共查询到20条相似文献,搜索用时 15 毫秒
1.
基于社交网络的推荐算法引入社交网络信息到协同过滤算法中来, 使得用户朋友的偏好能够影响用户本身的偏好 。这些算法需要用到用户之间的相似度信息。目前有两个流行的基于共同评分项目集的相似度计算函数(VSS、PCC)。在很多情况下, 由于用户间没有共同评分项目集, 故无法计算他们之间的相似度。为了解决这个问题, 提出了一种基于矩阵分解的新的社会化相似度计算方法。在真实的包含社交网络的数据集上进行实验验证, 该方法的性能优于几个经典的基于社交网络的协同过滤算法, 而且能够解决新用户的冷启动问题。 相似文献
2.
在推荐系统中,利用图卷积网络等方法提取图的高阶信息缓解了冷启动问题。为了在此基础上融合神经网络协同过滤的深层特征提取能力,提出一种基于图卷积的双通道协同过滤推荐算法(GCNCF-2C)。首先,将推荐问题分为上游任务和下游任务;其次,在上游任务中,预训练编码器利用包含残差的一维卷积层和多个图卷积层在两个独立通道中对节点特征和图高阶特征进行分离提取,形成节点的特征表示;最后,解码器通过节点特征进行评级预测,进行端到端的训练。在数据集MovieLens-100K和MovieLens-1M上的实验表明,该算法相比于基线模型在两个数据集上的RMSE指标平均提高1.72%和1.76%,MAE指标平均提高2.7%和1.98%,同时在基于用户和项目的冷启动实验中RMSE指标平均提高5.9%,具有更好的综合性能。 相似文献
3.
4.
协同过滤算法已广泛应用在推荐系统中,在实现新异性推荐功能中效果显著,但仍存在数据稀疏、扩展性差、冷启动等问题,需要新的设计思路和技术方法进行优化.近几年,深度学习在图像处理、目标识别、自然语言处理等领域均取得突出成果,将深度神经网络模型与推荐算法结合,为构建新型推荐系统带来新的契机.本文提出一种新式混合神经网络模型,该模型由栈式降噪自编码器和深度神经网络构成,学习得到用户和项目的潜在特征向量以及用户-项目之间的交互行为模型,有效解决数据稀疏问题从而提高系统推荐质量.该推荐算法模型通过MovieLens电影评分数据集测试,实验结果与SVD、PMF等传统推荐算法和经典自编码器模型算法作对比,其推荐质量得到显著提升. 相似文献
5.
协同过滤推荐算法由于不受特定领域知识限制、简单易实现等优点,得到了广泛的应用.但是,在实际应用中,该类算法往往面临着数据稀疏性、可扩展性、冷启动等问题.为了解决其中的用户冷启动问题,将用户社交信息和评分信息进行融合,提出了一种基于社区专家信息的协同过滤推荐算法.首先,依据用户的社交关系将用户划分为不同的社区;其次,根据一定的准则确定各个社区的专家,并利用社交信息和评分信息对专家评分进行填充进而缓解稀疏性;最后,对冷启动用户根据其所属社区的专家信息进行预测评分.在数据集FilmTrust和Epinions上与已有协同过滤推荐算法进行了比较分析.实验结果表明,提出的算法可以有效缓解协同过滤推荐算法中的用户冷启动问题,并在平均绝对误差和均方根误差2个评价指标上优于已有算法. 相似文献
6.
7.
针对传统协同过滤方法中存在的冷启动和数据稀疏等问题,结合基于用户的协同过滤和基于项目的协同过滤提出一种混合协同过滤算法。在相似度的计算中提出改进算法来提高相似度计算的精确度;在预测未评分值时引入控制因子、平衡因子进行加权综合预测,最后再进行综合推荐。实验过程中采用Movie Lens数据集作为测试数据,同时采用平均绝对误差作为实验的测试标准。实验结果表明,基于用户-项目混合协同过滤算法在评分矩阵极度稀疏的环境下提高了推荐的性能,并能有效提高预测的精度。 相似文献
8.
作为使用最广泛的个性化推荐算法之一,协同过滤有着其他推荐算法无法比拟的优势,但在实际的应用中也面临着一些亟待解决的问题。针对冷启动问题,通过K-means聚类与改进的遗传算法相结合的混合算法实现协同过滤算法中聚类模型的构建,自适应地获取聚类算法中的K值及初始聚类中心集,由新用户或新项目自身属性信息计算熵值,来对其进行归类及近邻搜索,最终实现新用户和新项目的最优推荐。针对扩展性问题,利用基于云计算平台MapReduce分布式框架,完成相关算法的并行化计算。最后,在UCI数据集上验证了用户或项目聚类模型构建的有效性,在MovieLens数据集上,分别进行单机环境和Hadoop平台上的实验,验证了改进算法的有效性及推荐质量。 相似文献
9.
传统的协同过滤算法广泛应用于推荐系统领域,但该算法仍存在用户冷启动和数据稀疏性问题,造成算法的推荐质量较差。对此,提出一种基于用户多属性与兴趣的协同过滤算法AICF(Attributes and Interests Collaborative Filtering)。首先通过对多种用户属性分配权重计算出用户多属性相似度。其次利用改进的Slope One算法填充用户-项目评分矩阵,然后计算基于隐性标签的用户兴趣相似度。最后基于两种相似度的组合进行推荐。实验结果表明,AICF算法不仅明显提高了推荐结果的准确性,同时也解决了用户冷启动和数据稀疏性问题。 相似文献
10.
基于用户属性和评分的协同过滤推荐算法 总被引:1,自引:0,他引:1
为解决协同过滤推荐系统数据稀疏和冷启动带来的问题,提出一种相似度计算和评分预测算法。结合用户评分相似度、兴趣倾向相似度和置信度3方面,更充分地利用用户评分信息,使得用户相似度的计算更准确、区分度更高;使用sigmoid函数,实现冷启动状态下用户相似度计算时用户属性和用户评分信息的平滑过渡。在MovieLens真实数据集上进行实验,实验结果表明,该算法可有效提高评分预测的准确性,在一定程度上解决冷启动的问题。 相似文献
11.
12.
在推荐系统中,用户冷启动问题是传统协同过滤推荐系统中一直存在的问题。针对这个问题,在传统协同过滤算法的基础上,提出一种新的解决用户冷启动问题的混合协同过滤算法,该算法在计算用户相似性时引入用户信任机制和人口统计学信息,综合考虑用户的属性相似性和信任相似性。同时,算法还在用户近邻的选取上做了一些改进。实验表明该算法有效缓解了传统协同过滤推荐系统中的用户冷启动问题。 相似文献
13.
随着电子商务网站的快速发展,数据特征和现实需求均发生了较大变化.以大规模、多源性、异构性为主要特征的数据发挥着更加重要的作用.然而,电子商务系统中数据所具有的特性使得大多数协同过滤方法较难直接用于物品推荐.如何整合多源异构数据来实现数据的价值最大化是当前推荐系统亟待解决的问题.针对这一问题,首先分析了多源异构数据中各类数据的特点,并根据各自特点为其设计了不同的建模方式.其次,提出一种新颖的推荐模型用于评分预测任务,它通过融合多关系数据和视觉信息来缓解数据稀疏问题.最后,设计了一种高效的算法MSRA(multi-source heterogeneous information based recommendation algorithm)用于求解所提模型的参数.在多个亚马逊数据集上的实验结果表明:1)面向多源异构数据的推荐算法其性能明显优于当前主流协同过滤算法; 2)该算法不仅可以有效缓解物品的冷启动问题,而且能够更好地预测不同类型物品的实际评分. 相似文献
14.
Yi‐Lei Wang Wen‐Zhe Tang Xian‐Jun Yang Ying‐Jie Wu Fu‐Ji Chen 《Concurrency and Computation》2019,31(23)
Collaborative filtering (CF) is a widely used technique in recommender systems. With rapid development in deep learning, neural network‐based CF models have gained great attention in the recent years, especially autoencoder‐based CF model. Although autoencoder‐based CF model is faster compared with some existing neural network‐based models (eg, Deep Restricted Boltzmann Machine‐based CF), it is still impractical to handle extremely large‐scale data. In this paper, we practically verify that most non‐zero entries of the input matrix are concentrated in a few rows. Considering this sparse characteristic, we propose a new method for training autoencoder‐based CF. We run experiments on two popular datasets MovieLens 1 M and MovieLens 10 M. Experimental results show that our algorithm leads to orders of magnitude speed‐up for training (stacked) autoencoder‐based CF model while achieving comparable performance compared with existing state‐of‐the‐art models. 相似文献
15.
随着互联网和信息计算的飞速发展,衍生了海量数据,我们已经进入信息爆炸的时代。网络中各种信息量的指数型增长导致用户想要从大量信息中找到自己需要的信息变得越来越困难,信息过载问题日益突出。推荐系统在缓解信息过载问题中起着非常重要的作用,该方法通过研究用户的兴趣偏好进行个性化计算,由系统发现用户兴趣进而引导用户发现自己的信息需求。目前,推荐系统已经成为产业界和学术界关注、研究的热点问题,应用领域十分广泛。在电子商务、会话推荐、文章推荐、智慧医疗等多个领域都有所应用。传统的推荐算法主要包括基于内容的推荐、协同过滤推荐以及混合推荐。其中,协同过滤推荐是推荐系统中应用最广泛最成功的技术之一。该方法利用用户或物品间的相似度以及历史行为数据对目标用户进行推荐,因此存在用户冷启动和项目冷启动问题。此外,随着信息量的急剧增长,传统协同过滤推荐系统面对数据的快速增长会遇到严重的数据稀疏性问题以及可扩展性问题。为了缓解甚至解决这些问题,推荐系统研究人员进行了大量的工作。近年来,为了提高推荐效果、提升用户满意度,学者们开始关注推荐系统的多样性问题以及可解释性等问题。由于深度学习方法可以通过发现数据中用户和项目之间的非线性关系从而学习一个有效的特征表示,因此越来越受到推荐系统研究人员的关注。目前的工作主要是利用评分数据、社交网络信息以及其他领域信息等辅助信息,结合深度学习、数据挖掘等技术提高推荐效果、提升用户满意度。对此,本文首先对推荐系统以及传统推荐算法进行概述,然后重点介绍协同过滤推荐算法的相关工作。包括协同过滤推荐算法的任务、评价指标、常用数据集以及学者们在解决协同过滤算法存在的问题时所做的工作以及努力。最后提出未来的几个可研究方向。 相似文献
16.
17.
在容器技术和微服务框架的普及背景下,无服务器计算为开发者提供了一种无需关注服务器操作以及硬件资源管理的云计算范式. 与此同时,无服务器计算通过弹性扩缩容实时地适应动态负载变化,能够有效降低请求响应延时并且减少服务成本,满足了客户对于云服务成本按需付费的需求. 然而,无服务器计算中面临着弹性扩缩容需求导致的冷启动延迟问题. 提前预热函数实例能够有效地降低冷启动发生频率和延时. 然而,在云环境中流量突发问题极大地增加了预测预热函数实例数的难度. 针对上述挑战,提出了一种基于概率分布的弹性伸缩算法(probability distribution based auto-scaling algorithm,PDBAA),利用监控指标历史数据预测未来请求的概率分布,以最小化请求响应延时为目的计算预热函数实例的最佳数量,并且PDBAA能够有效地结合深度学习技术的强大预测功能进一步提升性能. 在Knative框架中,通过NASA和WSAL数据集对算法进行了验证,仿真实验表明,相比于Knative弹性伸缩算法以及其他预测算法,所提出的算法弹性性能提升了31%以上,平均响应时间降低了16%以上,能够更好地解决流量突发问题,有效地降低了无服务器计算请求的响应延时. 相似文献
18.
农业信息具有较强的时效性和周期性特征,传统基于行为的推荐算法能挖掘农户兴趣但不能反映农户不同时段的信息需求。同时,农户一般采用匿名网页直接浏览的方式查看农业新闻,显式反馈数据十分稀少,传统协同过滤推荐算法需要面临冷启动等问题。本文提出一种基于用户行为和新闻时效性的协同过滤推荐算法,综合采集用户的隐式、显式反馈数据等多维因素,同时考虑农业信息的分类特征及周期性特征,针对农户对不同农业信息分类信息的周期性关注度变化以及热度系数提高农业新闻推荐的针对性和时效性。通过对真实访问数据进行验证,结果表明提出的算法能有效提升农业信息推荐准确率。 相似文献
19.
针对协同过滤推荐准确性的现状进行了研究,提出一种基于栈式降噪自编码器的协同过滤算法。栈式降噪自编码器是一种典型的深度学习网络模型,具有强大的特征提取能力。用户对项目的评分作为输入,训练网络,学习出项目的隐含特征编码,用PCA对项目属性降维并计算属性相似性,结合隐性编码计算的相似性作为最终结果,根据最终的项目相似性产生TOP-N推荐列表。Movielens数据集的实验表明,新算法能够有效提升推荐结果的召回率,一定程度上解决了评分矩阵稀疏和项目之间没有共同用户评分就不能计算相似性的问题。 相似文献
20.
符合学习者特征的学习资源对于提高协作学习效率具有重要的影响。但是传统的学习资源推荐,没有充分考虑学习者、学习资源的特征和高效的推荐算法。针对上述问题,提出了基于协同过滤的学习资源推荐算法,根据学习者学习特征、学习资源特征和学习者对学习资源历史评价信息,采用协同过滤推荐算法,实现学习资源推荐。首先,通过学习者特征和学习资源的评分,寻找相似学习者并计算学习资源预测评分,然后根据该评分值和学习资源与学习者匹配度推荐学习资源,从而为学习者推荐符合自己兴趣爱好最合适的学习资源。实验结果表明该算法在个性化学习资源推荐的准确性上优于传统算法。 相似文献