首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acid- and rennet-induced gelation properties of milk with modified casein micelles, produced by partial renneting at 4oC for 15 min, followed by inactivation of enzymes by heat at 60oC/3 min (referred as low heat treatment milk) and 85oC/30 min (high heat treatment milk), were investigated to provide a mechanistic understanding of gel formation from partially renneted milk. Acidification of low heat treatment milk gave firmer gel quality, this was reflected by its high elastic modulus (G′) and hardness. In addition, the high heating condition for enzyme inactivation of high heat treatment milk alone increased the elastic modulus of both the control and renneted milk samples. Gel development of the two milk types (low heat treatment and high heat treatment milks) was different. In contrast with acid gelation, rennet-induced gelation of partially pre-rennet treated milk had no impact on the elastic modulus of low heat treatment milk and the rennet gels were very weak. Similarly, the addition of rennet to pre-rennet treated high heat treatment milk did not produce “true gels,” most likely due to the effect of the heat treatment on impairing the rennet coagulation. The findings in this study confirmed that pre-rennet treated milk had positive effects on the end-product acid gels of low heat treatment and high heat treatment milk.  相似文献   

2.
Reconstituted skim milk was gelled with a crude protease extract from tamarillo [Cyphomandra betacea or Solanum betacea (syn.)] fruit and compared with gels prepared with calf rennet. The effects of temperature and pH on the gelation of skim milk were investigated by small deformation oscillatory rheology. The tamarillo extract-induced gels had a faster rate of increase in the elastic modulus (G′) at the early stage of gelation than rennet-induced milk gels. This was probably due to the broader proteolytic activity of tamarillo protease extracts as shown by sodium dodecyl sulfate–PAGE analysis. Confocal microscopy also showed that the milk gels resulting from the addition of tamarillo extracts had larger voids than rennet-induced milk gels. The proteolytic activity of tamarillo extracts was found to be optimal at pH 11. For both rennet and tamarillo extracts, the aggregation time was similar between pH 6.7 and 6.5, but the aggregation time of rennet-induced milk gels was lower than that of milk gels obtained by the addition of tamarillo extracts at pH lower than 6.5. An increase in temperature was found to have a significant effect on aggregation time, particularly at 20°C, where rennet did not coagulate milk in 3 h but the tamarillo extracts coagulated milk within 2 h. The results of this study suggest that extracts from tamarillo fruit could be used for milk gelation, particularly under lower temperature or high pH conditions.  相似文献   

3.
《Journal of dairy science》2022,105(8):6578-6588
Heating milk at high temperatures impairs its renneting properties, but rennet-induced curds can be formed from ultra-high temperature (UHT) milk inoculated with Saccharomyces cerevisiae. Herein, we measured physicochemical indices of UHT milk inoculated with S. cerevisiae before rennet addition, monitored the kinetics of gel formation, and investigated the physicochemical properties and microstructure of rennet-induced curds to explore the mechanisms by which S. cerevisiae influenced rennet-induced gelation of UHT milk. Compared with untreated pasteurized cow milk and UHT milk, the ethanol content was increased, the pH was decreased, the particle size and ζ-potential were increased, the time points at which the elasticity index began to increase were advanced, and the maximum elasticity index was increased for UHT milk inoculated with S. cerevisiae. The number of S. cerevisiae cells affected the structure of rennet-induced curds; with few cells added, the protein network of curds was continuous and tight, the mean square displacement curves showed an asymptotic behavior, and the water retention capacity and curd yield were high; with more cells added, the loosely entangled proteins aggregated, the continuity of the network was destroyed, and the curd yield decreased. In summary, a low number of S. cerevisiae cells (<1.0 × 107 cfu/mL) can increase particle size, ζ-potential, and ethanol content, and decrease pH of S. cerevisiae-inoculated UHT milk, thereby accelerating the aggregation reactions after enzymatic reaction and improving the renneting properties.  相似文献   

4.
Importance of casein micelle size and milk composition for milk gelation   总被引:1,自引:0,他引:1  
The economic output of the dairy industry is to a great extent dependent on the processing of milk into other milk-based products such as cheese. The yield and quality of cheese are dependent on both the composition and technological properties of milk. The objective of this study was to evaluate the importance and effects of casein (CN) micelle size and milk composition on milk gelation characteristics in order to evaluate the possibilities for enhancing gelation properties through breeding. Milk was collected on 4 sampling occasions at the farm level in winter and summer from dairy cows with high genetic merit, classified as elite dairy cows, of the Swedish Red and Swedish Holstein breeds. Comparisons were made with milk from a Swedish Red herd, a Swedish Holstein herd, and a Swedish dairy processor. Properties of CN micelles, such as their native and rennet-induced CN micelle size and their ζ-potential, were analyzed by photon correlation spectroscopy, and rennet-induced gelation characteristics, including gel strength, gelation time, and frequency sweeps, were determined. Milk parameters of the protein, lipid, and carbohydrate profiles as well as minerals were used to obtain correlations with native CN micelle size and gelation characteristics. Milk pH and protein, CN, and lactose contents were found to affect milk gelation. Smaller native CN micelles were shown to form stronger gels when poorly coagulating milk was excluded from the correlation analysis. In addition, milk pH correlated positively, whereas Mg and K correlated negatively with native CN micellar size. The milk from the elite dairy cows was shown to have good gelation characteristics. Furthermore, genetic progress in relation to CN micelle size was found for these cows as a correlated response to selection for the Swedish breeding objective if optimizing for milk gelation characteristics. The results indicate that selection for smaller native CN micelles and lower milk pH through breeding would enhance gelation properties and may thus improve the initial step in the processing of cheese.  相似文献   

5.
Heat-treatment of milk causes denaturation of whey proteins, leading to a complex mixture of whey protein aggregates and whey protein coated casein micelles. In this paper we studied the effect of pH-adjustment of milk (6.9–6.35) prior to heat-treatment on the distribution of denatured whey proteins in aggregates and coating of casein micelles. Proteins were fractionated using an alternative fractionation technique based on renneting. Acid- and rennet-induced gelation of these milks were used to obtain more information on the characteristics of the milk. Acid-induced gelation appeared to be mainly influenced by the presence of whey protein aggregates. Rennet-induced gelation was determined by the whey protein coating of the casein micelles. Both the quantity of whey proteins present on the surface of the casein micelles and the homogeneity of the coating were determining the renneting properties. These results extend the current knowledge on pH dependent casein–whey protein interactions. In order to present a clear picture of the changes occuring during heat treatment of milk at various pH, the results are summarized in a model. In this model we propose that heating at a pH>6.6 lead to a partial coverage of the casein micelles and the formation of separate whey protein aggregates. Heating at a pH<6.6 lead to an attachment of all whey proteins to the casein micelles. At pH 6.55 the coverage is rather homogeneous but lowering the pH further lead to an inhomogeneus coverage of the casein micelles. Surprisingly small changes of the pH at which the milk was heated had considerable effects on the gelation behaviour both in renneting and in acid gelation.  相似文献   

6.
The influence of different heat treatments on the protein aggregates and changes in gelation properties of rennet-induced milk gels were investigated. In the heated milk, a visible difference in milk serum proteins was found resulting from the formation of protein aggregates. Meanwhile, the size of protein aggregates increased from 25 to 170 nm with increasing the intensity of heat treatment. Furthermore, the differences in textural variables of rennet gels were found among the heat treatments using the principal component analysis. The water holding capacity and cheese curd yield of rennet gels obtained from the heated milk were significantly greater than those of raw milk (p < 0.05). It was also found heat treatments above 80°C could endow rennet-induced milk gels with novel textural properties.  相似文献   

7.
Elevated plasmin enzyme activity has been suggested as a likely cause of impaired functional properties that occur in milk from cows either in their late-lactational period or that are experiencing mastitis. However, there are conflicting reports on the impact of plasmin on rennet coagulation properties of milk. The effects of added plasmin on the rheological properties, at small and large deformation, of rennet-induced gels were investigated. The microstructure of rennet-induced gels was studied, using confocal scanning laser microscopy. Porcine plasmin was added to reconstituted milk, and samples were incubated at 37 degrees C for between 0.5 to 8 h. The hydrolysis reaction was terminated using soybean trypsin inhibitor. The extent of degradation of caseins was determined with SDS-PAGE. The extent of breakdown of alpha(s)- and beta-caseins increased with incubation time with plasmin. Storage modulus of rennet gels decreased linearly with increasing degradation of caseins. There was an increase in the loss tangent parameter of the gels with increasing casein degradation, indicating a more liquid-like gel character. Gelation time decreased until approximately 3 h of incubation with plasmin (when the amounts of intact alpha(s)- and beta-caseins were approximately 46 and 50%, respectively); thereafter, gelation time increased considerably. Yield stress of rennet-induced gels decreased with increasing casein breakdown. When the level of casein hydrolysis was high (<40% of intact caseins), the microstructure of rennet-induced gels was drastically altered. Even when there were low levels of casein hydrolysis, the rheological properties of rennet gels were altered, which could have negative impacts on cheese yield and texture.  相似文献   

8.
The effects of Orchis anatolica gum (OaG) on the structural and rheological properties of rennet-induced milk protein gels were investigated. OaG, at 0–0.15%, was added to reconstituted skim milk solutions of identical pH (6.60) and protein content (3.5%). Analyses included dynamic low amplitude oscillatory rheology, forced syneresis (FS) and confocal laser scanning microscopy (CLSM). Addition of 0.10% OaG to reconstituted skim milk solutions decreased the gelation time from 20.2 to 13.4 min, increased the gel firmness from 12.8 to 22.2 Pa and increased FS from 24.4 to 40.7% at 60 min. OaG affected formation of milk protein gel structure by increasing viscosity of the aqueous phase and inducing phase separation, with the balance of these effects dependant on the concentration of OaG. These insights on thermodynamic compatibility between OaG and milk proteins could provide unique functional properties to milk protein gels and facilitate innovation in cheese product development.  相似文献   

9.
Fortification of cheesemilk with membrane retentates is often practiced by cheesemakers to increase yield. However, the higher casein (CN) content can alter coagulation characteristics, which may affect cheese yield and quality. The objective of this study was to evaluate the effect of using ultrafiltration (UF) retentates that were processed at low temperatures on the properties of Swiss cheese. Because of the faster clotting observed with fortified milks, we also investigated the effects of altering the coagulation conditions by reducing the renneting temperature (from 32.2 to 28.3°C) and allowing a longer renneting time before cutting (i.e., giving an extra 5 min). Milks with elevated total solids (TS; ∼13.4%) were made by blending whole milk retentates (26.5% TS, 7.7% CN, 11.5% fat) obtained by cold (<7°C) UF with part skim milk (11.4% TS, 2.5% CN, 2.6% fat) to obtain milk with CN:fat ratio of approximately 0.87. Control cheeses were made from part-skim milk (11.5% TS, 2.5% CN, 2.8% fat). Three types of UF fortified cheeses were manufactured by altering the renneting temperature and renneting time: high renneting temperature = 32.2°C (UFHT), low renneting temperature = 28.3°C (UFLT), and a low renneting temperature (28.3°C) plus longer cutting time (+5 min compared to UFLT; UFLTL). Cutting times, as selected by a Wisconsin licensed cheesemaker, were approximately 21, 31, 35, and 32 min for UFHT, UFLT, UFLTL, and control milks, respectively. Storage moduli of gels at cutting were lower for the UFHT and UFLT samples compared with UFLTL or control. Yield stress values of gels from the UF-fortified milks were higher than those of control milks, and decreasing the renneting temperature reduced the yield stress values. Increasing the cutting time for the gels made from the UF-fortified milks resulted in an increase in yield stress values. Yield strain values were significantly lower in gels made from control or UFLTL milks compared with gels made from UFHT or UFLT milks. Cheese composition did not differ except for fat content, which was lower in the control compared with the UF-fortified cheeses. No residual lactose or galactose remained in the cheeses after 2 mo of ripening. Fat recoveries were similar in control, UFHT, and UFLTL but lower in UFLT cheeses. Significantly higher N recoveries were obtained in the UF-fortified cheeses compared with control cheese. Because of higher fat and CN contents, cheese yield was significantly higher in UF-fortified cheeses (∼11.0 to 11.2%) compared with control cheese (∼8.5%). A significant reduction was observed in volume of whey produced from cheese made from UF-fortified milk and in these wheys, the protein was a higher proportion of the solids. During ripening, the pH values and 12% trichloroacetic acid-soluble N levels were similar for all cheeses. No differences were observed in the sensory properties of the cheeses. The use of UF retentates improved cheese yield with no significant effect on ripening or sensory quality. The faster coagulation and gel firming can be decreased by altering the renneting conditions.  相似文献   

10.
This study investigated the effect of storage temperature (20–50 °C) and time (0–60 days) on the renneting properties of milk protein concentrate with 85% protein (MPC85). Reconstituted skim milk was fortified with the MPC85 (2.5% w/w) and the renneting properties of the skim milk/MPC85 systems were investigated using rheology. It was found that the final complex modulus (final G∗) and the yield stress of the rennet-induced skim milk/MPC85 gels decreased exponentially with storage time of the MPC85 for storage temperatures greater than 20 °C, with a greater effect at the higher storage temperatures. Changes in the solubility of MPC85 with storage time were correlated with the rheological properties. The primary phase of renneting (cleavage of κ-casein) was not affected by the storage of the MPC85; hence the effect was related to the secondary stage of renneting (aggregation/coagulation of rennet-treated casein micelles). Using a temperature–time superposition method, a master curve was formed from the final G∗, yield stress and solubility results. This suggested that the same physical processes affected the solubility and rennet gelation properties of the milks. It is proposed that the MPC85 protein in rennet-treated skim milk/MPC85 solutions may transform from an interacting material, when solubility is high, to an inert or weakly interacting material, when solubility is low, and that this results in the reduced final G∗ and yield stress of the rennet gels when MPC85 is stored at elevated temperatures for long periods.  相似文献   

11.
Rennet‐induced gelation crucially impacts cheese structure. In this study, effects of the size and stability of native fat globules on the kinetics of rennet‐induced coagulation were revealed by determining the caseinomacropeptide release rate and rheological properties of milk. Moreover, the mobility and stability of fat globules during renneting was revealed using diffusing wave spectroscopy and confocal laser scanning microscopy. By use of a 2‐stage gravity separation combined centrifugation scheme, native fat globules were selectively separated into small (SFG, D4,3 = 1.87 ± 0.02 μm) and large fat globules (LFG, D4,3 = 5.65 ± 0.03 μm). The protein and fat content of SFG and LFG milk were then standardized to 3.2 g/100 mL and 1.2 g/100 mL, respectively. The milk containing different sized globules were then subjected to renneting experiments in the laboratory. Reduction of globule size accelerated the aggregation of casein micelles during renneting, giving a shorter gelation time and earlier 1/l* change. The gel produced from LFG milk was broken due to coalescent fat globules and generated coarser gel strands compared to the finer strands formed with SFG milk. Structural differences were also confirmed with a higher final storage modulus of the curd made from SFG milk than that from the LFG. In conclusion, the size of fat globules affects the aggregation of casein micelles. Moreover, fat globule coalescence and creaming during renneting, also affects the structure of the rennet gel. A better understanding of the size of globules effect on milk gelation could lead to the development of cheese with specific properties.  相似文献   

12.
Nonionic emulsifiers of small molecular weight such as polysorbates are widely used in dairy products. Nevertheless, the mechanism of interaction between these surfactants and milk proteins is not yet fully understood. This work investigated the effect of Tween 20 on casein micelles by studying the renneting behavior of skim milk in the presence of different amounts of surfactant. The presence of Tween accelerated both the first and second phase of renneting in skim milk. The gel obtained showed a higher elastic modulus than that of a skim milk gel, but also showed similar brittleness. By varying the size of the surfactant (Tween 20 or Tween 80) as well as the colloidal state of the proteins in solution, it was possible to demonstrate that the surfactant did not have a direct effect on the activity of the enzyme, but rather had a direct effect on the casein micelles. The effect of surfactant on the gelation point was reduced by increasing surfactant size. The presence of Tween caused an increase in the size of the micelles without affecting their stability. In addition, Tween did not alter the amount of caseins free in the serum phase. These findings can contribute to improving our ability to custom design final structures in rennet-induced gels, though further studies are needed to fully understand the mechanism at play when casein micelles are enzymatically cleaved in the presence of nonionic surfactants of small molecular weight.  相似文献   

13.
《Journal of dairy science》2023,106(3):1611-1625
Gelation is an important functional property of milk that enables the manufacture of various dairy products. This study investigated the acid (with glucono-δ-lactone) and rennet gelation properties of differently processed sheep, goat, and cow milks using small-amplitude oscillatory rheological tests. The impacts of ruminant species, milk processing (homogenization and heat treatments), seasonality, and their interactions were studied. Acid gelation properties were improved (higher gelation pH, shorter gelation time, and higher storage modulus (G′) by intense heat treatment (95°C for 5 min) to comparable extents for sheep and cow milks, both better than those for goat milk. Goat milk produced weak acid gels with low G′ (<100 Pa) despite improvements induced by heat treatments. Seasonality had a marked impact on the acid gelation properties of sheep milk. The acid gels of late-season sheep milk had a lower gelation pH, no maximum in tan δ following gel formation, and 70% lower G′ values than those from other seasons. We propose the potential key role of a critical acid gelation pH that induces structural rearrangements in determining the viscoelastic properties of the final gels. For rennet-induced gelation, compared with cow milk, the processing treatments of the goat and sheep milks had much smaller impacts on their gelation properties. Intense heat treatment (95°C for 5 min) prolonged the rennet gelation time of homogenized cow milk by 8.6 min (74% increase) and reduced the G′ of the rennet gels by 81 Pa (85% decrease). For sheep and goat milks, the same treatment altered the rennet gelation time by only less than 3 min and the G′ of the rennet gels by less than 14 Pa. This difference may have been caused by the different physicochemical properties of the milks, such as differences in their colloidal stability, proportion of serum-phase caseins, and ionic calcium concentration. The seasonal variations in the gelation properties (both acid and rennet induced) of goat milk could be explained by the minor variation in its protein and fat contents. This study provides new perspectives and understandings of milk gelation by demonstrating the interactive effects among ruminant species, processing, and seasonality.  相似文献   

14.
This article investigates the effect of sucrose addition on the formation of casein gels by acidification and/or renneting of pure micellar casein. Gelation kinetics and gel properties were followed by rheological methods, and microscopy and syneresis measurements were used to obtain a more complete characterization of the structures formed. Sucrose content has been identified as a key parameter for controlling the kinetics of aggregation and the strength of the final gels. Results have shown that the effect of sucrose on gelation can vary such that effects can be completely reversed depending on the gelation route used. During acid gelation, addition of up to 30% (wt/wt) sucrose causes gels to form more rapidly and at higher pH values, and to have higher viscoelastic moduli and a more homogeneous microstructure than those without sucrose. By contrast, gels formed by renneting in the presence of sucrose are weaker and have longer gelation times. It is proposed that sucrose reduces solvent quality and causes the collapse of the "hairy" kappa-casein brush on the surface of the casein micelles. This may explain why sucrose increases the possibility of gel formation during acidification and reduces the degree of kappa-casein hydrolysis during renneting.  相似文献   

15.
The objective of this paper was to observe the rennet-induced aggregation behaviour of casein micelles in milk in the presence of additional sodium caseinate. Analysis of the centrifugal supernatants by size exclusion chromatography confirmed an increase in the soluble protein in the milk serum phase after addition of sodium caseinate. Although the total amount of κ-casein hydrolyzed over time was not affected, there was a significant effect of soluble casein on milk gelation, with a dose-dependent decrease of the gelation time as measured by rheology. Light scattering experiments also confirmed that the addition of soluble caseins inhibited the aggregation of casein micelles. Addition of 1 mM CaCl2 prior to renneting increased the extent of rennet aggregation in samples containing additional sodium caseinate, but the inhibiting effect was still evident. The amount of soluble casein (as measured by chroma tography) significantly decreased after renneting, suggesting its association with the micellar fraction. Supporting experiments carried out with purified fractions of soluble caseins demonstrated that both αs-casein and β-casein played a role as protective colloids (increasing steric repulsion) during renneting. It was concluded that the inhibiting effect observed during gelation was caused by the adsorption of soluble casein molecules on the surface of rennet-altered casein micelles.  相似文献   

16.
The effects of gelation temperature (GT), pH, milk solids nonfat (MSNF) content and aging time on the small and large deformation rheological properties of rennet‐induced skim milk gels were studied. Small amplitude oscillatory rheometry (SAOR) was used to study gel formation. A constant shear rate was applied to gels of various ages to try to simulate the cutting process used in cheese vats. Second‐order polynomial models successfully predicted (R2 ≥ 0.83) the relationship between processing parameters and rheological properties of gels. The processing parameters – gelation pH, GT and MSNF – had a significant effect on the rheological properties of rennet‐induced gels. The type and the nature of bonds in these networks and the time scale of applied deformation affected the rheological properties of rennet gels. As time after rennet addition increased, storage modulus, loss modulus and yield stress values increased. This resulted from an increase in the number and strength of bonds with time. The yield strain decreased with time probably because of rearrangements in the network making the gel shorter/brittle in texture. When the impact of the time scale of the applied deformation was compared between the small (storage modulus as a function of frequency) and large (yield stress as a function of constant shear rate) deformation properties of rennet‐induced gels, similar power law exponents were obtained. This similarity presumably reflects the type and relaxation behavior of bonds in this casein network. These results identify the impact of several important processing variables on both the small and the large deformation rheological properties of rennet‐induced gels, which could be useful in identifying gelation properties that improve cheese yield.  相似文献   

17.
介绍酶凝干酪素凝胶形成机理和冷却机制研究进展,概述乳化盐、蛋白和脂肪、pH 值、温度、钙离子对凝胶形成的影响:乳化盐能促进蛋白质溶解形成凝胶,蛋白和脂肪含量可对凝胶的复合模量和黏弹性产生影响,适当的温度和pH 值条件能形成良好的凝胶结构,钙离子增加对凝胶形成不利,以及酶凝干酪素在加工干酪中的应用。  相似文献   

18.
Gelation of milk proteins is the crucial first step in both cheese and yogurt manufacture. Several types of milk gels are discussed, with an emphasis on recent developments in our understanding of how these gels are formed and some of their key physical properties. Areas discussed include the latest dual-binding model for casein micelles; some recent developments in rennet-induced gelation; review of the methods that have been used to monitor milk coagulation; and a discussion of some of the possible causes for the wheying-off defect in yogurts. Casein micelles are the primary building blocks of casein-based gels; however, controversy about its structure continues. The latest model proposed for the formation of casein micelles is the dual-binding model proposed by Horne, 1998, which suggests that casein micelles are formed as a result of two binding mechanisms, namely hydrophobic attraction and colloidal calcium phosphate (CCP) bridging. Most previous models for the casein micelle have treated milk gelation from the viewpoint of simple particle destabilization and aggregation, but they have not been able to explain several unusual rheological properties of milk gels. Although there have been many techniques used to monitor the milk gelation process over the past few decades, only a few appear attractive as possible in-vat coagulation sensors. Another important aspect of milk gels is the defect in yogurts called wheying-off, which is the appearance of whey on the gel surface. The factors responsible for its occurrence are still unclear, but they have been investigated in model acid gel systems.  相似文献   

19.
《International Dairy Journal》2007,17(9):1053-1062
Milk concentrates are used in the production of cast cheese. The effects of pH (5.19–6.21) and NaCl concentration (0, 1.75% and 3.50%, w/w) on the rheological and microstructural properties of rennet-induced casein gels made from ultra filtered skim milk (19.8%, w/w casein) were investigated. Low pH and high NaCl concentration reduced the development rate of the gel elasticity after coagulation of the ultra filtrated skim milk. Strain at fracture and stress at fracture from uniaxial compression of casein gels 48 h after coagulation showed maximum and minimum values at pH ∼5.8 and 5.29, respectively. Young's modulus from uniaxial compression of the same gels was almost constant between pH 5.52 and 6.21 but much lower at pH 5.28. Addition of NaCl resulted in increased Young's modulus in the interval pH 6.21–5.52. As pH decreased, the level of colloidal calcium phosphate decreased concomitantly, giving less cross-links in the casein network and partly explaining the changes in the rheological properties. Increased ionic strength by adjusting pH and addition of NaCl also influenced rheological results. The microstructure examined with confocal laser-scanning microscopy was unaffected by the changes in pH and concentrations of NaCl in the range studied as revealed by image analysis and calculations of two- and three-dimensional data from micrographs.  相似文献   

20.
Water retention in transglutaminase (TG)-treated acid milk gels was studied and linked with the gel formation dynamics. Heat-treated skim milk with and without pre-treatment by TG was acidified at 20 °C, 30 °C and 40 °C at constant glucono-δ-lactone (GDL) level to obtain different acidification rates. Formation dynamics and structural properties of acid-induced gels were followed by rheological and near-infrared light backscattering measurements as well as microscopy. TG-treated gels showed decreased tan δ values all through the acidification, which was pronounced around the gelation point. Backscattered light intensity was lowered in TG-treated gels compared to the controls indicating that TG-treated gels were comprised of smaller aggregates. Water holding capacity (WHC) was measured by using centrifugation at selected pH points (pH 5.2, 5.0, 4.8 and 4.6) during acidification. Both acidification temperature and TG treatment had significant effects on the water retention properties of the gels. Spontaneous syneresis observed at high acidification temperatures (≥30 °C) was prevented upon TG-treatment. WHC of TG-treated gels was significantly higher compared to the control gels at all pH points. TG-treated milk gels showed a homogeneous network formed of smaller aggregate and pore sizes at the gelation point and did not show any large-scale re-organisation thereafter. Transglutaminase is likely to act as a fixative of the protein network at an early stage of gelation and thereby limiting network rearrangements that take place in acid milk gels formed at high acidification temperatures leading to contraction and subsequent wheying off.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号