首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Development of lithium disilicate-based glass-ceramics critically depends on use of nucleating agent in the glass matrix. The present study reports the effect of externally added nucleating agent Li3PO4 in Li2O–K2O–MgO–ZnO–ZrO2–Al2O3–SiO2 system which is compared with a reference composition (GC1) (SiO2:Li2O = 2.16:1) prepared with in situ formed Li3PO4. For externally added Li3PO4, two compositions were studied. In one case (GC2) before addition of Li3PO4, SiO2:Li2O ratio in glass was maintained as 2.87:1 and in another case (GC3) SiO2:Li2O ratio in glass was maintained same as reference GC1 that is, 2.16:1. The glasses were characterized by using MAS-NMR spectroscopy. Sintering and crystallization behavior of the glass-ceramics was characterized by using XRD, SEM, DTA. Due to in situ formation of Li3PO4, GC1 resulted in a dense sample with finer crystals of lithium disilicate. In GC2 and GC3, externally added lithium phosphate, which was in the form of ultrafine aggregated particles, formed flower-like colonies of radially outward crystals. Higher SiO2:Li2O ratio in GC2 resulted in lithium disilicate crystals and high viscous glass causing large air entrapment and so less densification. GC3 with higher lithia in glass showed higher densification than GC2 but only lithium metasilicate crystals were formed.  相似文献   

2.
The purpose of this study was the synthesis of lithium disilicate glass-ceramics in the system SiO2–Al2O3–K2O–Li2O. A total of 8 compositions from three series were prepared. The starting glass compositions 1 and 2 were selected in the leucite–lithium disilicate system with leucite/lithium disilicate weight ratio of 50/50 and 25/75, respectively. Then, production of lithium disilicate glass-ceramics was attempted via solid-state reaction between Li2SiO3 (which was the main crystalline phase in compositions 1 and 2) and SiO2. In the second series of compositions, silica was added to fine glass powders of the compositions 1 and 2 (in weight ratio of 20/100 and 30/100) resulting in the modified compositions 1–20, 1–30, 2–20, and 2–30. In the third series of compositions, excess of silica, in the amount of 30 wt.% and 20 wt.% with respect to the parent compositions 1 and 2, was introduced directly into the glass batch. Specimens, sintered at 800 °C, 850 °C and 900 °C, were tested for density (Archimedes’ method), Vickers hardness (HV), flexural strength (3-point bending tests), and chemical durability. Field emission scanning electron microscopy and X-ray diffraction were employed for crystalline phase analysis of the glass-ceramics. Lithium disilicate precipitated as dominant crystalline phase in the crystallized modified compositions containing colloidal silica as well as in the glass-ceramics 3 and 4 after sintering at 850 °C and 900 °C. Self-glazed effect was observed in the glass-ceramics with compositions 3 and 4, whose 3-point bending strength and microhardness values were 165.3 (25.6) MPa and 201.4 (14.0) MPa, 5.27 (0.48) GPa and 5.34 (0.40) GPa, respectively.  相似文献   

3.
The effects of K2O content on sintering and crystallization of glass powder compacts in the Li2O–K2O–Al2O3–SiO2 system were investigated. Glasses featuring SiO2/Li2O molar ratios of 2.69–3.13, far beyond the lithium disilicate (LD-Li2Si2O5) stoichiometry, were produced by conventional melt-quenching technique. The sintering and crystallization behaviour of glass powders was explored using hot stage microscopy (HSM), scanning electron microscopy (SEM), differential thermal (DTA) and X-ray diffraction (XRD) analyses. Increasing K2O content at the expense of SiO2 was shown to lower the temperature of maximum shrinkage, eventually resulting in early densification of the glass-powder compacts. Lithium metasilicate was the main crystalline phase formed upon heat treating the glass powders with higher amounts of K2O. In contrast, lithium disilicate predominantly crystallized from the compositions with lower K2O contents resulting in strong glass–ceramics with high chemical and electrical resistance. The total content of K2O should be kept below 4.63 mol% for obtaining LD-based glass–ceramics.  相似文献   

4.
Lithium disilicate glass‐ceramics are widely used as dental ceramics due to their machinability and translucency. In this study, lithium disilicate glass‐ceramic was fabricated through heat treatment of lithium metasilicate glass‐ceramics obtained by hot pressing of glass powder composed of SiO2–Li2O–P2O5–ZrO2–Al2O3–K2O–CeO2 at low temperature. The crystalline phase, microstructure, and mechanical properties were investigated. The results indicated that lithium metasilicate glass‐ceramic with a relative density of higher than 99% was obtained after hot pressing, and glass‐ceramic with interlocked rod‐like Li2Si2O5 crystals and good flexural strength (338 ± 20 MPa) was successfully obtained through heat treatment. The two‐step method was believed to be feasible in tailoring the microstructure and mechanical properties of lithium disilicate glass‐ceramics.  相似文献   

5.
Glass compositions with formula (71.78 − x)SiO2-2.63Al2O3-(2.63 + x)K2O-23.7Li2O (mol.%, x = 0-10) and SiO2/Li2O molar ratios far beyond that of stoichiometric lithium disilicate (Li2Si2O5) were prepared by conventional melt-quenching technique to investigate the influence of K2O content on structural transformations and devitrification behaviour of glasses in the Li2O-SiO2 system. The scanning electron microscopy (SEM) examination of as cast non-annealed glasses revealed the presence of nanosized droplets in glassy matrices suggesting occurrence of liquid-liquid phase separation. An overall trend towards depolymerization of the silicate glass network with increasing K2O content was demonstrated by employing magic angle spinning-nuclear magnetic resonance (MAS-NMR) spectroscopy. The distribution of structural units in the experimental glasses was estimated using 29Si MAS-NMR spectroscopy suggesting the appearance of Q2, enhancement of Q3 and diminishing of Q4 groups with increasing K2O contents. X-ray diffraction (XRD) and differential thermal analysis (DTA) were used to assess the influence of K2O on devitrification process and formation of lithium disilicate (Li2Si2O5) and/or lithium metasilicate (Li2SiO3) crystalline phases.  相似文献   

6.
《Ceramics International》2023,49(1):216-225
In order to obtain lithium disilicate glass-ceramics for dental restoration with both high strength and high translucency, lithium disilicate glass-ceramics with different MgO contents were prepared by melt-casting and heat treatment method. The effects of MgO content on the crystallization temperature, microstructure and flexural strength of lithium disilicate glass-ceramics were investigated. The results indicate that Mg2+ exists in the form of [MgO4] in the network of lithium disilicate glass-ceramics when the MgO content is 0.56 mol% (M0.56), which is beneficial to increasing the homogeneity and thermal stability of the glass system, and short rod-like lithium disilicate crystals can be formed after heat treatment at 840°C. Thus, the obtained lithium disilicate glass-ceramics exhibit excellent comprehensive performance, with the flexural strength being 312 ± 23 MPa, and the average transmittance of visible light being 37.3% (d = 1.62 mm). Especially, the glass-ceramic sample shows better translucency than the commercially available products. The research results are of great significance for developing high performance lithium disilicate glass ceramics and promoting its broad application in the field of dental restoration.  相似文献   

7.
The phase separation in ultimately homogenized glasses of the lithium silicate system xLi2O · (100 − x)SiO2 (where x = 23.4, 26.0, and 33.5 mol % Li2O) has been investigated. The glasses of these compositions have been homogenized using the previously established special temperature-time conditions, which provide the maximum dehydration and the removal of bubbles from the glass melt. The parameters of nucleation and growth of phase_separated inhomogeneities and homogeneous crystal nucleation have been determined. The absolute values of the stationary nucleation rates I st of lithium disilicate crystals in the 23.4Li2O · 76.6SiO2 and 26Li2O · 74SiO2 glasses with the compositions lying in the metastable phase separation region have been compared with the corresponding rates I st for the glass of the stoichiometric lithium disilicate composition. It has been established that the crystal growth rate have a tendency toward a monotonic increase with an increase in the temperature, whereas the dependences of the crystal growth rate on the time of low-temperature heat treatment exhibit an oscillatory behavior with a monotonic decrease in the absolute value of oscillations. The character of crystallization in glasses with the compositions lying in the phase separation region of the Li2O-SiO2 system is compared with that in the glass of the stoichiometric lithium disilicate composition. The inference has been made that the phase separation weakly affects the nucleation parameters of lithium disilicate and has a strong effect on the crystal growth.  相似文献   

8.
《Ceramics International》2020,46(4):4771-4777
The Li–Al–Si glass-ceramics were prepared by conventional glass-ceramic fabrication method. The influences of Na2O content on the sintering property, microstructure, and coefficient of thermal expansion were investigated. The results show that the coefficient of thermal expansion of LAS glass-ceramics can be tailored to match that of silicon by the addition of Na2O content. Na2O has a remarkable influence on the crystallinity of Li–Al–Si glass-ceramic. The coefficient of thermal expansion of Li–Al–Si glass-ceramic is thus tunable between that of glass phase and crystal phase. The Si–O bond length change in stretch vibration modes introduced by Na2O also contributes to the variation of coefficient of thermal expansion of the Li–Al–Si glass-ceramics. The coefficient of thermal expansion of the Li–Al–Si glass-ceramic with 1.5 wt% Na2O addition is about +3.34 ppm/°C at 350 °C and shows a good compatibility to that of silicon in a wide temperature range, which makes it a promising candidate for anodic bondable low temperature co-fired ceramic substrate applications.  相似文献   

9.
The microstructural development during crystallization firing of a commercially-available dental-grade nanostructured lithia-zirconia glass-ceramic (Vita Suprinity® PC) was unraveled using a wide battery of ex-situ and in-situ characterization techniques. It was found that the milling blocks are slightly crystallized glass-ceramics, with a complex chemical composition and consisting of partially de-polymerized glass plus lithium silicate (Li2SiO3) nanocrystals. It was also found that during crystallization firing the glassy matrix first reacts with part of the Li2SiO3 to form lithium disilicate (Li2Si2O5) at ~810?820 °C, and then lithium orthophosphate (Li3PO4) precipitates from the glass. This results in glass-ceramics with abundant nanocrystals embedded in a sparse zirconosilicate glass matrix (containing many other cations subsumed) that, due to its high viscosity, inhibited crystal growth. Therefore, these dental glass-ceramics are not reinforced with zirconia (ZrO2) crystals unless over-fired above ~890 °C and at the expense of its singular nanostructure. Finally, this study opens doors for optimizing the clinical performance of these dental glass-ceramics via microstructural tailoring.  相似文献   

10.
A sol-gel method has been proposed for preparing the batch used in the synthesis of a photostructured gold-containing glass of the composition 33.56Li2O · 66.5SiO2. It has been found that the main crystalline phase in the glass of this composition is lithium disilicate Li2O · 2SiO2. The temperature-time dependences of the nucleation rate of lithium disilicate crystals with a gold impurity have been investigated under conditions of X-ray irradiation of the initial glass and without irradiation. It has been shown that, in the absence of X-ray irradiation, the gold impurities do not affect the nucleation of lithium disilicate crystals. It has been established that the use of the sol-gel method for the preparation of the batch for synthesizing photostructured gold-containing glasses leads to a more uniform spatial distribution of gold microimpurities in the bulk of the glass.  相似文献   

11.
The data of dilatometry and electron microscopy of four series of xNa2O-(8 ? x)K2O-32B2O3-60SiO2, xNa2O-(8 ? x)K2O-22B2O3-70SiO2, xNa2O-(6 ? x)K2O-34B2O3-60SiO2, and xNa2O-xK2O-(40 ? 2x)B2O3-60SiO2 phase-separated glass heat-treated at 550°C for 144 h (for glass containing 70 mol % SiO2) and 24 h (for glass containing 60 mol % SiO2) for separation on phases are summarized. The comparison of dilatometric data and electron microscopy allow one to conclude that glass with a difference between the onset deformation temperature and a glass transition temperature of more than 100°C is phase-separated; and glass with a difference of less than 65°C is single-phase. Curves for the glass transition temperature as a function of the K2O content reveal a mixed alkali effect, namely, minimums for glass containing 60% SiO2, and maximums for glass containing 70% SiO2.  相似文献   

12.
The effect of ZnO/K2O (Z/K) ratio on the crystallization sequence and microstructure of lithium disilicate (Li2Si2O5: LS2) glass-ceramics was carefully investigated for the SiO2-Li2O-K2O-ZnO-P2O5 system. The Z/K ratios of precursor glasses were varied from 0 to 3.5 while the nucleating agent of P2O5 and glass modifiers of ZnO plus K2O were fixed to have 1.5 and 4.5 mol% relative to LS2, respectively. For the samples prepared by two-stage heat treatments of 500 °C for 1 h and 800 °C for 2 h in air, the LS2 nucleation rate was increased with increasing the Z/K ratio due to the variation in crystallization sequence from type II (Li2SiO3: LS) to type I (LS + LS2) in addition to an amorphous phase separation in base glass. Consequently, with increasing the Z/K ratio, the LS2 crystalline phase within the glass matrix continuously changed from larger acicular ones to smaller equiaxed ones.  相似文献   

13.
《Ceramics International》2023,49(7):10652-10662
Transparent glass-ceramics containing eucryptite and nepheline crystalline phases were prepared from alkali (Li, Na) aluminosilicate glasses with various mole substitutions of Al2O3 for SiO2. The relationships between glass network structure and crystallization behavior of Li2O–Na2O–Al2O3–SiO2 (LNAS) glasses were investigated. It was found that the crystallization of the eucryptite and nepheline in LNAS glasses significantly depended on the concentration of Al2O3. LNAS glasses with the addition of Al2O3 from 16 to 18 mol% exhibited increasing Q4 (mAl) structural units confirmed by NMR and Raman spectroscopy, which promoted the formation of eucryptite and nepheline crystalline phases. With the Al2O3 content increasing to 19–20 mol%, the formation of highly disordered (Li, Na)3PO4 phase which can serve as nucleation sites was inhibited and the crystallization mechanism of glass became surface crystallization. Glass-ceramics containing 18 mol% Al2O3 showed high transparency ~84% at 550 nm. Moreover, the microhardness, elastic modulus and fracture toughness are 8.56 GPa, 95.7 GPa and 0.78 MPa m1/2 respectively. The transparent glass-ceramics with good mechanical properties show high potential in the applications of protective cover of displays.  相似文献   

14.
Li2O-SiO2-ZrO2 (LZS) glass-ceramics have high mechanical strength, hardness, resistance to abrasion and chemical attack, but also a high coefficient of thermal expansion (CTE), which can be reduced adding alumina nanoparticles. The conventional glass-ceramic production is relatively complex and energy consuming, since it requires the melting of the raw materials to form a glass frit and a two-step milling process to obtain particle sizes adequate for compaction. This study describes the preparation of LZS glass-ceramics through a colloidal processing approach from mixtures of SiO2 and ZrO2 nanopowders and a Li precursor (lithium acetate obtained by reaction of the carbonate with acetic acid). Concentrated suspensions were freeze-dried to obtain homogeneous mixtures of powders that were pressed (100 MPa) and sintered conventionally and by spark plasma sintering. The effect of the alumina nanoparticles additions on suspensions rheology, sintering behavior and properties such as thermal expansion, thermal conductivity, hardness and Young’s modulus were evaluated.  相似文献   

15.
Sol-gel technology is a promising method not only to obtain the batch of the main composition but also to include low additives in glass. In this work, the batches obtained via the sol-gel method have been used to synthesize silicate glass based on the Li2O-SiO2 system with the additives of R′2O and R″O, (R′ = Na, K; R″ = Ca, Mg). The Li2O-SiO2 system without the additives R′ and R″ has been studied by us most completely. It has been determined that the main crystal phase in the glass of Li2O-SiO2 system with Li2O content up to 33 mol % is lithium disilicate, Li2O · 2SiO2. In the range of compositions from 33.8 to 40.7 mol % Li2O, solid solutions based on lithium disilicate are formed; and, starting from 40.7 mol % Li2O, solid solutions based on lithium metasilicate. The kinetic dependences of the number of nucleating lithium disilicate crystals from the time of heat treatment have been obtained at various temperatures of heat treatment. The temperature dependences of the stationary rate of nucleation of crystals have been studied. The results have been compared for the glass prepared with the use of the conventional and sol-gel method. It has been determined that the complication of the composition of glass based on 26Li2O · 74SiO2 (mol %) by the addition of R′ = Na, K; R″ = Ca, Mg affects the morphology of lithium disilicate crystals. The use of the sol-gel method of synthesis of glass leads to a more homogeneous spatial arrangement of crystals in bulk glass, the measure of which (distribution) is the dispersion of the number of traces of crystals per unit area of the section.  相似文献   

16.
The effect of Al2O3 and K2O content on structure, sintering and devitrification behaviour of glasses in the Li2O–SiO2 system along with the properties of the resultant glass–ceramics (GCs) was investigated. Glasses containing Al2O3 and K2O and featuring SiO2/Li2O molar ratios (3.13–4.88) far beyond that of lithium disilicate (Li2Si2O5) stoichiometry were produced by conventional melt-quenching technique along with a bicomponent glass with a composition 23Li2O–77SiO2 (mol.%) (L23S77). The GCs were produced through two different methods: (a) nucleation and crystallization of monolithic bulk glass, (b) sintering and crystallization of glass powder compacts.Scanning electron microscopy (SEM) examination of as cast non-annealed monolithic glasses revealed precipitation of nanosize droplet phase in glassy matrices suggesting the occurrence of phase separation in all investigated compositions. The extent of segregation, as judged from the mean droplet diameter and the packing density of droplet phase, decreased with increasing Al2O3 and K2O content in the glasses. The crystallization of glasses richer in Al2O3 and K2O was dominated by surface nucleation leading to crystallization of lithium metasilicate (Li2SiO3) within the temperature range of 550–900 °C. On the other hand, the glass with lowest amount of Al2O3 and K2O and glass L23S77 were prone to volume nucleation and crystallization, resulting in formation of Li2Si2O5 within the temperature interval of 650–800 °C.Sintering and crystallization behaviour of glass powders was followed by hot stage microscopy (HSM) and differential thermal analysis (DTA), respectively. GCs from composition L23S77 demonstrated high fragility along with low flexural strength and density. The addition of Al2O3 and K2O to Li2O–SiO2 system resulted in improved densification and mechanical strength.  相似文献   

17.
《Ceramics International》2017,43(13):9644-9652
Stoichiometric lithium disilicate glasses were doped with up to 2 mol% B2O3, Na2O or K2O and the crystallization kinetics were determined as a function of the temperature using in situ hot-stage microscopy. The additives lead to a decrease of the glass viscosities in the studied temperature range with the exception of the boron-containing samples which show slightly higher viscosities in the nucleation range. While in the boron-containing samples, lithium disilicate solid solutions precipitate during thermal treatment, in the other samples a mixture of lithium disilicate, lithium metasilicate and cristobalite was detected. The steady-state nucleation rates decrease by up to one order of magnitude and especially in the case of the additive B2O3, the induction times for nucleation are remarkably longer. While the additives B2O3 and K2O lead to a decrease of the crystal growth velocities, in case of Na2O, the contrary effect can be noticed. Possible reasons for the observed effects are discussed.  相似文献   

18.
《Ceramics International》2022,48(9):12699-12711
The effect of variation of MgO (1.5, 4.5 and 7.5 mol%) content on glass structure, crystallization behavior, microstructure and mechanical properties in a Li2O–K2O–Na2O–CaO–MgO–ZrO2–Al2O3–P2O5–SiO2 glass system has been reported here. Increased amount of MgO enhanced the participation of Al2O3 as a glass network former along with [SiO4] tetrahedra, reducing the amount of non-bridging oxygen (NBO) and increasing bridging oxygen (BO) amount in glass. The increased BO in glass resulted in a polymerized glass structure which suppressed the crystallization and subsequently increased the crystallization temperature, bulk density, nano hardness, elastic modulus in the glasses as well as the corresponding glass-ceramics. MgO addition caused phase separation in higher MgO (7.5 mol%) containing glass system which resulted in larger crystals. The nano hardness (~10 GPa) and elastic modulus (~127 GPa) values were found to be on a much higher side in 7.5 mol% MgO containing glass-ceramics as compared to lower MgO containing glass-ceramics.  相似文献   

19.
B. Ya. Ten 《Glass and Ceramics》2004,61(9-10):288-290
Experimental data are summarized, and a generalized formula for the calculation of SiO2 diffusion coefficients in melts of the Na2O – SiO2 system is obtained. The formula is recommended for the practical calculations of the process of melting impure sodium disilicate.  相似文献   

20.
The study of the bond breaking and formation processes, that is, the chemical reaction, in the Si–O network structure in liquid alkali silicates at temperatures around or higher than the glass-transition temperature is important for understanding kinetic processes such as the structural relaxation of the network, viscous flow, and diffusion of the network former ions. Herein, novel methods for analyzing the reactions in a molecular-dynamics-modeled liquid Na2SiO3 were used to confirm the following results: (a) the substitutional reactions (in which a nonbridging O ion of a Si–O chain or a SiO4 tetrahedron attacks the Si ion of another chain from backside of a bridging O ion, which acts as the leaving group, and the bridging O leaves the Si ion) primarily occur in the Si–O network of liquid Na2SiO3; and (b) The abundance ratio of Qn species can be quantitatively reproduced by the reaction rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号