首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aluminum (Al) was successfully bonded with alumina (Al2O3) using Ni films of different thicknesses (3, 6, 12 μm) through electroplating and electroless plating processes after annealing at the relatively low melting point of Al. The microstructure, bonding area percentage, shear strength, and thermal conductivity of Al/Al2O3 joints were evaluated using scanning electron microscopy, scanning acoustic tomography (SAT), the ISO 13124 test, and the laser flash method respectively. No reaction layer was found at the interface of the Al/Al2O3 joint, and the Ni film diffused completely into Al to form an intermetallic compound, Al3Ni, in the Al foil. The amount and size of the Al3Ni phase in the Al foil increased gradually with the thickness of the Ni film. The samples with Ni deposited via electroplating had a higher shear stress and bonding area than the samples with Ni deposited via electroless plating. The Al/Al2O3 specimen with a 3-μm-thick Ni film interlayer deposited using electroplating had the highest shear strength (50.6 MPa), thermal conductivity (39.45 W/mK), and bonding area percentage (~99.97%); therefore, specimens produced under these conditions were considered suitable for use as a substrate in high-power devices.  相似文献   

2.
In order to avoid the property degradation resulting from high-temperature joining process, nano-infiltrated transient eutectoid (NITE) phase with the Al2O3-Ho2O3 as the joining adhesives was adopted to join silicon carbide (SiC) ceramics with the attempts to lower down the joining temperature. The liquid-phase-sintered silicon carbide (LPS-SiC) specimens were joined at 1500-1800°C by spark plasma sintering (SPS) under the pressure of 20 MPa. The results of the shear test and microstructure observation showed that the joining process could be finished at a relatively lower temperature (1700°C) compared to other NITE-phase joining. In contrast to the shear strength of 186.4 MPa derived from the SiC substrate, the joint exhibited the shear strength of 157.8 MPa with the fully densified interlayer.  相似文献   

3.
利用瞬态双热线法测量了243—403 K温度范围内饱和液相甲基叔丁基醚的导热系数,并将实验数据拟合为温度的关联式。实验数据与导热系数关联式计算结果的标准偏差和最大偏差分别为0.30%和0.89%,导热系数的合成标准不确定度小于±1.0%。甲基叔丁基醚导热系数的实验研究为正在进行的甲基叔丁基醚替代物筛选提供急需的基础热物性数据,对改进汽油、柴油质量,提高油品的环境友好性及推广使用清洁燃料方面有重要价值。  相似文献   

4.
Al2O3/Lu3Al5O12 (LuAG) directionally solidified eutectic (DSE) ceramics with two solidification rates were prepared utilizing optical floating zone (OFZ) technique. The microstructures (eutectic morphology, preferred growth direction and interface orientation) of Al2O3/LuAG were characterized, and the mechanical properties (Vickers hardness and fracture toughness) were compared with those of Al2O3/REAG (RE = Y, Er, and Yb). Results show that Al2O3/LuAG with solidification rate of 30 mm/h has established preferred growth direction in both Al2O3 and LuAG phases with cellular eutectic structures. While Al2O3/LuAG with solidification rate of 10 mm/h only shows preferred growth direction in Al2O3 phase and presents degenerate irregular eutectic microstructures. Besides, Al2O3/LuAG exhibits higher hardness compared with Al2O3/REAG (RE = Y, Er, and Yb). In addition, a special attention is focused on the relations among rare earth ionic radius, eutectic microstructures, and mechanical properties of these DSE ceramics. It is demonstrated that a smaller rare earth ionic radius could lead to larger eutectic interspacing as well as higher Vickers hardness of DSE Al2O3/REAG, revealing the possibility and feasibility of microstructure control and mechanical properties optimization for DSE Al2O3/REAG ceramics by tailoring the rare earth elements.  相似文献   

5.
A direct current (DC)-driven transient liquid phase bonding strategy was proposed for joining 3 mol% Y2O3-stabilized ZrO2 (3YSZ) and GH3128 superalloy with a Ni interlayer. The DC application triggered the rapid formation and diffusion of metallic Zr in 3YSZ and chemical reactions at the 3YSZ/Ni interface. The formed Ni–Zr eutectic liquid well wetted 3YSZ and hence completely filled the bonding gap in seconds. Eutectic structures in the joints were eventually transformed into Ni–Zr intermetallic compounds or a Ni-based solid solution. The remaining Ni interlayer effectively alleviated residual stress through plastic deformation during cooling stage, and thereby contributed substantially to the high joint strength. Under the joining conditions of a current density of 30 mA/mm2, an energization time of 30 s, and a joining temperature of 1100°C, the obtained joints exhibited a maximum shear strength of 188 ± 8 MPa. This paper proposes an economical and reliable method for the rapid preparation of YSZ/metal joints for high-temperature applications.  相似文献   

6.
《Ceramics International》2022,48(12):16619-16629
For the miniaturization of high-power electronic components, AlN/Al is a promising metallized ceramic substrate due to its superior mechanical and thermal performances. Numerous bonding processes have been proposed for fabricating the metallized ceramic substrate. Unfortunately, the influences of various bonding techniques on the mechanical performance of AlN/Al metallized ceramic substrate remain undetermined to date. The objective of this study was thus to investigate the effects of the transient liquid phase (TLP) technique and pre-oxidation treatment on the bonding, microstructure, and mechanical strength of the AlN/Al metallized ceramic substrate.The results indicated that the three-layered AlN/Al/AlN specimen could be effectively bonded by the TLP process and pre-oxidation treatment. However, the bending strengths of the specimens fabricated by the two techniques were obviously divergent. The bending strength of raw AlN substrate was 333 MPa. In contrast, the bending strengths of the three-layered specimens with AlN substrates pre-oxidized at 1050 °C, 1150 °C, and 1250 °C were 292 MPa, 250 MPa, and 224 MPa, respectively. Raising the pre-oxidation temperature of the AlN substrate from 1050 °C to 1250 °C obviously increased the thickness of the Al2O3 layer and deteriorated the bending strength, for the fracture propagated along the Al2O3 layer and the Al2O3/AlN interface. For the TLP bonding, the Cu film deposited on the AlN substrate contributed to the generation of Al–Cu transient liquid and to bonding. The bending strength of the three-layered specimens fabricated by TLP at 650 °C was 417 MPa, which was 25% and 43% better than those of the raw AlN substrate and the three-layered specimens prepared by the pre-oxidation treatment, respectively.  相似文献   

7.
张笑  冯月斌  陈阵  杨保民 《硅酸盐通报》2017,36(8):2668-2672
真空条件下,以Al2O3和Al为原料,通过Al2O歧化法制备微细Al2O3/Al复合粉体.XRD和SEM分析表明:在反应温度为1200~1400℃时,随着温度的升高,粉体中氧化铝含量升高;冷凝温度约为550~750℃时,复合粉体中的氧化铝包括稳定晶型和不稳定晶型;冷凝温度约为1100~1300℃时,复合粉体中的氧化铝全部为稳定晶型;冷凝温度约为550~650℃时,复合粉体的平均粒径小于0.5μm;冷凝温度约为750℃时,铝熔化、微粒团聚;冷凝温度约为1100~1200℃时,铝形成铝珠,氧化铝为不规则状、平均粒径小于2μm;冷凝温度约为1300℃时,氧化铝为片状.因此,通过选取合适的反应温度、冷凝温度,可以控制Al2O3/Al复合粉体中氧化铝的含量、晶型和粒径.  相似文献   

8.
The densities of molten Y2O3-Al2O3 compounds, including yttrium aluminum garnet (Y3Al5O12), were determined over a wide temperature range that included an undercooled region, using an electrostatic levitation furnace. The density of the molten Y3Al5O12 varied with temperature according to the relationship 3750 − 0.25(TTm) (kg/m3) with Tm = 2240 K and for the range of 1300 K ≤ T ≤ Tm, yielding the thermal expansion coefficient ɑ = 6.7×10−5 K−1. The molar volumes of molten (100-x)Y2O3-xAl2O3 (x = 0, 33.3, 50, 55, 62.5, 76.5, 81.5, or 100 mol%) were found to vary with the value of x in a linear manner within the superheated temperature range. However, the molar volumes in the undercooled region deviated from those calculated using an ideal solution model owing to attractive interactions between Y2O3 and Al2O3.  相似文献   

9.
《Ceramics International》2023,49(8):12285-12292
In order to reduce the joining temperature of SiC ceramics by glass-ceramic joining, some oxides were usually introduced into to Y2O3–Al2O3 for reducing the eutectic temperature. However, the joints might have poor high-temperature resistance due to the low melting point of the joining layer. In the present work, based on novel SiO2-based liquid phase extrusion strategy, joining of SiC ceramics with Y2O3–Al2O3 interlayer was carried out by using Y2O3–Al2O3–SiO2 as the filler through spark plasma sintering (SPS). The SiO2-free interlayer of Y2O3–Al2O3 was used for comparison. It was found that SiC joints using Y2O3–Al2O3 could be only joined at a high temperature of 1800 °C, and the thickness of the interlayer was about 20 μm. The shear strength of the joint obtained at 1800 °C was 89.62 ± 4.67 MPa and the failure located in the SiC matrix. By contrast, reliable joining of SiC ceramics could be finished at as low as 1550 °C by extrusion of SiO2-containing liquid phase when using Y2O3–Al2O3–SiO2 as the interlayer, alongside the interlayer thickness of only several microns. The joint strengths after joining at 1550 °C was 84.90 ± 3.48 MPa and the failure located in matrix position. The joining mechanism was discussed by combining the detailed microstructure analysis and phase diagram.  相似文献   

10.
氧化铝纳米粉体悬浮液强化导热研究   总被引:11,自引:0,他引:11  
利用非稳态热丝法测定了2种纳米氧化铝粉分别分散于水和乙二醇(EG)中制备在悬浮液的导热系数,分析研究了悬浮液pH值,分散剂、纳米氧化铝粉体积含量,基体液体导热系数以及纳米氧化铝粉体团聚状态对悬浮液导热系数的影响,结果表明:悬浮液的导热系数随粉体加入量的增加而增加,相同体积含量的同一粉体悬浮液,基体液体为乙二醇的导热系数相对增加量明显比基体液体为水的大;团聚较多的粉体悬浮液的导热系数大于团聚较少粉体的悬浮液,pH值对悬浮液的导热系数无明显影响,分散剂的加入,增大了粉体和基体液体间的界面热阻,降低了悬浮液的有效导热系数。  相似文献   

11.
《Ceramics International》2020,46(4):4762-4770
Herein, porous calcium hexaluminate ceramics that contain pores exhibiting multiple morphologies were fabricated via in situ reaction sintering using α-Al2O3 powders and pre-fired CaO/Al2O3 pellets. The results indicated that the composition of the pre-fired CaO/Al2O3 pellets significantly affected the pore morphology, reaction-diffusion mechanisms, sintering behaviour and properties of the porous CA6 ceramics. For the specimens containing low CaO/Al2O3-ratio (0.37) pellets, the main reaction occurred by solid state diffusion, i.e. ion diffusion through the solid reactant phase, which resulted in a slow process and low CA6 formation rate at an elevated sintering temperature. With higher CaO/Al2O3-ratio (0.57) pellets, large-sized pores were observed because of transient liquid phase diffusion during the sintering process. The transient liquid phase diffusion effect increased the porosity of the porous ceramics and promoted the formation of a large number of plate-like CA6 grains in the walls of the pores, enhancing their mechanical properties and high-temperature performance. The porous CA6 ceramics containing high CaO/Al2O3-ratio (0.57) pellets sintered at 1700 °C exhibited high open porosity (55.88%), low thermal conductivity and excellent high-temperature performance.  相似文献   

12.
利用瞬态单热线法重新研制了一套可耐高压的热导率测量装置,热导率测量的不确定度为±2%。用推荐物质甲苯对该装置在286~350 K的温度范围内进行了检验,得到的结果与甲苯热导率推荐值的绝对平均偏差为0.48%。用该装置对温度区间为290~390 K、压力区间为0.1~30 MPa的碳酸二甲酯(DMC)的热导率进行了实验研究,并将实验数据拟合成关于温度和压力的热导率方程,实验数据与拟合方程计算值的最大偏差为-1.97%,绝对平均偏差为0.86%。  相似文献   

13.
The mechanical properties and thermal stability of the Al2O3/Er3Al5O12 (EAG) eutectic ceramics have been investigated at very high temperature. The emissive properties of this eutectic ceramics have also been measured and its possibilities of application to an emitter have been discussed. The present eutectic ceramic has excellent high-temperature strength characteristics, showing that tensile yielding stress is approximately 300 MPa at 1650 °C and superior thermal stability at 1700 °C in an air atmosphere. The present material shows strong selective emission bands at wavelength 1.5 μm due to Er3+ ion. The emission bands of this material are nearly coincident with the sensitive region of GaSb PV cell, therefore, the Al2O3/EAG eutectic ceramic can be regarded as one of the promising emitter materials in TPV systems.  相似文献   

14.
《Ceramics International》2022,48(2):2330-2336
Porous forsterite-spinel-periclase ceramics with low thermal conductivity were synthesized via a transient liquid phase diffusion process by using pre-synthesized pellets and fused magnesia powder. The effects of sintering temperature on the pore formation, phase composition, sintering behavior, and properties of the resulting porous ceramics were investigated. The pre-synthesized pellets had a porous structure and contained a large amount of cordierite and enstatite. During the sintering progress, the pellets were converted into a transient liquid phase, which diffused into the solid MgO matrix. The liquid phase diffusion reaction promoted forsterite and spinel formation, which resulted in the in-situ formation of large pores. At elevated temperatures, the liquid phase disappeared and a large number of well-developed grains were simultaneously precipitated from the liquid phase. Porous ceramics with thermal conductivities of 0.42–0.48 W/(m·K) and refractoriness under load values of 1588 °C and 1624 °C were obtained after sintering at 1600 °C for 3 h.  相似文献   

15.
Fully dense SiC bulks with Al2O3 and Al2O3 + Y2O3 sintering additives were prepared by spark plasma sintering and the effect of sintering additives on the hydrothermal corrosion behavior of SiC bulks was investigated in the static autoclave at 400°C/10.3 MPa. The SiC specimen with Al2O3 sintering additive exhibited a higher weight loss and followed a linear law. However, the SiC specimen with Al2O3 + Y2O3 additive exhibited a lower weight loss and followed a parabolic law, indicating that the corrosion kinetic and mechanism were different for these two SiC bulks. Further examination revealed that, a deposited layer was formed on the surface of SiC specimen with Al2O3 + Y2O3 sintering additive after corrosion, which can effectively protect the SiC specimen from further corrosion, and thereby improved the corrosion resistance of the SiC specimen with Al2O3 + Y2O3 sintering additive.  相似文献   

16.
Strontium zirconate (SrZrO3) has been considered as a promising thermal barrier coating (TBC) material for application in gas turbine engines; however, the phase transition problem limits its application. In this study, an Yb2O3 and Gd2O3 codoped SrZrO3 system with excellent properties was reported. Yb2O3-Gd2O3 codoped SrZrO3 ceramic powders [Sr0.8(Zr0.9Yb0.05Gd0.05)O2.75, SZYG/YGZO], [Sr(Zr0.9Yb0.05Gd0.05)O2.95, SZYG] and pure SrZrO3 (SZO) powders were produced by a conventional solid-state reaction method. The XRD and Raman results show that, the composite SZYG/YGZO ceramics consist of the SZO and Yb0.5Zr0.5O1.75 phases with a low thermal conductivity of ~1.3 W/(m·K) at 1000°C, which is at least 40% lower than that of the SZO ceramics. The TG-DSC results show that the SZYG/YGZO ceramics have no phase transition in the temperature range of 600 to 1400°C. The thermal expansion coefficient of the SZYG/YGZO ceramics reaches 10.9 × 10−6 K−1 (1250°C). In addition, the fracture toughness of the SZYG/YGZO ceramics increases by more than 30% compared with the SZO ceramics, and this can be attributed to the presence of the Yb0.5Zr0.5O1.75 phase.  相似文献   

17.
张秀  谢锐  汪伟  巨晓洁  刘壮  褚良银 《化工进展》2019,38(2):993-999
利用微流控技术成功制备了聚乙烯醇缩丁醛(PVB)基材中共混氧化铝(Al2O3)纳米颗粒,其内部包封正十五烷的豆荚结构复合相变纤维。系统考察了Al2O3的含量对复合相变纤维的微观结构、相变性能和导热性能的影响规律。研究结果表明,复合相变纤维的致密表面可将正十五烷良好地包封于其内部的独立腔室内,包封率约为30%。在PVB基材中添加Al2O3纳米颗粒对复合相变纤维的豆荚结构和相变焓均无明显影响,但可显著提高相变纤维的导热性能。在模拟太阳光照射下,添加10% Al2O3纳米颗粒的复合相变纤维的表面温度比不含Al2O3纳米颗粒的相变纤维的表面温度升高更快,前者的熔融时间比后者缩短了25%。研究结果将为制备结构可控、具有良好、稳定导热性能和高效、快速调温性能的相变纤维提供重要的实验参考和指导。  相似文献   

18.
Directionally solidified fibers and rods have been grown from the ternary Al2O3/Y3Al5O12/ZrO2 system using micro-pulling-down method. Fiber diameter could be varied 0.3 mm–2 mm at pull-rates ranging 6–900 mm/h and 500 mm in length. The ternary eutectic fibers had homogeneous colony patterned eutectic microstructures. The interlamellar spacing λ exhibited an inverse-square-root dependence on the growth speed v according to λ = 8 × v−1/2, where λ has the dimension of μm and v is in μm/s. The tensile strength was recorded 1730 MPa at 25 °C and 1100 MPa at 1200 °C for a fiber crystals grown at a growth speed of 900 mm/h. Eutectic rods having 5 mm of diameter and up to 80 mm in length were also successfully grown by the micro-pulling-down method. The eutectic rods showed 1400 MPa of mechanical strength by compressive mode at 1500 °C with homogeneous colony microstructures.  相似文献   

19.
采用溶胶凝胶法和浸渍法,在500℃下焙烧2 h,制备不同组成的B2O3/Al2O3催化剂。通过X射线衍射、热失重、傅立叶红外光谱等测试方法对所制备的催化剂的结构进行表征。通过催化剂与二苯甲酰基甲烷(DBM)配位情况对催化剂的性能表征。研究表明:焙烧获得的主催化剂晶型为γ-Al2O3,添加第二组分B2O3,可以提高与DBM的配位能力,以改善Al2O3的催化活性。  相似文献   

20.
The paper reports on the Raman/fluorescence study of a melt-grown Al2O3/GdAlO3 eutectic composite. Raman bands from the α-alumina and gadolinium perovskite phases identified by X-ray diffraction were systematically observed together in the optically visible domains, even when the latter were much larger than the Raman probe. This suggests a more complex interlocking pattern than appearing on SEM or optical microscopy images. The polarization of alumina and GdAlO3 Raman bands evidenced the preferential orientation of Al2O3 phase with respect to the sample growth direction, in agreement with TEM results. In addition, the position of chromium impurity fluorescence bands was used to map the residual stress in alumina phase. It is a compression in the 200–300 MPa range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号