共查询到20条相似文献,搜索用时 15 毫秒
1.
糖尿病性视网膜病变(diabetic retinopathy, DR)是糖尿病在发病过程中影响视网膜的症状。针对模型下采样过程中特征提取DR图像微动脉瘤等病灶区域信息丢失问题,提出了一种DenseNet融合残差结构的模块。该模块首先连接两个连续的dense block,然后利用残差结构对特征信息求和,并行融合处理特征图像信息,以防止有效特征信息的丢失,最后残差连接两个含有dropout的卷积块,抑制过拟合现象。针对以往卷积操作中未对病变区域的特征图通道加权的问题,提出了一种SeNet融合残差结构的模块。该模块首先连接SeNet,把全局平均池化和全局最大池化的特征信息相加,以提高有效通道信息的利用率,然后通过Conv1×1的残差方式来保证特征图信息的完整性。基于以上两个模块的设计,提出了一种DenseNet和SeNet融合残差结构的DR分类方法。该模型在APTOS2019数据集上的精确度达到89.8%,特异性达到97.0%,在Messidor-2数据集上的精确度达到78.8%,特异性达到91.9%,能够有效地提高视网膜图像病变程度的分类能力。 相似文献
2.
卷积神经网络在基于视觉的机器人抓取检测任务上取得了较好的检测效果,但是大多数方法都有太多的计算参数,不适合资源有限的系统.针对这个问题,基于SqueezeNet轻量级神经网络,结合DenseNet多旁路连接加强特征复用的思想,提出了轻量级抓取检测回归模型SqueezeNet-RM(SqueezeNet Regressi... 相似文献
3.
目的 针对现有图像转换方法的深度学习模型中生成式网络(generator network)结构单一化问题,改进了条件生成式对抗网络(conditional generative adversarial network,CGAN)的结构,提出了一种融合残差网络(ResNet)和稠密网络(DenseNet)两种不同结构的并行生成器网络模型。方法 构建残差、稠密生成器分支网络模型,输入红外图像,分别经过残差、稠密生成器分支网络各自生成可见光转换图像,并提出一种基于图像分割的线性插值算法,将各生成器分支网络的转换图像进行融合,获取最终的可见光转换图像;为防止小样本条件下的训练过程中出现过拟合,在判别器网络结构中插入dropout层;设计最优阈值分割目标函数,在并行生成器网络训练过程中获取最优融合参数。结果 在公共红外-可见光数据集上测试,相较于现有图像转换深度学习模型Pix2Pix和CycleGAN等,本文方法在性能指标均方误差(mean square error,MSE)和结构相似性(structural similarity index,SSIM)上均取得显著提高。结论 并行生成器网络模型有效融合了各分支网络结构的优点,图像转换结果更加准确真实。 相似文献
4.
针对目前交通标志的识别都是基于操作系统之上,无法做到自主可控、稳定可靠的问题,故提出一种基于微控制器卷积神经网络交通标志识别。考虑到微控制器内存及计算速度,研究采用改进SqueezeNet网络模型结构,将PC训练机训练好的各种交通标志权值矩阵文件缩小了50倍,移植到前端Cortex-M核系列开发板上;利用内嵌的CMSIS-NN网络函数库搭建与训练机相同的网络模型结构实现对标志的快速识别。实验结果表明,基于微控制器改进SqueezeNet交通标志识别方法平均识别率达到97.4%以上,识别速度得到了有效的提高, 同时为智慧交通的标志识别提供了一种可选择方案。 相似文献
5.
为提高行人检测的检测性能, 本文结合SqueezeNet、注意力机制、空洞卷积和Inception等结构, 提出一种基于改进YOLOv4的行人检测算法. 改进YOLO在特征增强部分引入残差连接和结合空洞卷积的注意力模块D-CBAM, 可以从提取到的特征中选择对目标检测重要的信息. 此外, 结合SqueezeNet的“squeeze- expand”结构和Inception网络的多尺度卷积思想提出Inception-fire模块用于替代网络中的连续卷积层, 通过增加网络的宽度达到提升算法性能的效果, 同时减少网络的参数. 最后, 根据行人检测任务的特点并结合Focal loss对损失函数进行改进, 分别对正负样本和难易样本添加权重因子, 强调对正样本和难分类样本的训练, 从而提高网络的检测能力. 改进的YOLO算法在INRIA行人数据集上的检测精度能够达到94.95%, 相对原YOLOv4提高4.25%, 同时参数量减少了36.35%, 检测速度也获得13.54%的提升, 在行人检测中能够表现出更优秀的性能. 相似文献
6.
R. Nandakumar P. Saranya Vijayakumar Ponnusamy Subhashree Hazra Antara Gupta 《计算机系统科学与工程》2023,45(1):279-292
A prevalent diabetic complication is Diabetic Retinopathy (DR), which can damage the retina’s veins, leading to a severe loss of vision. If treated in the early stage, it can help to prevent vision loss. But since its diagnosis takes time and there is a shortage of ophthalmologists, patients suffer vision loss even before diagnosis. Hence, early detection of DR is the necessity of the time. The primary purpose of the work is to apply the data fusion/feature fusion technique, which combines more than one relevant feature to predict diabetic retinopathy at an early stage with greater accuracy. Mechanized procedures for diabetic retinopathy analysis are fundamental in taking care of these issues. While profound learning for parallel characterization has accomplished high approval exactness’s, multi-stage order results are less noteworthy, especially during beginning phase sickness. Densely Connected Convolutional Networks are suggested to detect of Diabetic Retinopathy on retinal images. The presented model is trained on a Diabetic Retinopathy Dataset having 3,662 images given by APTOS. Experimental results suggest that the training accuracy of 93.51% 0.98 precision, 0.98 recall and 0.98 F1-score has been achieved through the best one out of the three models in the proposed work. The same model is tested on 550 images of the Kaggle 2015 dataset where the proposed model was able to detect No DR images with 96% accuracy, Mild DR images with 90% accuracy, Moderate DR images with 89% accuracy, Severe DR images with 87% accuracy and Proliferative DR images with 93% accuracy. 相似文献
7.
8.
9.
针对焊缝X射线图像缺陷识别传统方法的计算量大与准确度差的问题,提出了基于MobileNet的识别方法。首先对样本图像进行预处理和数量上的增强;然后引入MobileNet结构以解决传统深度卷积神经网络中对计算资源要求高的问题,引入残差结构与ELU激活函数以解决原始MobileNet网络中出现的退化问题与权重偏置更新失效的问题,在训练时应用迁移学习方法,解决小数据集容易过拟合与训练效率低的问题;最后,针对相同数据集,与改进前的网络、AlexNet网络和VGG-16网络进行对比,表明该文方法具备更优的识别准确率和相比传统网络拥有更小的计算量,相比传统网络的缺陷识别方法拥有更大的应用范围。 相似文献
10.
目前大多数基于双流卷积网络的行为识别方法采用同样的时空网络结构,双流合并时会产生大量的冗余信息,从而降低识别的精确度.对此提出一种基于双流网络的时空异构网络结构.该网络采用两种不同的时空网络结构对行为进行分类.此外,对视频序列的长时间结构采用分段形式进行建模,使整个行为视频的学习变得高效.在UCF101和HMDB51数... 相似文献
11.
基于深度残差网络和GRU的SqueezeNet模型的交通路标识别 总被引:1,自引:0,他引:1
Existing traffic road sign recognition methods are all based on convolutional neural networks. As the number of the model network layers increases, the recognition accuracy will also be improved, but there are still some problems such as the reduction of efficiency and the increase of the number of parameters. Therefore, an improved SqueezeNet model combining deep residual network with GRU neural network (SqueezeNet IR GRU) is proposed. In order to enhance the learning efficiency, ELU function is used as the activation function. To avoid the disappearance of gradients when the network layer is too deep, a deep residual network is introduced to guarantee the stability of the model, GRU neural network that can memorize the important past features is utilized. Experiments were performed on the Cafir 10 and GTSRB datasets, and their recognition accuracy rates are above 99.13% and 88.25%respectively. The experimental results show that the SqueezeNet IR GRU model not only reduces the parameter amount greatly, but also its convergence, stability and recall rate are all much better than others. 相似文献
12.
针对目前大量安装的固定监控摄像头存在监控死角,以及移动设备硬件性能较低等问题,提出一种可在较低性能的IOS移动设备上运行的城市管理案件目标识别算法。首先,在MobileNet中增加新的超参数,优化输入输出图像的通道数与每个通道所产生的特征图数量;随后,将改进后的MobileNet与SSD目标识别框架相结合构成一种新的识别算法,并移植到IOS移动端设备上;最后,该算法利用移动端设备自带的摄像头拍摄案发现场视频,实现对8种特定城管案件目标的准确检测。该算法检测结果的平均精度均值(mAP)与原型YOLO和原型SSD相比,分别提升了15.5个百分点和10.4个百分点。实验结果表明,所提算法可以在低性能IOS移动设备上流畅运行,减少了监控死角,为城管队员加速案件分类与处理提供了技术支撑。 相似文献
13.
针对轻量级卷积神经网络MobileNet应用于人脸表情识别实时性较差、最小输入尺寸较大、准确率不高等问题,提出一种改进的MobileNet网络模型——M-MobileNet(Modified MobileNet)。M-MobileNet具有比原网络更好的轻量级特性。该网络模型基于一种改进的深度可分离卷积层,不仅具有MobileNet模型中深度可分离卷积减少卷积计算量的特点,还解决了在深度卷积层后可能会导致信息丢失的问题。在分类器选择上,M-MobileNet使用线性支持向量机(SVM)进行人脸表情分类,参数量较MobileNet网络大大减少。在CK+、KDEF数据集及移动端上的实验证明,改进后的MobileNet网络模型具有更好的识别性能。 相似文献
14.
为了提高声纹识别技术的识别性能,将DenseNet应用于语谱图实现声纹识别,从提高网络的运算效率和增强声纹特征的表征能力2个方面对DenseNet进行优化,提出采用深度可分离卷积来减少网络的参数量,以及增加中心损失函数项来提高声纹特征的表征能力.从训练结果可以看出,通过深度可分离卷积,网络的参数量减少了25.5%,模型... 相似文献
15.
近几年来,人工智能的热度一直居高不下,其中作为人机交互的一种重要方法—人脸表情识别已经成为计算机视觉研究的热点.从传统的机器学习算法到现在的深度学习,识别效率也在不断地提高,为了进一步提高人脸表情识别率,在传统的卷积神经网络的基础上,提出了一种基于改进的ResNet卷积神经网络的表情识别方法.该方法基于ResNet网络... 相似文献
16.
对轻量级卷积神经网络MobileNet V2的模型结构进行改进,将深度可分离卷积中的激活函数ReLU替换成Leaky ReLU,从而避免神经元死亡问题,倒置残差卷积中的跨越连接添加Dropout层,增大模型的泛化能力.实验结果表明,预测结果的总体准确率达到91.41%,最高精确率为95.12%,最高召回率为97.39%... 相似文献
17.
18.
19.
目的 深度学习已经大量应用于合成孔径宽达(SAR)图像目标识别领域,但大多数工作是基于MSTAR数据集的标准操作条件展开研究。当将深度学习应用于同类含变体目标时,例如T72子类,由于目标间差异小,所以仍存在着较大的挑战。本文从极大限度地保留SAR图像输入特征出发,设计一种适用于SAR变体目标识别的深度卷积神经网络结构。方法 设计网络主要由多尺度空间特征提取模块和DenseNet中的稠密块、转移层构成。多尺度特征提取模块置于网络底层,通过使用尺寸分别为1×1、3×3、5×5、7×7、9×9的卷积核,提取丰富空间特征的同时保留输入图像信息。为使输入图像信息更加有效地向后传递,基于DenseNet中的稠密块和转移层进行后续网络层设计。在对训练样本进行样本扩充基础上,分析了输入图像分辨率及目标存在平移和不同噪声水平等情况对模型识别精度的影响,与用于SAR图像目标识别的深度模型识别精度在标准操作条件下进行了对比分析。结果 实验结果表明,对T72 8类变体目标进行分类,设计的模型能够取得95.48%的识别精度,在存在目标平移和不同噪声水平情况下,平均识别精度分别达到了94.61%和86.36%。对10类目标(包括不含变体和含变体情况)在进行数据增强的情况下进行模型训练与测试,分别达到了99.38%和98.81%的识别精度,略优于其他对比模型结构识别精度。结论 提出的模型可以充分利用输入图像以及各卷积层输出的特征,学习目标图像的细节差异,不仅适用于SAR图像变体目标的识别任务,同时在标准操作条件下的识别任务也取得了较高的识别结果。 相似文献