首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
M. Zaatari  J. Siegel 《Indoor air》2014,24(4):350-361
Particles in retail environments can have consequences for the occupational exposures of retail workers and customers, as well as the energy costs associated with ventilation and filtration. Little is known about particle characteristics in retail environments. We measured indoor and outdoor mass concentrations of PM10 and PM2.5, number concentrations of submicron particles (0.02–1 μm), size‐resolved 0.3–10 μm particles, as well as ventilation rates in 14 retail stores during 24 site visits in Pennsylvania and Texas. Overall, the results were generally suggestive of relatively clean environments when compared to investigations of other building types and ambient/occupational regulatory limits. PM10 and PM2.5 concentrations (mean ± s.d.) were 20 ± 14 and 11 ± 10 μg/m3, respectively, with indoor‐to‐outdoor ratios of 1.0 ± 0.7 and 0.88 ± 1.0. Mean submicron particle concentrations were 7220 ± 7500 particles/cm3 with an indoor‐to‐outdoor ratio of 1.18 ± 1.30. The median contribution to PM10 and PM2.5 concentrations from indoor sources (vs. outdoors) was 83% and 53%, respectively. There were no significant correlations between measured ventilation rates and particle concentrations of any size. When examining options to lower PM2.5 concentrations below regulatory limits, the required changes to ventilation and filtration efficiency were site specific and depended on the indoor and outdoor concentration, emission rate, and infiltration level.  相似文献   

2.
The intensity, frequency, duration, and contribution of distinct PM2.5 sources in Asian households have seldom been assessed; these are evaluated in this work with concurrent personal, indoor, and outdoor PM2.5 and PM1 monitoring using novel low-cost sensing (LCS) devices, AS-LUNG. GRIMM-comparable observations were acquired by the corrected AS-LUNG readings, with R2 up to 0.998. Twenty-six non-smoking healthy adults were recruited in Taiwan in 2018 for 7-day personal, home indoor, and home outdoor PM monitoring. The results showed 5-min PM2.5 and PM1 exposures of 11.2 ± 10.9 and 10.5 ± 9.8 µg/m3, respectively. Cooking occurred most frequently; cooking with and without solid fuel contributed to high PM2.5 increments of 76.5 and 183.8 µg/m3 (1 min), respectively. Incense burning had the highest mean PM2.5 indoor/outdoor (1.44 ± 1.44) ratios at home and on average the highest 5-min PM2.5 increments (15.0 µg/m3) to indoor levels, among all single sources. Certain events accounted for 14.0%-39.6% of subjects’ daily exposures. With the high resolution of AS-LUNG data and detailed time-activity diaries, the impacts of sources and ventilations were assessed in detail.  相似文献   

3.
Portable air cleaners are increasingly used in polluted areas in an attempt to reduce human exposure; however, there has been limited work characterizing their effectiveness at reducing exposure. With this in mind, we recruited forty-three children with asthma from suburban Shanghai and deployed air cleaners (with HEPA and activated carbon filters) in their bedrooms. During both 2-week filtration and non-filtration periods, low-cost PM2.5 and O3 air monitors were used to measure pollutants indoors, outdoors, and for personal exposure. Indoor PM2.5 concentrations were reduced substantially with the use of air cleaners, from 34 ± 17 to 10 ± 8 µg/m3, with roughly 80% of indoor PM2.5 estimated to come from outdoor sources. Personal exposure to PM2.5 was reduced from 40 ± 17 to 25 ± 14 µg/m3. The more modest reductions in personal exposure and high contribution of outdoor PM2.5 to indoor concentrations highlight the need to reduce outdoor PM2.5 and/or to clean indoor air in multiple locations. Indoor O3 concentrations were generally low (mean = 8±4 ppb), and no significant difference was seen by filtration status. The concentrations of pollutants and the air cleaner effectiveness were highly variable over time and across homes, highlighting the usefulness of real-time air monitors for understanding individual exposure reduction strategies.  相似文献   

4.
Few measurements of exposure to secondhand smoke (SHS) in close proximity to a smoker are available. Recent health studies have demonstrated an association between acute (<2 h) exposures to high concentrations of SHS and increased risk of cardiovascular and respiratory disease. We performed 15 experiments inside naturally ventilated homes and 16 in outdoor locations, each with 2–4 non‐smokers sitting near a cigarette smoker. The smoker's and non‐smokers' real‐time exposures to PM2.5 from SHS were measured by using TSI SidePak monitors to sample their breathing zones. In 87% of the residential indoor experiments, the smoker received the highest average exposure to SHS, with PM2.5 concentrations ranging from 50–630 μg/m3. During the active smoking period, individual non‐smokers sitting within approximately 1 m of a smoker had average SHS exposures ranging from negligible up to >160 μg/m3 of PM2.5. The average incremental exposure of the non‐smokers was higher indoors (42 μg/m3, = 35) than outdoors (29 μg/m3, = 47), but the overall indoor and outdoor frequency distributions were similar. The 10‐s PM2.5 averages during the smoking periods showed great variability, with multiple high concentrations of short duration (microplumes) both indoors and outdoors.  相似文献   

5.
Correctional centers (prisons) are one of the few non‐residential indoor environments where smoking is still permitted. However, few studies have investigated indoor air quality (IAQ) in these locations. We quantified the level of inmate and staff exposure to secondhand smoke, including particle number (PN) count, and we assessed the impact of the smoking ban on IAQ. We performed measurements of indoor and outdoor PM2.5 and PN concentrations, personal PN exposure levels, volatile organic compounds (VOCs), and nicotine both before and after a complete indoor smoking ban in an Australian maximum security prison. Results show that the indoor 24‐h average PM2.5 concentrations ranged from 6 (±1) μg/m3 to 17 (±3) μg/m3 pre‐ban. The post‐ban levels ranged from 7 (±2) μg/m3 to 71 (±43) μg/m3. While PM2.5 concentrations decreased in one unit post‐ban, they increased in the other two units. Similar post‐ban increases were also observed in levels of PN and VOCs. We describe an unexpected increase of indoor pollutants following a total indoor smoking ban in a prison that was reflected across multiple pollutants that are markers of smoking. We hypothesise that clandestine post‐ban smoking among inmates may have been the predominant cause.  相似文献   

6.
The daily concentration and chemical composition of PM2.5 was determined in indoor and outdoor 24‐h samples simultaneously collected for a total of 5 weeks during a winter and a summer period in an apartment sited in Rome, Italy. The use of a specifically developed very quiet sampler (<35 dB) allowed the execution of the study while the family living in the apartment led its normal life. The indoor concentration of PM2.5 showed a small seasonal variation, while outdoor values were much higher during the winter study. Outdoor sources were found to contribute significantly to indoor PM concentration especially during the summer, when the apartment was naturally ventilated by opening the windows. During the winter the infiltration of outdoor PM components was lower and mostly regulated by the particle dimensions. Organics displayed In/Out ratios higher than unity during both periods; their indoor production increased significantly during the weekends, where the family stayed mostly at home. PM components were grouped into macrosources (soil, sea, secondary inorganics, traffic, organics). During the summer the main contributions to outdoor PM2.5 came from soil (30%), secondary inorganics (29%) and organics (22%). Organics dominated both indoor PM2.5 during the summer (60%) and outdoor and indoor PM2.5 during the winter (51% and 66%, respectively).  相似文献   

7.
Emissions from indoor biomass burning are a major public health concern in developing areas of the world. Less is known about indoor air quality, particularly airborne endotoxin, in homes burning biomass fuel in residential wood stoves in higher income countries. A filter‐based sampler was used to evaluate wintertime indoor coarse particulate matter (PM10‐2.5) and airborne endotoxin (EU/m3, EU/mg) concentrations in 50 homes using wood stoves as their primary source of heat in western Montana. We investigated number of residents, number of pets, dampness (humidity), and frequency of wood stove usage as potential predictors of indoor airborne endotoxin concentrations. Two 48‐h sampling events per home revealed a mean winter PM10‐2.5 concentration (± s.d.) of 12.9 (± 8.6) μg/m3, while PM2.5 concentrations averaged 32.3 (± 32.6) μg/m3. Endotoxin concentrations measured from PM10‐2.5 filter samples were 9.2 (± 12.4) EU/m3 and 1010 (± 1524) EU/mg. PM10‐2.5 and PM2.5 were significantly correlated in wood stove homes (r = 0.36, P < 0.05). The presence of pets in the homes was associated with PM10‐2.5 but not with endotoxin concentrations. Importantly, none of the other measured home characteristics was a strong predictor of airborne endotoxin, including frequency of residential wood stove usage.  相似文献   

8.
The biologically relevant characteristics of particulate matter (PM) in homes are important to assessing human health. The concentration of particulate reactive oxygen species (ROS) was assessed in eight homes and was found to be lower inside (mean ± s.e. = 1.59 ± 0.33 nmol/m3) than outside (2.35 ± 0.57 nmol/m3). Indoor particulate ROS concentrations were substantial and a major fraction of indoor particulate ROS existed on PM2.5 (58 ± 10%), which is important from a health perspective as PM2.5 can carry ROS deep into the lungs. No obvious relationships were evident between selected building characteristics and indoor particulate ROS concentrations, but this observation would need to be verified by larger, controlled studies. Controlled experiments conducted at a test house suggest that indoor ozone and terpene concentrations substantially influence indoor particulate ROS concentrations when outdoor ozone concentrations are low, but have a weaker influence on indoor particulate ROS concentrations when outdoor ozone concentrations are high. The combination of substantial indoor concentrations and the time spent indoors suggest that further work is warranted to assess the key parameters that drive indoor particulate ROS concentrations.  相似文献   

9.
In low‐resource settings, there is a need to develop models that can address contributions of household and outdoor sources to population exposures. The aim of the study was to model indoor PM2.5 using household characteristics, activities, and outdoor sources. Households belonging to participants in the Mother and Child in the Environment (MACE) birth cohort, in Durban, South Africa, were randomly selected. A structured walk‐through identified variables likely to generate PM2.5. MiniVol samplers were used to monitor PM2.5 for a period of 24 hours, followed by a post‐activity questionnaire. Factor analysis was used as a variable reduction tool. Levels of PM2.5 in the south were higher than in the north of the city (< .05); crowding and dwelling type, household emissions (incense, candles, cooking), and household smoking practices were factors associated with an increase in PM2.5 levels (P < .05), while room magnitude and natural ventilation factors were associated with a decrease in the PM2.5 levels (P < .05). A reasonably robust PM2.5 predictive model was obtained with model R2 of 50%. Recognizing the challenges in characterizing exposure in environmental epidemiological studies, particularly in resource‐constrained settings, modeling provides an opportunity to reasonably estimate indoor pollutant levels in unmeasured homes.  相似文献   

10.
The literature on the contribution of kerosene lighting to indoor air particulate concentrations is sparse. In rural Uganda, kitchens are almost universally located outside the main home, and kerosene is often used for lighting. In this study, we obtained longitudinal measures of particulate matter 2.5 microns or smaller in size (PM2.5) from living rooms and kitchens of 88 households in rural Uganda. Linear mixed‐effects models with a random intercept for household were used to test the hypotheses that primary reported lighting source and kitchen location (indoor vs outdoor) are associated with PM2.5 levels. During initial testing, households reported using the following sources of lighting: open‐wick kerosene (19.3%), hurricane kerosene (45.5%), battery‐powered (33.0%), and solar (1.1%) lamps. During follow‐up testing, these proportions changed to 29.5%, 35.2%, 18.2%, and 9.1%, respectively. Average ambient, living room, and kitchen PM2.5 levels were 20.2, 35.2, and 270.0 μg/m3. Living rooms using open‐wick kerosene lamps had the highest PM2.5 levels (55.3 μg/m3) compared to those using solar lighting (19.4 μg/m3; open wick vs solar, P=.01); 27.6% of homes using open‐wick kerosene lamps met World Health Organization indoor air quality standards compared to 75.0% in homes using solar lighting.  相似文献   

11.
Indoor and outdoor concentrations of PM2.5 were measured for 24 h during heating and non-heating seasons in a rural solid fuel burning Native American community. Household building characteristics were collected during the initial home sampling visit using technician walkthrough questionnaires, and behavioral factors were collected through questionnaires by interviewers. To identify seasonal behavioral factors and household characteristics associated with indoor PM2.5, data were analyzed separately by heating and non-heating seasons using multivariable regression. Concentrations of PM2.5 were significantly higher during the heating season (indoor: 36.2 μg/m3; outdoor: 22.1 μg/m3) compared with the non-heating season (indoor: 14.6 μg/m3; outdoor: 9.3 μg/m3). Heating season indoor PM2.5 was strongly associated with heating fuel type, housing type, indoor pests, use of a climate control unit, number of interior doors, and indoor relative humidity. During the non-heating season, different behavioral and household characteristics were associated with indoor PM2.5 concentrations (indoor smoking and/or burning incense, opening doors and windows, area of surrounding environment, building size and height, and outdoor PM2.5). Homes heated with coal and/or wood, or a combination of coal and/or wood with electricity and/or natural gas had elevated indoor PM2.5 concentrations that exceeded both the EPA ambient standard (35 μg/m3) and the WHO guideline (25 μg/m3).  相似文献   

12.
Abstract Five classrooms, air-conditioned or naturally ventilated, at five different schools were chosen for comparison of indoor and outdoor air quality. Temperature, relative humidity (RH), carbon dioxide (CO2), sulphur dioxide (SO2), nitric oxide (NO), nitrogen dioxide (NO2), particulate matter with diameter less than 10 mm (PM10), formaldehyde (HCHO), and total bacteria counts were monitored at indoor and outdoor locations simultaneously. Respirable particulate matter was found to be the worst among parameters measured in this study. The indoor and outdoor average PM10 concentrations exceeded the Hong Kong standards, and the maximum indoor PM10 level was even at 472 μ;g/m3. Air cleaners could be used in classrooms to reduce the high PM10 concentration. Indoor CO2 concentrations often exceeded 1,000 μl/l indicating inadequate ventilation. Lowering the occupancy and increasing breaks between classes could alleviate the high CO2 concentrations. Though the maximum indoor CO2 level reached 5,900 μl/l during class at one of the sites, CO2 concentrations were still at levels that pose no health threats.  相似文献   

13.
The aim of this study was to characterize the relationship between Indoor Air Quality (IAQ) and ventilation in French classrooms. Various parameters were measured over one school week, including volatile organic compounds, aldehydes, particulate matter (PM2.5 mass concentration and number concentration), carbon dioxide (CO2), air temperature, and relative humidity in 51 classrooms at 17 schools. The ventilation was characterized by several indicators, such as the air exchange rate, ventilation rate (VR), and air stuffiness index (ICONE), that are linked to indoor CO2 concentration. The influences of the season (heating or non‐heating), type of school (nursery or elementary), and ventilation on the IAQ were studied. Based on the minimum value of 4.2 l/s per person required by the French legislation for mechanically ventilated classrooms, 91% of the classrooms had insufficient ventilation. The VR was significantly higher in mechanically ventilated classrooms compared with naturally ventilated rooms. The correlations between IAQ and ventilation vary according to the location of the primary source of each pollutant (outdoor vs. indoor), and for an indoor source, whether it is associated with occupant activity or continuous emission.  相似文献   

14.
H. Zhao  B. Stephens 《Indoor air》2017,27(1):218-229
Much of human exposure to particulate matter of outdoor origin occurs inside buildings, particularly in residences. The particle penetration factor through leaks in a building's exterior enclosure assembly is a key parameter that governs the infiltration of outdoor particles. However, experimental data for size‐resolved particle penetration factors in real buildings, as well as penetration factors for fine particles less than 2.5 μm (PM2.5) and ultrafine particles less than 100 nm (UFPs), remain limited, in part because of previous limitations in instrumentation and experimental methods. Here, we report on the development and application of a modified test method that utilizes portable particle sizing instrumentation to measure size‐resolved infiltration factors and envelope penetration factors for 0.01–2.5 μm particles, which are then used to estimate penetration factors for integral measures of UFPs and PM2.5. Eleven replicate measurements were made in an unoccupied apartment unit in Chicago, IL to evaluate the accuracy and repeatability of the test procedure and solution methods. Mean estimates of size‐resolved penetration factors ranged from 0.41 ± 0.14 to 0.73 ± 0.05 across the range of measured particle sizes, while mean estimates of penetration factors for integral measures of UFPs and PM2.5 were 0.67 ± 0.05 and 0.73 ± 0.05, respectively. Average relative uncertainties for all particle sizes/classes were less than 20%.  相似文献   

15.
In Paraguay, 49% of the population depends on biomass (wood and charcoal) for cooking. Residential biomass burning is a major source of fine particulate matter (PM2.5) and carbon monoxide (CO) in and around the household environment. In July 2016, cross‐sectional household air pollution sampling was conducted in 80 households in rural Paraguay. Time‐integrated samples (24 hours) of PM2.5 and continuous CO concentrations were measured in kitchens that used wood, charcoal, liquefied petroleum gas (LPG), or electricity to cook. Qualitative and quantitative household‐level variables were captured using questionnaires. The average PM2.5 concentration (μg/m3) was higher in kitchens that burned wood (741.7 ± 546.4) and charcoal (107.0 ± 68.6) than in kitchens where LPG (52.3 ± 18.9) or electricity (52.0 ± 14.8) was used. Likewise, the average CO concentration (ppm) was higher in kitchens that used wood (19.4 ± 12.6) and charcoal (7.6 ± 6.5) than in those that used LPG (0.5 ± 0.6) or electricity (0.4 ± 0.6). Multivariable linear regression was conducted to generate predictive models for indoor PM2.5 and CO concentrations (predicted R2 = 0.837 and 0.822, respectively). This study provides baseline indoor air quality data for Paraguay and presents a multivariate statistical approach that could be used in future research and intervention programs.  相似文献   

16.
The aim of the present work is to study the occupants' exposure to fine particulate concentrations in ten nightclubs (NCs) in Athens, Greece. Measurements of PM1 and PM2.5 were made in the outdoor and indoor environment of each NC. The average indoor PM1 and PM2.5 concentrations were found to be 181.77 μg m 3 and 454.08 μg m 3 respectively, while the corresponding outdoor values were 11.04 μg m 3 and 32.19 μg m 3. Ventilation and resuspension rates were estimated through consecutive numerical experiments with an indoor air quality model and were found to be remarkably lower than the minimum values recommended by national standards. The relative effects of the ventilation and smoking on the occupants' exposures were examined using multiple regression techniques. It was found that given the low ventilation rates, the effect of smoking as well as the occupancy is of the highest importance. Numerical evaluations showed that if the ventilation rates were at the minimum values set by national standards, then the indoor exposures would be reduced at the 70% of the present exposure values.  相似文献   

17.
Household fine particulate matter (PM2.5) pollution greatly impacts residents' health. To explore the current national situation of household PM2.5 pollution in China, a study was conducted based on literature published from 1998 to 2018. After extracting data from the literature in conformity with the requirements, the nationwide household-weighted mean concentration of household PM2.5 (HPL) was calculated. Subgroup analyses of spatial, geographic, and temporal differences were also done. The estimated overall HPL in China was 132.2 ± 117.7 μg/m3. HPL in the rural area (164.3 ± 104.5 μg/m3) was higher than that in the urban area (123.9 ± 122.3 μg/m3). For HPLs of indoor sampling sites, the kitchen was the highest, followed by the bedroom and living room. There were significant differences of geographic distributions. The HPLs in the South were higher than the North in four seasons. The inhaled dose of household PM2.5 among school-age children differed from provinces with the highest dose up to 5.9 μg/(kg·d). Countermeasures should be carried out to reduce indoor pollution and safeguard health urgently.  相似文献   

18.
Indoor fine particles (FPs) are a combination of ambient particles that have infiltrated indoors, and particles that have been generated indoors from activities such as cooking. The objective of this paper was to estimate the infiltration factor (Finf) and the ambient/non‐ambient components of indoor FPs. To do this, continuous measurements were collected indoors and outdoors for seven consecutive days in 50 non‐smoking homes in Halifax, Nova Scotia in both summer and winter using DustTrak (TSI Inc) photometers. Additionally, indoor and outdoor gravimetric measurements were made for each 24‐h period in each home, using Harvard impactors (HI). A computerized algorithm was developed to remove (censor) peaks due to indoor sources. The censored indoor/outdoor ratio was then used to estimate daily Finfs and to determine the ambient and non‐ambient components of total indoor concentrations. Finf estimates in Halifax (daily summer median = 0.80; daily winter median = 0.55) were higher than have been reported in other parts of Canada. In both winter and summer, the majority of FP was of ambient origin (daily winter median = 59%; daily summer median = 84%). Predictors of the non‐ambient component included various cooking variables, combustion sources, relative humidity, and factors influencing ventilation. This work highlights the fact that regional factors can influence the contribution of ambient particles to indoor residential concentrations.  相似文献   

19.
Although moderate regular aerobic exercise is recommended for good health, adverse health consequences may be incurred by people who exercise in areas with high ambient pollution, such as in the centres of large cities with dense traffic. The exposure of children during exercise is of special concern because of their higher sensitivity to air pollutants. The size-segregated mass concentration of particulate matter was measured in a naturally ventilated elementary school gym during eight campaigns, seven to ten days long, from November 2005 through August 2006 in a central part of Prague (Czech Republic). The air was sampled using a five-stage cascade impactor. The indoor concentrations of PM2.5 recorded in the gym exceeded the WHO recommended 24-hour limit of 25 μg m−3 in 50% of the days measured. The average 24-h concentrations of PM2.5 (24.03 μg m−3) in the studied school room did not differ much from those obtained from the nearest fixed site monitor (25.47 μg m−3) and the indoor and ambient concentrations were closely correlated (correlation coefficient 0.91), suggesting a high outdoor-to-indoor penetration rate. The coarse indoor fraction concentration (PM2.5–10) was associated with the number of exercising pupils (correlation coefficient 0.77), indicating that human activity is its main source. Considering the high pulmonary ventilation rate of exercising children and high outdoor particulate matter concentrations, the levels of both coarse and fine aerosols may represent a potential health risk for sensitive individuals during their physical education performed in naturally ventilated gyms in urban areas with high traffic intensity.  相似文献   

20.
There is growing awareness that indoor exposure to particulate matter with diameter ≤ 2.5 μm (PM2.5) is associated with an increased risk of adverse health effects. Cooking is a key indoor source of PM2.5 and an activity conducted daily in most homes. Population scale models can predict occupant exposures to PM2.5, but these predictions are sensitive to the emission rates used. Reported emission rates are highly variable and are typically for the cooking of single ingredients and not full meals. Accordingly, there is a need to assess PM2.5 emissions from the cooking of complete meals. Mean PM2.5 emission rates and source strengths were measured for four complete meals. Temporal PM2.5 concentrations and particle size distributions were recorded using an optical particle counter (OPC), and gravimetric sampling was used to determine calibration factors. Mean emission rates and source strengths varied between 0.54—3.7 mg/min and 15—68 mg, respectively, with 95% confidence. Using a cooker hood (apparent capture efficiency > 90%) and frying in non‐stick pans were found to significantly reduce emissions. OPC calibration factors varied between 1.5 and 5.0 showing that a single value cannot be used for all meals and that gravimetric sampling is necessary when measuring PM2.5 concentrations in kitchens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号