首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sr0.7Bi0.2TiO3 (SBT) was introduced into Bi0.5Na0.5TiO3 (BNT) via a standard solid-state route to modulate its relaxation behaviour and energy storage performance. With increasing SBT content, the perovskite structure of BNT transforms from a rhombohedral phase to a weakly polarized pseudo-cubic phase, and the relaxation behaviour is enhanced. In particular, the EDBS is improved from 120 kV/cm of BNT to 160 kV/cm of 0.6BNT-0.4SBT, which displays a large recoverable energy storage density (Wrec = 2.20 J/cm3), implying a large potential ability of energy storage for the 0.6BNT-0.4SBT ceramic. Moreover, both dielectric properties (28–326 °C) and energy storage properties (20–140 °C) exhibit a good thermal stability for the same 0.6BNT-0.4SBT composition. These characteristics suggest 0.6BNT-0.4SBT ceramic could be a promising candidate to be applied in a pulse power system over a broad temperature range.  相似文献   

2.
《Ceramics International》2022,48(16):23266-23272
Ceramic-based dielectrics have been widely used in pulsed power capacitors owing to their good mechanical and thermal properties. Bi0.5Na0.5TiO3-based (NBT-based) solid solutions exhibit relatively high polarization, which is considered as a promising dielectric energy storage material. However, the high remnant polarization and low energy efficiency limit their application in dielectric capacitors. Herein, a typical relaxor ferroelectric Sr0·7Bi0·2TiO3 (SBT) was introduced into the NBT system to strengthen the overall relaxor behavior, resulting in reduced remnant polarization. We prepared (1-x)NBT-xSBT (x = 0.35, 0.45, 0.55, and 0.65) ceramics by the conventional solid-phase reaction method and further investigated their microstructures, dielectric and energy storage properties. With the increase of SBT content, the size of the grains and the maximum dielectric constant gradually decreased, simultaneously. Furthermore, the dielectric shoulder corresponding to the maximum dielectric constant shifted to a lower temperature, indicating that the enhancement of polarization dynamics was a consequence of the domain refinement. As a result, the optimum property was identified in the 0.45NBT-0.55SBT sample with a high recoverable energy density of 1.34 J/cm3 and an outstanding energy efficiency of 96% at a low electric field of 100 kV/cm.  相似文献   

3.
Dielectric capacitors have been widely studied in advanced electronics systems due to their rapid discharge rate and high-power density. Among them, relaxor ferroelectrics characterized by nanodomains possess broad application prospects as dielectric materials with high energy density and high efficiency. In this paper, the dielectric characteristics, energy storage performance, and charge–discharge behavior of rare-earth Yb-doped Sr0.7Bi0.2TiO3 ceramics are systematically investigated. The Yb-doped SBT ceramics reduced the grain size, improved the insulation and thermal conductivity, and significantly improved the dielectric breakdown strength. Finally, a high recoverable energy density of 2.32 J/cm3 and an excellent energy storage efficiency of 92.2% were obtained at 300 kV/cm. In addition, pulsed charge–discharge tests show that Sr0.7Bi0.15Yb0.05TiO3 possesses a rapid discharge rate and high-power density with superior thermal stability. Based on these outstanding characteristics, Sr0.7Bi0.15Yb0.05TiO3 exhibits promising applications in pulsed power systems.  相似文献   

4.
Multilayer pulsed power ceramic capacitors require that dielectric ceramics possess not only large recoverable energy storage density (Wrec) but also low sintering temperature (<950°C) for using the inexpensive metals as the electrodes. However, lead‐free bulk ceramics usually show low Wrec (<2 J/cm3) and high sintering temperature (>1150°C), limiting their applications in multilayer pulsed power ceramic capacitors. In this work, large Wrec (~4.02 J/cm3 at 400 kV/cm) and low sintering temperature (940°C) are simultaneously achieved in 0.9(K0.5Na0.5)NbO3–0.1Bi(Mg2/3Nb1/3)O3–1.0 mol% CuO ceramics prepared using transition liquid phase sintering. Wrec of 4.02 J/cm3 is 2‐3 times as large as the reported value of other (Bi0.5Na0.5)TiO3 and BaTiO3‐based lead‐free bulk ceramics. The results reveal that 0.9(K0.5Na0.5)NbO3–0.1Bi(Mg2/3Nb1/3)O3–1.0 mol% CuO ceramics are promising candidates for fabricating multilayer pulsed power ceramic capacitors.  相似文献   

5.
Bi0·5Na0·5TiO3-based relaxor ferroelectric ceramics have recently gained increasing attention due to their outstanding energy storage properties. However, the trade-off between the recoverable energy storage density/efficiency and discharge rate resulted from the hysteresis of domain switching process, severely limits their applications. Herein, a strategy realizing synergistic excellent energy storage properties and fast discharge rate is proposed through regulating relaxation temperature. The relaxation temperature was decreased to below room temperature by introducing Sr0·85Bi0·1TiO3 into Bi0·5Na0·5TiO3 [(1-x)Bi0·5Na0·5TiO3-xSr0.85Bi0·1TiO3, x = 0.5–0.7)], enabling the small size and weak correlation polar nanoregions (PNRs) with relatively high polarization. The trade-off was overcome by reducing the hysteresis of electrical switching of weak correlation PNRs. Thus, large recoverable energy storage density of 2.32 J/cm3 and high efficiency of 80.1% (250 kV/cm) were achieved simultaneously for x = 0.7 ceramics. Meanwhile, extremely rapid discharge rate (<30 ns) and remarkable power density of 63.7 MW/cm3, which were superior to the previously reported lead-free ceramics were realized. Besides, the 0.3BNT-0.7SBT ceramics also possess good thermal stability over 25 °C–115 °C at 100 kV/cm and good frequency stability (5–100 Hz). These properties make the 0.3BNT-0.7SBT ceramic an ideal candidate for energy storage applications.  相似文献   

6.
《Ceramics International》2022,48(2):2068-2074
Relaxor-ferroelectric (RFE) ceramics possess slender ferroelectric hysteresis loop and low remnant polarization (Pr). They have great potential to provide excellent energy-storage performance as dielectric energy-storage materials. Herein, a lead-free 0.8Ba0.4Sr0.6TiO3–0.2Sr0.7Bi0.2TiO3 (0.8BST–0.2SBT) RFE ceramic with high energy-storage performance has been realized successfully. The addition of Bi3+ and increase in Sr2+content at the A site of the BST can effectively inhibit the growth of grains for high breakdown strength (Eb). As a result, an ultrafine average grain size of 0.7 μm was obtained in 0.8BST–0.2SBT RFE ceramic, affording a high Eb of 300 kV/cm. Further investigation revealed that the mutual conversion of short-range polar nanoregions and long-range-ordered ferroelectric domains upon application and withdrawal of a 300 kV/cm applied electric field resulted in a high maximum polarization (Pmax) of 31 μC/cm2 and a low Pr of 2.5 μC/cm2. Hence, the 0.8BST–0.2SBT RFE ceramic simultaneously exhibited a high recoverable energy-storage density of 3.3 J/cm3 and a high energy-storage efficiency of 85% at 300 kV/cm. Additionally, a good energy-storage performance was reported over a temperature range of 50°C-120 °C and frequency from 10 to 1000 Hz, making the 0.8BST-0.2SBT RFE ceramic a potential lead-free dielectric energy-storage material.  相似文献   

7.
《Ceramics International》2022,48(14):19864-19873
Dielectric energy storage materials with congenitally high power densities and ultrafast discharge rates have been extensively studied for emergent applications. As a typical and traditional dielectric material, paraelectric Ba0.4Sr0.6TiO3 (BST) ceramic exhibits a moderate dielectric constant (εr), low dielectric loss and slightly nonlinear P–E hysteresis. However, its energy storage density (W) is extremely low because of its low maximum polarisation (Pmax) and weak breakdown strength (BDS). In this study, ferroelectric Na0.5Bi0.5TiO3 (NBT) was introduced into paraelectric BST to enhance energy storage performance. The results show that the introduction of NBT induced polar nano-regions (PNRs) in the paraelectric matrix, resulting in a slim hysteresis loop with low remnant polarisation (Pr) and high Pmax simultaneously. Furthermore, owing to a decrease in the oxygen vacancy concentration and an increase in the band gap energy, the BDS of the BST ceramic also significantly increased. As a consequence, a remarkable energy storage density (Wrec = 3.89 J/cm3) and a high energy storage efficiency (η = 83.8%) were realised in the 0.75Ba0.4Sr0.6TiO3-0.25Bi0.5Na0.5TiO3 (0.75BST–0.25NBT) ceramic under a practical electric field of 360 kV/cm. Moreover, the ceramic also exhibited an excellent current density (~1029.7 A/cm2) and ultrahigh power density (~128.7 MW/cm2). The attained energy storage performances indicate that the NBT-modified BST ceramics are promising materials for high energy storage capacitor applications field.  相似文献   

8.
A novel strategy of enhancing the dielectric and energy storage properties of Na0.5Bi0.5TiO3–BaTiO3 (NBT–BT) ceramics by introducing a K0.5Na0.5NbO3 (KNN) ferroelectric phase is proposed herein, and its underlying mechanism is elucidated. The lead-free KNN ceramic decreases the residual polarisation and increases the electric breakdown strength of the NBT–BT matrix through the simultaneous modification of its A-sites and B-sites. The obtained NBT?BT?x?KNN ceramics have a perovskite structure with unifying grains. A bulk 0.9NBT–BT–0.1KNN ceramic sample with a thickness of 0.2 mm possesses a high energy storage density of 2.81 J/cm3 at an applied electric field of 180 kV/cm. Moreover, it exhibits good insulation properties and undergoes rapid charge and discharge processes. Therefore, the obtained 0.9NBT–BT–0.1KNN ceramic can be potentially used in high-power applications because of its high energy density, good insulation properties, and large discharge rate.  相似文献   

9.
A new type of (0.7?x)Bi0.5Na0.5TiO3‐0.3Sr0.7Bi0.2TiO3xLaTi0.5Mg0.5O3 (LTM1000x,= 0.0, 0.005, 0.01, 0.03, 0.05 wt%) lead‐free energy storage ceramic material was prepared by a combining ternary perovskite compounds, and the phase transition, dielectric, and energy storage characteristics were analyzed. It was found that the ceramic materials can achieve a stable dielectric property with a large dielectric constant in a wide temperature range with proper doping. The dielectric constant was stable at 2170 ± 15% in the temperature range of 35‐363°C at LTM05. In addition, the storage energy density was greatly improved to 1.32 J/cm3 with a high‐energy storage efficiency of 75% at the composition. More importantly, the energy storage density exhibited good temperature stability in the measurement range, which was maintained within 5% in the temperature range of 30‐110°C. Particularly, LTM05 show excellent fatigue resistance within 106 fatigue cycles. The results show that the ceramic material is a promising material for temperature‐stable energy storage.  相似文献   

10.
Sr0.7Bi0.2TiO3 with high relaxor behavior and energy storage efficiency (η) is expected to be applied in power energy storage capacitors. However, its energy storage density is limited by the relatively low dielectric breakdown strength (DBS). Herein, Sr0.7Bi0.2CaxTiO3 (SBT-xC, x = 0 ∼ 0.15) was prepared to decrease the average grain size of Sr0.7Bi0.2TiO3. This can effectively eliminate the oxygen vacancy and decrease the electrical conductivity and leakage current, which result in the enhanced DBS. Meanwhile, Ca doping increases the relaxor behavior and dielectric constant. When x = 0.1, the composition exhibits high DBS of 480.2 kV/cm and excellent energy storage properties, such as high energy storage density of 2.1 J/cm3 with high η of 97.6 % at 290 kV/cm, considerable thermal stability and great frequency stability. Moreover, SBT-0.1C shows high power density of 50.1 MW/cm3. These results suggest that SBT-0.1C is a potential candidate for high performance dielectric energy storage applications.  相似文献   

11.
Large energy storage density in relaxor ferroelectrics is commonly accompanied with high breakdown strength, which is adverse to the actual dielectric capacitor applications. We demonstrate that such drawback can be effectively resolved by using Sr0.7Bi0.2TiO3 (SBT) to partially replace relaxor ferroelectric 0.76(Bi0.5Na0.5)TiO3-0.24NaNbO3 (BNT-NN-xSBT). In this study, a high recoverable energy storage density (Wrec∼3.12 J/cm3) and favorable efficiency (η∼75.3 %) are achieved in the BNT-NN-0.1SBT ceramic under a low electric field of 200 kV/cm, which is superior to that of most previously reported dielectric ceramics under the same electric field level. Good temperature stability (25−120 °C), moderate frequency dependence (1−500 Hz), and excellent fatigue resistance (up to 105 cycles) are also realized. More interestingly, the indicated ceramics perform high power density (PD∼36.40 MW/cm3) and fast discharge time (t0.9∼0.149 μs) with remarkable temperature endurance. Moreover, of particular significance is that this study offers a feasible guideline to design comprehensive energy storage performance dielectric ceramics for practical applications.  相似文献   

12.
We fabricated x(Bi0.5Na0.5)TiO3–(1−x)[BaTiO3–(Bi0.5Na0.5)TiO3–Nb] (BNT-doped BTBNT-Nb) dielectric materials with high permittivity and excellent high-temperature energy storage properties. The initial powder of Nb-modified BTBNT was first calcined and then modified with different stoichiometric ratios of (Bi0.5Na0.5)TiO3 (BNT). Variable-temperature X-ray diffraction (XRD) results showed that the ceramics with a small amount of BNT doping consisted of coexisting tetragonal and pseudocubic phases, which transformed into the pseudocubic phase as the test temperature increased. The results of transmission electron microscopy (TEM) showed that the ceramic grain was the core-shell structure. The permittivity of the 5 mol% BNT-doped BTBNT-Nb ceramic reached up to 2343, meeting the X9R specification. The discharge energy densities of all samples were 1.70-1.91 J/cm3 at room temperature. The discharge energy densities of all samples fluctuated by only ±5% over the wide temperature range from 25°C to 175°C and ±8% from 25°C to 200°C. The discharge energy density of the 50 mol% BNT-doped BTBNT-Nb ceramic was 2.01 J/cm3 at 210 kV/cm and 175°C. The maximum energy efficiencies of all ceramics were up to ~91% at high temperatures and were much better than those at room temperature. The stable dielectric properties within a wide temperature window and excellent high-temperature energy storage properties of this BNT-doped BTBNT-Nb system make it promising to provide candidate materials for multilayer ceramic capacitor applications.  相似文献   

13.
《Ceramics International》2023,49(5):7905-7912
Because of their possible applications in dielectric energy-storage capacitor devices, (Bi0.5Na0.5)TiO3-based (BNT) relaxor ferroelectric (RFE) ceramics are feasible alternatives to lead-containing electroceramics. Good energy-storage performance (ESP), including high recoverable energy density (Wrec) and good energy discharge efficiency (η), is required to achieve device miniaturization and long device lifetimes. An advanced method was used to overcome the challenges of A-site ionic disordered RFE in achieving high inducible polarization and low hysteresis, with the former dictating a large Wrec and the latter dictating a high η. In this study, an ABO3 perovskite-structured complex end-member Bi(Mg2/3Nb1/3)O3 (BMN) was added to a 0.7Bi0.5Na0.4K0.1TiO3–0.3Ba0.5Sr0.5TiO3 (0.7BNKT–0.3BST) matrix. The differences in the valence states and ionic radii of Mg2+, Ti4+, and Nb5+ increased the local electric field fluctuation, which contributed to the expanded dielectric relaxation properties. The combined substantial prevention of hysteresis and remanent polarization suggests high potential applicability for ESP. Finally, an enhancement in Wrec to 4.98 J/cm3 was achieved in 0.595BNKT–0.255BST–0.15BMN with an ultrahigh η of 97.3% in a medium-strength electric field of 300 kV/cm. The ESP also demonstrated good thermostability between 30 and 120 °C. Furthermore, the strategy used in this study to generate RFEs can serve as a guide for future research.  相似文献   

14.
《Ceramics International》2021,47(18):25800-25809
High energy storage and charge-discharge performances under low electric field are desirable for lead-free dielectric materials because of environmental hazards, the risk of high voltage and the high cost of insulation technology. Herein, lead-free ceramics based on 0.6BNT-0.4Sr0.775Bi0.15TiO3 (BNT-SBT) were designed, which simultaneously achieves a large energy storage density (Wrec~ 2.41 J/cm3) and a high efficiency (η~87.5%) under a low electric field of 190 kV/cm due to enhanced dielectric properties and the relaxation response. Moreover, the energy storage properties of the BNT-SBT ceramic exhibit moderate temperature stability, excellent frequency dependence, and cycling reliability. Furthermore, the charge-discharge performance simultaneously features a high power density (PD~51.4 MW/cm3), an ultrafast discharge speed (t0.9–77 ns), and remarkable stability against temperature and cycling. This study exploits a high-efficiency BNT-related ceramics with concurrently high energy storage and charge-discharge performances under low electric fields, which provides great potential in practical dielectric capacitor applications.  相似文献   

15.
《Ceramics International》2023,49(6):9479-9485
The paradoxical relationship between ferroelectric polarization and dielectric breakdown to a great extent hinders the increase in energy storage properties of dielectric materials. A strategy of combining large polarization and high dielectric breakdown by composition optimization was designed in (Sr0.7Bi0.2)TiO3–BiFeO3 system. All ceramics show dense microstructures with fine grain sizes. A promising energy density of 3.67 J/cm3 with an efficiency of 89.1% can be obtained in 0.93(Sr0.7Bi0.2)TiO3-0.07BiFeO3 at 340 kV/cm. The energy density shows excellent temperature reliability in a wide temperature range till 160 °C and reliable fatigue endurance till 105 cycles. This research expands the strategy of combing large polarization and dielectric breakdown for developing novel dielectrics used in pulse power electronics.  相似文献   

16.
Ideal relaxor antiferroelectrics (RAFEs) have high field-induced polarization, low remnant polarization and very slim hysteresis, which can generate high recoverable energy storage Wrec and high energy storage efficiency η, thus attracting much attention for energy storage applications. True RAFEs, on the other hand, are extremely rare, and the majority of them contain environmentally hazardous lead. In this work, we use a viscous polymer rolling process to synthesize a novel and eco-friendly 0.65Bi0.5Na0.4K0.1TiO3-0.35[2/3SrTiO3-1/3Bi(Mg2/3Nb1/3)O3] (BNKT-ST-BMN) dielectric material, which possesses a very typical RAFE-like characteristic. As a result, this material has a high Wrec of 4.43 J/cm3 and a η of 86% at an electric felid of 290 kV/cm, as well as a high thermal stability of Wrec (>3 J/cm3) over a wide range of 30–140 °C at 250 kV/cm. Our findings suggest that the BNKT-ST-BMN material could be a potential candidate for use in energy storage pulse capacitors.  相似文献   

17.
《Ceramics International》2022,48(15):21061-21070
(1-x) (0.98Na0.5Bi0.5TiO3–0.01BaTiO3–0.01BiFeO3)–xCaTiO3 (NBB-xCT) ceramics were produced using traditional solid-state synthesis methods. The surface morphology, domain structure, and electrical properties of the ceramic samples were systematically studied. In addition, the temperature and frequency stabilities of the NBB-15CT sample at 200 kV/cm were tested. Generally, NBB-xCT ceramics exhibit a typical single perovskite phase structure. The results indicate that the NBB-15CT ceramics showed a high energy density of 3.14 J/cm3 at 250 kV/cm. The piezoresponse force microscopy (PFM) results showed that the addition of CT broke the macrodomains of the 0.98Na0.5Bi0.5TiO3-0.01BaTiO3-0.01BiFeO3 ceramic and helped to form nanodomains, leading to an improved energy storage performance. The above performance indicates that the specimens possess very good temperature-and frequency-dependent energy storage performances at 30–150 °C and 1–100 Hz. Moreover, the electric energy storage and release in the NBB-15CT ceramic indicated that the power density could reach 55.30 MV/cm3 at 180 kV/cm. Therefore, the NBB-15CT ceramic is a promising material for electrical capacitors.  相似文献   

18.
High-entropy ceramics (HECs) (Bi0.2Na0.2K0.2La0.2Sr0.2)TiO3 (BNKLST) with single-phase perovskite structure have been successfully prepared by a modified citrate acid method. In comparison to (Bi0.5Na0.5)TiO3 (BNT) ceramics prepared by the same synthesis route, the BNKLST HECs exhibit dense nanostructures with grain sizes as small as 45 nm, which are suggested to be responsible for the significantly improved electric breakdown fields and reduced leakage currents in the ceramics, and they have much enhanced elastic modulus owing to the entropy-stabilized perovskite structure. The electrical and dielectric characterizations reveal that BNKLST has high electrical resistances and dielectric constants at elevated temperatures, and, in particular, a recoverable energy storage density of 0.959 J/cm3 can be achieved under an applied electric field of 180 kV/cm. Moreover, the energy storage efficiency in BNKLST can be maintained to be larger than 90% at 40–200°C. These excellent properties suggest that entropy-stabilized BNT-based ceramics are promising dielectrics for electrical energy storage applications.  相似文献   

19.
《Ceramics International》2022,48(21):31223-31232
Based on the significant advantages of dielectric ceramics in high power energy storage, (1-x) (0.55Bi0.5Na0.5TiO3-0.45Sr0.7Nd0.2TiO3)-xAgNbO3 (NBSNT-xAN) ceramics were prepared by traditional solid phase method. The introduction of AN in NBSNT ceramics not only increased the degree of relaxation, but also refined the grain size, enhanced the BDS, and finally improved the energy storage performance. It is found that the NBSNT-0.5AN ceramics obtained an effective energy storage density as high as 3.08 J/cm3 and an efficiency of 79.94%. In addition, good thermal stability and temperature stability were exhibited in the range of 30–120 °C and 10–350 Hz, and at the same time, it performed very well in the pulsed test at room temperature and variable temperatures. This provides a design idea for the miniaturization and integration of energy storage ceramic materials.  相似文献   

20.
Relaxor ferroelectrics (0.94 ? x)(Bi0.5Na0.5)TiO3–0.06BaTiO3?x(Sr0.7Bi0.20.1)TiO3 (BNT–BT–xSBT) (0 ≤ x ≤ 0.5), were prepared by a solid‐state reaction process, and their structures were characterized by the transmission electron microscopy and Raman spectroscopy. The BNT–BT–0.3SBT has a very high electrostrictive strain S = 0.152% with hysteresis‐free behavior, much more than the reported S in other ferroelectrics. SP2 profiles perfectly follow the quadratic relation, which indicates a purely electrostrictive effect with a high electrostrictive coefficient (Q11) of 0.0297 m4/C2. Even, its Q11 keeps at a high level in the temperature range from ambient temperature to 180°C. The field‐induced large electrostrictive strain of BNT–BT–0.3SBT was attributed to the existence of ferroelectric nanodomains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号