首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, we investigate the mixed alkaline‐earth effect in a silicate glass series with varying the molar ratio of [MgO]/([CaO]+[MgO]). This effect manifests itself as a minimum in Vickers microhardness (HV), coefficient of thermal expansion (CTE), and isokom temperatures at 1012(Tg) and 102 Pa·s, and as a maximum in liquid fragility. To probe the structural origin of the mixed alkaline‐earth effect in CTE and Hv, we conducted the Raman measurements. In contrast to the aluminosilicate glasses, the present glass series exhibit a negative deviation of shift of peak position at ~1100 cm?1 from a linear additivity, indicating the role of the aluminum speciation in affecting the vibration modes. By fitting the Vogel–Fulcher–Tamann equation to the high‐temperature viscosity data, we found a near‐linear increase of the fractional free volume with the gradual substitution of Ca by Mg, confirming the dynamic structural mismatch model describing the mixed modifier effect. This work gives insight into the mixed modifier effect in glassy systems.  相似文献   

2.
Temperature-dependent viscosity is critical to decipher two profound questions in condensed matter physics, namely the glass transition and the relaxation of amorphous solids. However, direct measurement of viscosity over a large temperature range is extremely difficult. Here, using classical molecular dynamics (MD) simulations, we report a novel method to calculate the equilibrium viscosity of supercooled liquid both above and below the glass transition temperature (Tg) and to estimate the nonequilibrium viscosity of glass down to room temperature. Based on the shoving model, we derived an analytical formula showing that the shear viscosity in logarithmic scale changes linearly with the shear-induced variation in shear modulus or potential energy of the glass-forming system. The shear viscosity as a function of steady-state potential energy of liquid under different shear strain rates can be directly calculated in MD simulations; together with its equilibrium potential energy, one can extrapolate the zero-strain-rate equilibrium viscosity. We verified the proposed model by reliably calculating equilibrium viscosity near Tg of four glass-forming systems (Kob–Andersen system, silica, Cu45.5Zr45.5Al9, and silicon) with different fragilities. Furthermore, our model can estimate the nonequilibrium viscosity of glass below Tg; the upper-bound nonequilibrium viscosity of amorphous silica and silicon at room temperature are calculated to be ~1032 and 1025 Pa·s, respectively.  相似文献   

3.
Thirty glasses of composition (in equivalent percent) 20‐xCa:xY:50Si:30Al:(100‐y‐z)O:yN:zF, with x = 0, 10; y = 0, 10, 20, and z = 0, 1, 3, 5, 7 were prepared by melting and casting. All glasses were X‐ray amorphous. Glass molar volumes (MV) decreased with nitrogen substitution for oxygen for all fluorine contents and, correspondingly, glass fractional compactness increased. Fluorine substitution of oxygen had virtually no effect on molar volume or fractional glass compactness for the three nitrogen contents tested. Young's modulus and microhardness were virtually unaffected by fluorine substitution for oxygen while nitrogen substitution for oxygen caused increases in these two properties. Glass‐transition temperature and dilatometric‐softening point values all decreased with increasing fluorine substitution levels, while increasing nitrogen substitution caused values for these thermal properties to increase. Correspondingly, the thermal expansion coefficient increased with fluorine and decreased with nitrogen substitution levels. Using property value differences between glasses containing fluorine and the corresponding glass containing 0 eq.% F enabled 24 data points to be used to determine the effect of fluorine on Tg,dil and TDS. The trends were linear with a gradient for both properties of the order of ?22°C (eq.% F)?1. For the nitrogen effect, 20 data points were analyzed for trend effects. As expected from earlier work, all trends had good linearity. Gradients were for Tg,dil and TDS +2.5°C (eq.% N)?1, which are fairly similar to previous results in oxynitride systems. All of the data collected and its analysis clearly shows that the substitution effects of fluorine for oxygen and nitrogen for oxygen are independent and additive with the fluorine substitution. The property trends of the glasses are discussed in terms of their implications for glass structure.  相似文献   

4.
《Ceramics International》2021,47(22):31666-31680
The present study replaced 3.30 and 9.00 mol.% BaO for CaO in a SiO2–B2O3–Al2O3–CaO–Na2O–P2O5 bioactive glass system used for implant coating applications. Variations of the glass structure, thermal properties, cytotoxicity, and radiopacity of glasses were studied. As demonstrated by the results, upon adding barium oxide to the glass structure, the weight density increased significantly, while a slight decrease in oxygen density was determined. Introducing barium oxide into glass composition did not cause any considerable change in the spectra of FTIR and Raman. It was demonstrated that the amount of bridging oxygen in the glass structure remained quite unaffected. The hot stage microscopy evaluations revealed further shrinkage of barium-containing frits due to lower viscosity and hence, higher viscous flow of these glasses. By substituting barium oxide for calcium oxide and increasing its concentration, the glass transition temperature (Tg) and the dilatometric softening temperature (Td) decreased, while the thermal expansion coefficient increased. Moreover, upon substituting 9 mol.% barium oxide for calcium oxide, a 30 °C reduction in maximum sintering temperature (Tms) of the glass was obtained, whereas the shrinkage rate was increased 1.7 times. It was indicated that the sintering process of barium-incorporated glasses would easily proceed without any phase crystallization. The barium-incorporated glasses exhibited more radiopacity. Additionally, no cytotoxic effect was caused by the substitution, and the Ba-containing glasses could be used for biomedical applications and implant coating as well.  相似文献   

5.
Alkali borate glasses with different contents of residual water are prepared by varying the synthesis conditions. The temperature dependences of the viscosity and thermal expansion of glasses are obtained. The structural relaxation parameters are calculated from the hysteresis dilatometric curves measured. The water content is determined using the IR absorption spectra in the range of stretching vibrations of hydroxyl groups at room temperature. It is found that an increase in the water concentration in alkali borate glasses leads to a decrease in the viscosity. The character of variations in the viscosity logarithm with a change in the water content depends on the alkali cation concentration. The glass transition temperatures determined from the dilatometric curves for all the studied glasses decrease with an increase in the water content. As the water concentration increases, the thermal expansion coefficient (above and below the glass transition range) and the degree of fragility decrease for glasses containing 25 mol % Na2O, increase for glasses with an alkali oxide content of 15 mol %, and remain virtually unchanged for glasses involving 5.5 mol % Na2O. A change in the water content in the concentration range under investigation does not affect the structural relaxation parameters.  相似文献   

6.
Glasses in the x(BaO-TiO2)-B2O3 (= 0.25, 0.5, 0.75, and 1 mol.) system were fabricated via the conventional melt-quenching technique. Thermal stability and glass-forming ability as determined by differential thermal analysis (DTA) were found to increase with increasing BaO–TiO2 (BT) content. However, there was no noticeable change in the glass transition temperature (Tg). This was attributed to the active participation of TiO2 in the network formation especially at higher BT contents via the conversion of the TiO6 structural units into TiO4 units, which increased the connectivity and resulted in an increase in crystallization temperature. Dielectric and optical properties at room temperature were studied for all the glasses under investigation. Interestingly, these glasses were found to be hydrophobic. The results obtained were correlated with different structural units and their connectivity in the glasses.  相似文献   

7.
The glass formation area in the CdO–WO3–TeO2 ternary system was determined and thermal and structural features of the ternary glasses were characterized by differential scanning calorimetry (DSC), X-ray diffraction (XRD) and Raman scattering methods and the variation of the glass properties and structural transformations were discussed in terms of the glass composition comparing with the literature. For all ternary glass samples, the glass transition (Tg) and crystallization (Tc/Tp) temperatures, glass stability (ΔT), activation enthalpy for glass transition (ΔH*) and fragility parameter (m) values were calculated from the DSC thermograms. Density (ρ), molar volume (VM) and oxygen molar volume (VO) values and the refractive indices (n) at a wavelength of 632 nm were measured. Raman spectra of the glasses were interpreted in terms of the structural transformations on the glass network resulted by the changing WO3 + CdO/TeO2 ratio.  相似文献   

8.
The effects of fluorine and nitrogen substitution for oxygen in aluminosilicate glasses, effectively oxyfluoronitride (OFN) glasses, modified by calcium, calcium–yttrium or calcium–magnesium on thermal and physical/mechanical properties have been compared. Thus, 42 glasses in the Ca–(Mg)–(Y)–Si–Al–O–(N)–(F) system have been prepared and characterized with respect to density (ρ), molar volume (MV), compactness (C), free volume (FV), glass transition temperatures measured by DTA (Tg,DTA) and dilatometry (Tg,dil), dilatometric softening point (TDS), microhardness (μHv) and Young's modulus (E). Gradients of property variation with nitrogen or fluorine substitutions for oxygen are similar for all three different oxyfluoronitride glass systems and are comparable with those reported for other OFN glasses, again indicating independent and additive effects of nitrogen and fluorine. In attempting to further understand how fluorine affects the cross‐link density (CLD) in OFN glasses, it becomes apparent that it is necessary to allow for a greater contribution by aluminum in a modifier role as fluorine content is increased. This modified calculation of CLD values results in good linear fits between Tg and CLD values. This analysis clearly demonstrates and endorses the concepts that thermal properties are related to CLD while physical/mechanical properties are dependent on glass compactness.  相似文献   

9.
Oxyfluoride glasses of xLaF3–(60 − x)LaO3/2–40NbO5/2 (x = 0, 5, 10, 35) and xLaF3–(60 − x)LaO3/2–30NbO5/2–10AlO3/2 (x = 0, 10, 20, 30) were prepared using a levitation technique. Both the glass-transition temperature, Tg, and onset crystallization temperature, Tc, were lowered by substituting a part of the oxygen with fluorine in the glasses. An appropriate amount of fluorine maximized the difference between the temperatures, ΔT (= Tc − Tg), indicating the improvement in the glass-forming ability. The atomic packing densities of the glasses were approximately 60%, which gradually increased with the fluorine content. The absorption edge of the glasses shifted toward the shorter wavelength region in the ultraviolet spectra and toward the longer region in the infrared spectra by fluorine substitution. In addition, in one of the oxyfluoride glasses, a wide transparency from 307 nm to 9.2 µm was realized. Furthermore, the glass exhibited superior optical properties, with a combination of a high refractive index, nd, of 2.020 and low wavelength dispersion, vd, of 30.1. The effect of fluorine substitution on the nd and its vd was analyzed using the Lorentz–Lorenz dispersion formula.  相似文献   

10.
Glass components fabricated by the sintering route have wide-ranging applications. However, one issue is that the crystallization tendency of glass powders often leads to residual pore-glass interfaces and crystal-glass interfaces, thereby causing strong light scattering and rendering the sintered glass opaque. This issue is particularly pronounced in glasses with a low glass transition temperature (Tg) due to their weak bonding and thus high crystallization tendency. In the present study, a Bi2O3-ZnO-B2O3 glass with a low Tg of 364°C was fabricated using the conventional sintering method to explore whether transparent glass materials can be obtained. The temperature range of crystallization of the glass powders was analyzed using differential scanning calorimetry. X-ray diffraction was employed to analyze the crystalline phases formed in the sintered glasses. The microstructure of the sintered glasses was examined using scanning electron microscopy. The optical transmittance of the sintered glasses was measured using ultraviolet-visible spectroscopy. The results show that transparent sintered glasses with the highest transmittance of 54% at the wavelength of 650 nm can be obtained by using a coarser initial particle size, lower forming pressure, and an appropriate sintering temperature/time (430°C/30 min). It is suggested that this combination of processing parameters can suppress glass crystallization while maintaining a low glass viscosity during sintering.  相似文献   

11.
As-S-I chalcohalide glass has been synthesized using elemental sulfur (S), arsenic (As), and iodine (I) in an evacuated sealed silica ampoule. DSC and dilatometry study revealed that the As-S-I glass has very low Tg of only about 50°C, deformation temperature of ~61°C, and high CTE ~68×10−6 K−1 (40-60°C). Refractive index (n) has been found to vary in the range of 2.3-2.4 which is close to the n value of diamond. When defective diamond pieces are embedded in such glasses, the defects within diamond become visible, enabling the optimized processing of diamonds to get maximum yields.  相似文献   

12.
Viscosity at the liquidus temperature (TL), ηL, is a critical parameter for the design of new glasses, particularly for industrial glass production where crystallization must be suppressed. However, a direct viscometric determination of ηL for a glass-forming system is difficult due to crystallization. Here we propose an alternative approach for determining ηL through differential scanning calorimetry (DSC). Specifically, DSC is used to measure both the viscosity curve and liquidus temperature of a glass-forming system and then derive its ηL value. The ηL values determined using DSC are found to be in excellent agreement with those measured through viscometry. The DSC approach is applicable to various glass-forming systems covering a wide range of fragilities and ηL values spanning over five orders of magnitude. Other advantages of this approach are its accuracy and small sample requirements.  相似文献   

13.
Fiber spinnability is the ability of a glass-forming melt to be steadily stretched and spun into defect-free fiber filaments. However, its quantification has not been well established owing to many controlling factors such as melt fragility, melt strength, surface tension, liquidus temperature, liquidus viscosity, and crystallization. To understand and quantify the fiber spinnability of a glass melt, we consider two key aspects: fiberizing viscosity window and melt stability. The fiberizing viscosity window is defined by the upper and lower viscosity limits. Fibers rupture above the upper viscosity limit, whereas a stable melt stream cannot form below the lower limit (ηlow). We introduce a simple parameter to quantify fiber spinnability, namely, Kfib=ηL/ηlow, where ηL is the viscosity at liquidus temperature (TL). A fiber can only form if Kfib>1. To quantify melt stability we propose the parameter of S=(TL-TC)/(TL-Tg), where TL and TC are the liquidus temperature, and the onset temperature of melt crystallization during cooling, respectively. Both parameters (Kfib and S) are important for a rational design of glass fiber compositions, and fiberizing process. We use two basalt melts as examples of this study to demonstrate the high sensitivity of fiber spinnability to a minor variation in chemical composition of melts.  相似文献   

14.
Heteroaromatic 6,6′‐bis[2‐(4‐aminobenzene)benzimidazole] and its corresponding copolyimides were synthesized to produce high temperature resistant polyimides (PIs). Due to the rigidity and aromaticity of heterocyclic bis‐benzimidazole, and the increased hydrogen bonding interactions, these PIs were found to have a high glass transition temperature (Tg) over 457 °C, which also guarantees a better dimensional stability with a coefficient of thermal expansion (CTE) lower than 10 ppm K?1 in a wider temperature range of 50–400 °C. In addition, the PIs exhibit excellent thermal stability (5% weight loss temperature higher than 559 °C) along with outstanding mechanical properties. This study demonstrates the viability to access PIs with ultrahigh Tg and low CTE in a wider range of temperature by the incorporation of bis‐benzimidazole moieties. © 2019 Society of Chemical Industry  相似文献   

15.
The characteristics of the fluctuation free volume theory, as applied to amorphous metallic alloys, are calculated from the data on the parameters of the Fulcher-Vogel-Tammann equation for the temperature dependence of viscosity. The fraction of the fluctuation free volumef g frozen at the glass transltion temperatureT g is equal to approximately 0.026 for amorphous alloys. The found value coincides with the data for amorphous polymers and other glasses and indicates that the glass transltion criterionf g ≅ const ≈ 0.025 is applicable to these glass-forming systems. The energy of formation for a fluctuation hole in metallic glasses (εh = 15–25 kJ/mol) is approximately equal to that for alkali silicate glasses. The formation of holes in amorphous alloys is a low-energy small-scale process arising from the limiting displacement of an atom (a group of atoms) from an equilibrium position.  相似文献   

16.
Despite the important role of strontium aluminosilicate glasses in various technologies, there is no available phase diagram for this ternary system in the ACerS-NIST Phase Equilibria Diagrams Database. Establishing the liquidus surface (liquidus temperature Tliq and primary devitrification phase) is crucial for glass composition design, because the liquidus temperature is intimately connected with the glass-forming ability of the melt. In this work, we have determined the liquidus surface by X-ray diffraction phase analyses of isothermally reacted samples from powder mixtures of 24 compositions. In the composition range of interest for industrial glasses, Tliq tends to decrease with increasing strontium-to-alumina ratio. We find that cristobalite, mullite, and slawsonite are the dominant devitrification phases for the compositions with high SiO2, SiO2+Al2O3, and SrO contents, respectively. By comparison with the phase diagrams for CaO-Al2O3-SiO2 and MgO-Al2O3-SiO2 systems, we have found that for the highest [RO]/[Al2O3] ratios, Tliq exhibits a minimum value for R = Ca. Based on the phase diagram established here, the composition of glass materials, for example, for liquid crystal display substrates, belonging to the SrO-Al2O3-SiO2 family may be designed with a more exact control of the glass-forming ability by avoiding the regions of high liquidus temperature.  相似文献   

17.
The characteristics of the fluctuation free volume theory, as applied to amorphous metallic alloys, are calculated from the data on the parameters of the Fulcher-Vogel-Tammann equation for the temperature dependence of viscosity. The fraction of the fluctuation free volumef g frozen at the glass transltion temperatureT g is equal to approximately 0.026 for amorphous alloys. The found value coincides with the data for amorphous polymers and other glasses and indicates that the glass transltion criterionf g ≅ const ≈ 0.025 is applicable to these glass-forming systems. The energy of formation for a fluctuation hole in metallic glasses (εh = 15–25 kJ/mol) is approximately equal to that for alkali silicate glasses. The formation of holes in amorphous alloys is a low-energy small-scale process arising from the limiting displacement of an atom (a group of atoms) from an equilibrium position.  相似文献   

18.
Glasses of the 5Na2O · 95B2O3(mol %) composition synthesized at a temperature of 1100°C for 180 and 20 min are studied. The temperature dependences of the viscosity and the thermal expansion of glasses are obtained. The thermal expansion coefficients and glass transition temperatures of the studied glasses are determined, and the parameters of structural relaxation (the constant characterizing the width of the spectrum of relaxation times, the relaxation modulus equal to the ratio of the viscosity to the relaxation time, and the relaxation time at zero reciprocal temperature) are calculated from the dilatometric curves measured at temperatures close to the glass transition range. The water content in the studied glasses is estimated by comparing the obtained dependence of the viscosity on the water content with the data available in the literature for glasses of a similar composition. The assumption is made that the structural relaxation time in sodium borate glass decreases with an increase in the water content.  相似文献   

19.
The relaxation parameter K sthat is equal to the ratio of the viscosity to the Kohlrausch volume relaxation time s is analyzed. It is shown that this parameter can be evaluated from the temperature T 13(corresponding to a viscosity of 1013P) and the glass transition temperature T 8 +determined from the dilatometric heating curve. The maximum error of the estimate with due regard for experimental errors is equal to ±(0.4–0.5)logK sfor strong glasses and ±(0.6–0.8)logK sfor fragile glasses, which, in both cases, corresponds to a change in the relaxation times with a change in the temperature by ±(8–10) K. It is revealed that the viscosity, the Kohlrausch volume relaxation time s , and the shear modulus Gof glass-forming materials in silicate, borate, and germanate systems satisfy the relationship log( s G/) 1. The procedure for calculating the temperature dependences of the viscosity and the relaxation times in the glass transition range from the chemical composition and the T 8 +temperature for glass-forming melts in the above systems is proposed. The root-mean-square deviations between the calculated and experimental temperatures T 11and T 13are equal to ±(6–8) K for all the studied (silicate, borate, germanate, and mixed) oxide glass-forming systems. The proposed relationships can be useful for evaluating the boundaries of the annealing range and changes in the properties and their temperature coefficients upon cooling of glass-forming melts.  相似文献   

20.
The structure, atomic packing density, calorimetric glass transition, and hardness of mixed sodium–lithium germanophosphate oxynitride glasses with varying Ge/P and N/P ratios were investigated. The combined influences of nitridation and mixed network former effect (MNFE) on the glass structure were analyzed using Raman spectroscopy, X‐ray photoelectron spectroscopy (XPS), and 31P nuclear magnetic resonance (NMR) spectroscopy. Evidence for the existence of germanium in a higher coordination state, i.e., five‐ or sixfold coordination, was obtained by performing XPS analysis of the oxide glasses, with indication of conversion to tetrahedral coordination upon nitridation. Raman spectroscopy measurements implied that the germanate network was modified upon nitridation, including the removal of ring‐like germanate structures and P–O–Ge mixed linkages. The partial anionic N‐for‐O substitution gave rise to the linear dependence of the glass transition temperature (Tg) and hardness (HV) on nitrogen content (expressed as N/P ratio), especially for lower Ge/P ratio. However, nitridation also caused an unexpected increase in liquid fragility and decrease in density. This suggests that the governing structural parameter for property evolution in such LiNaGePON glasses is not only the increased degree of cross‐linking of the phosphate chains, but rather the short‐ and intermediate‐range structural modifications within the germanate component of the oxynitride glasses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号