode for the SOEC.  相似文献   

16.
Since copper does not wet graphite foams (GFs), a method for the synthesis of Mo2C coatings throughout the GFs was developed for improving the wetting between GFs and copper and for the preparation of GF/copper composites. The coatings were formed on the GFs in a reaction medium consisting of ammonium paramolybdate, which decomposed to fine MoO3, in a mixture of molten NaCl–KCl salts. The formation mechanism and microstructure of the Mo2C coatings on GFs were investigated. Then the microstructure, thermal conductivity and thermal expansion behavior of the obtained GF/copper composites were studied. Results indicated the formation of Mo2C coatings occurred in two steps, namely, the reduction of MoO3 to MoO2 and the reduction of MoO2 to Mo2C. Copper was infiltrated into the Mo2C-coated GFs without external pressure and the nearly pore-free GF/copper composites were obtained. The thermal conductivity of the composite with a density of 5.76 g/cm3 reached 268.4 W/mK. Significant reduction in coefficient of thermal expansion of the composite compared with that of copper (8.91 versus 18.59 ppm/K) was obtained.  相似文献   

17.
In this work, we reported the fabrication and magnetoelectric coupling properties of the multiferroic CoFe2O4-PbZr0.2Ti0.8O3 (CFO-PZT) coaxial nanofibers synthesized by electrospinning technique. The coaxial structure of nanofibers was demonstrated by magnetic force microscope and transmission electron microscope. The multiferroic properties of coaxial nanofibers have been revealed by magnetic hysteresis loops and piezoresponse amplitude butterfly curves and phase hysteresis loops. The as-prepared coaxial nanofibers show an effective piezoelectric coefficient d33 of 30 pm/V and a saturated magnetization of 12 emu/g. Their magnetoelectric response has been probed by means of the localized changes in magnetization after poling the domains of the composite system. A static, large converse magnetoelectric coupling coefficient of 1.2 × 10−8 s/m was obtained in a single CFO-PZT nanofiber.  相似文献   

18.
Li2MoO4·1.8Tb2(MoO4)3 crystal, a kind of solid solution crystal, was grown in air by the top seeded solvent growth method in a Li2Mo2O7 flux. The lattice parameters of the crystal were determined by X-ray diffraction analysis. The absorption coefficient of the crystal was investigated at wavelengths from 400 to 1500 nm at room temperature. Valence states of Tb ions in Li2MoO4·1.8Tb2(MoO4)3 crystal were analyzed by X-ray photoelectron spectroscopy measurement. Verdet constants for the Li2MoO4·1.8Tb2(MoO4)3 crystal at 532, 633 and 1064 nm wavelengths were measured by the extinction method. They are −341, −239 and −75 rad m−1 T−1, respectively. The results show that the crystal has a larger magneto-optical figure of merit than terbium gallium garnet at wavelength of 633 nm.  相似文献   

19.
Three kinds of novel carboxyl modification tubular carbon nanofibers (CMTCFs) and MnO2 composites materials (CMTCFs/MnO2) are prepared by combining hyper-crosslinking, liquid phase oxidation and hydrothermal technology. The complex morphology and crystal phase of MnO2 in CMTCFs/MnO2 are effectively regulated by adjusting the hydrothermal reaction time. The δ-MnO2 nanosheet-wrapped CMTCFs (CMTCFs@MNS) are used as anode and compared with the other two CMTCFs/MnO2. Electrochemical analysis shows that CMTCFs@MNS electrode exhibits a large reversible capacity of 1497.1 mAh g−1 after 300 cycles at 1000 mA g−1 and a long cycling reversible capacity of 400.8 mAh g−1 can be maintained after 1000 cycles at 10 000 mA g−1. CMTCFs@MNS manifests an average reversible capacity of 256.32 mAh g−1 at 10 000 mA g−1 after twelve changes in current density. In addition, the structural superiority of CMTCFs@MNS electrode is clarified by characterizing the microscopic morphology and crystal phase of the electrode after electrochemical performance test.  相似文献   

20.
In this study, crystalline MoO3 rods and amorphous MoO3 microsheets were synthesized using a one-step, large-scale, and time- and energy-efficient solution combustion synthesis method. When urea was used as a fuel, ultralong rod-like crystalline MoO3 with a length over 50 μm was synthesized. In the case of citric acid, an amorphous MoO3 product with a porous microsheet structure was obtained. As anode materials for lithium-ion batteries, the unique structure of amorphous MoO3 sample has significant advantages including fast diffusion of lithium ion, providing a lot of active sites for lithium ion storage and stable structure. Thus, the amorphous MoO3 sample exhibits greater electrochemical performance, a high capacity of 818 mAh g−1 at 0.1 A g−1 in the 100th cycle and 510 mAh g−1 at 1 A g−1 in the 300th cycle, than that of crystalline MoO3 product. Moreover, this study provides guide for preparing other amorphous and crystalline transition-metal oxides with a pure phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号