首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Particulate matter (PM) air pollution derives from combustion and non‐combustion sources and consists of various chemical species that may differentially impact human health and climate. Previous reviews of PM chemical component concentrations and sources focus on high‐income urban settings, which likely differ from the low‐ and middle‐income settings where solid fuel (ie, coal, biomass) is commonly burned for cooking and heating. We aimed to summarize the concentrations of PM chemical components and their contributing sources in settings where solid fuel is burned. We searched the literature for studies that reported PM component concentrations from homes, personal exposures, and direct stove emissions under uncontrolled, real‐world conditions. We calculated weighted mean daily concentrations for select PM components and compared sources of PM determined by source apportionment. Our search criteria yielded 48 studies conducted in 12 countries. Weighted mean daily cooking area concentrations of elemental carbon, organic carbon, and benzo(a)pyrene were 18.8 μg m?3, 74.0 μg m?3, and 155 ng m?3, respectively. Solid fuel combustion explained 29%‐48% of principal component/factor analysis variance and 41%‐87% of PM mass determined by positive matrix factorization. Multiple indoor and outdoor sources impacted PM concentrations and composition in these settings, including solid fuel burning, mobile emissions, dust, and solid waste burning.  相似文献   

2.
Household heating using wood stoves is common practice in many rural areas of the United States (US) and can lead to elevated concentrations of indoor fine particulate matter (PM2.5). We collected 6-day measures of indoor PM2.5 during the winter and evaluated household and stove-use characteristics in homes at three rural and diverse study sites. The median indoor PM2.5 concentration across all homes was 19 µg/m3, with higher concentrations in Alaska (median = 30, minimum = 4, maximum = 200, n = 10) and Navajo Nation homes (median = 29, minimum = 3, maximum = 105, n = 23) compared with Montana homes (median = 16, minimum = 2, maximum = 139, n = 59). Households that had not cleaned the chimney within the past year had 65% higher geometric mean PM2.5 compared to those with chimney cleaned within 6 months (95% confidence interval [CI]: −1, 170). Based on a novel wood stove grading method, homes with low-quality and medium-quality stoves had substantially higher PM2.5 compared to homes with higher-quality stoves (186% higher [95% CI: 32, 519] and 161% higher; [95% CI:27, 434], respectively). Our findings highlight the need for, and complex nature of, regionally appropriate interventions to reduce indoor air pollution in rural wood-burning regions. Higher-quality stoves and behavioral practices such as regular chimney cleaning may help improve indoor air quality in such homes.  相似文献   

3.
Household fine particulate matter (PM2.5) pollution greatly impacts residents' health. To explore the current national situation of household PM2.5 pollution in China, a study was conducted based on literature published from 1998 to 2018. After extracting data from the literature in conformity with the requirements, the nationwide household-weighted mean concentration of household PM2.5 (HPL) was calculated. Subgroup analyses of spatial, geographic, and temporal differences were also done. The estimated overall HPL in China was 132.2 ± 117.7 μg/m3. HPL in the rural area (164.3 ± 104.5 μg/m3) was higher than that in the urban area (123.9 ± 122.3 μg/m3). For HPLs of indoor sampling sites, the kitchen was the highest, followed by the bedroom and living room. There were significant differences of geographic distributions. The HPLs in the South were higher than the North in four seasons. The inhaled dose of household PM2.5 among school-age children differed from provinces with the highest dose up to 5.9 μg/(kg·d). Countermeasures should be carried out to reduce indoor pollution and safeguard health urgently.  相似文献   

4.
5.
Burning solid fuels to fulfill daily household energy needs results in chronic exposure to household air pollution (HAP), which is among the world's greatest health risks. This paper presents the results of a cross‐sectional study of cookstove usage, fuel consumption, and indoor PM2.5 concentrations in rural and urban Honduran homes cooking with the Envirofit HM‐5000 metal plancha stove (n = 32) as compared to control households using baseline cooking technologies (n = 33). Temperature‐based stove usage measurements showed high HM‐5000 acceptance, with significant displacement of the traditional cookstoves at both the urban (99%, P < .05) and rural study sites (75%, P < .05). However, longer‐term usage data collected in peri‐urban households showed that participants cooked on the HM‐5000 more frequently during the 3‐day monitoring period than during the following 3 weeks. Average indoor PM2.5 was 66% lower in HM‐5000 households as compared to control households (P < .05). Lower indoor PM2.5 concentrations observed in participant homes as compared to control households, supported by high usage and traditional stove displacement, suggest the potential for the HM‐5000 to yield health improvements in adopting Honduran households.  相似文献   

6.
A six‐month winter‐spring study was conducted in a suburb of the northern European city of Kuopio, Finland, to identify and quantify factors determining daily personal exposure and home indoor levels of fine particulate matter (PM2.5, diameter <2.5 µm) and its light absorption coefficient (PM2.5abs), a proxy for combustion‐derived black carbon. Moreover, determinants of home indoor ozone (O3) concentration were examined. Local central site outdoor, home indoor, and personal daily levels of pollutants were monitored in this suburb among 37 elderly residents. Outdoor concentrations of the pollutants were significant determinants of their levels in home indoor air and personal exposures. Natural ventilation in the detached and row houses increased personal exposure to PM2.5, but not to PM2.5abs, when compared with mechanical ventilation. Only cooking out of the recorded household activities increased indoor PM2.5. The use of a wood stove room heater or wood‐fired sauna stove was associated with elevated concentrations of personal PM2.5 and PM2.5abs, and indoor PM2.5abs. Candle burning increased daily indoor and personal PM2.5abs, and it was also a determinant of indoor ozone level. In conclusion, relatively short‐lasting wood and candle burning of a few hours increased residents’ daily exposure to potentially hazardous, combustion‐derived carbonaceous particulate matter.  相似文献   

7.
Exposure to high concentrations of particulate matter (PM) is associated with a number of adverse health effects. However, it is unclear which aspects of PM are most hazardous, and a better understanding of particle sizes and personal exposure is needed. We characterized particle size distribution (PSD) from biomass-related pollution and assessed total and regional lung-deposited doses using multiple-path deposition modeling. Gravimetric measurements of kitchen and personal PM2.5 (<2.5 µm in size) exposures were collected in 180 households in rural Puno, Peru. Direct-reading measurements of number concentrations were collected in a subset of 20 kitchens for particles 0.3-25 µm, and the continuous PSD was derived using a nonlinear least-squares method. Mean daily PM2.5 kitchen concentration and personal exposure was 1205 ± 942 µg/m3 and 115 ± 167 µg/m3, respectively, and the mean mass concentration consisted of a primary accumulation mode at 0.21 µm and a secondary coarse mode at 3.17 µm. Mean daily lung-deposited surface area (LDSA) and LDSA during cooking were 1009.6 ± 1469.8 µm2/cm3 and 10,552.5 ± 8261.6 µm2/cm3, respectively. This study presents unique data regarding lung deposition of biomass smoke that could serve as a reference for future studies and provides a novel, more biologically relevant metric for exposure-response analysis compared to traditional size-based metrics.  相似文献   

8.
9.
Assessment of personal exposure to PM2.5 is critical for understanding intervention effectiveness and exposure-response relationships in household air pollution studies. In this pilot study, we compared PM2.5 concentrations obtained from two next-generation personal exposure monitors (the Enhanced Children MicroPEM or ECM; and the Ultrasonic Personal Air Sampler or UPAS) to those obtained with a traditional Triplex Cyclone and SKC Air Pump (a gravimetric cyclone/pump sampler). We co-located cyclone/pumps with an ECM and UPAS to obtain 24-hour kitchen concentrations and personal exposure measurements. We measured Spearmen correlations and evaluated agreement using the Bland-Altman method. We obtained 215 filters from 72 ECM and 71 UPAS co-locations. Overall, the ECM and the UPAS had similar correlation (ECM ρ = 0.91 vs UPAS ρ = 0.88) and agreement (ECM mean difference of 121.7 µg/m3 vs UPAS mean difference of 93.9 µg/m3) with overlapping confidence intervals when compared against the cyclone/pump. When adjusted for the limit of detection, agreement between the devices and the cyclone/pump was also similar for all samples (ECM mean difference of 68.8 µg/m3 vs UPAS mean difference of 65.4 µg/m3) and personal exposure samples (ECM mean difference of −3.8 µg/m3 vs UPAS mean difference of −12.9 µg/m3). Both the ECM and UPAS produced comparable measurements when compared against a cyclone/pump setup.  相似文献   

10.
Indoor air pollution (IAP) is a recognized risk factor for various diseases. This paper examines the role of indoor solid fuel exposure in the risk of mycobacterium tuberculosis (TB) in Delhi Metropolitan, India. Using a cross-sectional design, subjects were screened for a history of active TB and lifelong exposure to IAP sources, such as solid fuel burning and kerosene. The TB prevalence rate in the study area was 1117 per 100 000 population. Every year, increase in solid fuel exposure was associated with a three percent higher likelihood of a history of active TB. Subjects exposed to solid fuel and kerosene use for both heating home and cooking showed significant associations with TB. Age, household expenditure (a proxy of income), lung function, and smoking also showed significant associations with TB. Smokers and solid fuel–exposed subjects were four times more likely to have a history of active TB than non-smoker and unexposed subjects. These finding calls strategies to mitigate solid fuel exposure, such as use of clean cookstove and ventilation, to mitigate the risk of TB which aligns with the United Nations’ goal of “End TB by 2030.”  相似文献   

11.
Outdoor particulate matter (PM(10)) is associated with detrimental health effects. However, individual PM(10) exposure occurs mostly indoors. We therefore compared the toxic effects of classroom, outdoor, and residential PM(10). Indoor and outdoor PM(10) was collected from six schools in Munich during teaching hours and in six homes. Particles were analyzed by scanning electron microscopy and X-ray spectroscopy (EDX). Toxicity was evaluated in human primary keratinocytes, lung epithelial cells and after metabolic activation by several human cytochromes P450. We found that PM(10) concentrations during teaching hours were 5.6-times higher than outdoors (117 ± 48 μg/m(3) vs. 21 ± 15 μg/m(3), P < 0.001). Compared to outdoors, indoor PM contained more silicate (36% of particle number), organic (29%, probably originating from human skin), and Ca-carbonate particles (12%, probably originating from paper). Outdoor PM contained more Ca-sulfate particles (38%). Indoor PM at 6 μg/cm(2) (10 μg/ml) caused toxicity in keratinocytes and in cells expressing CYP2B6 and CYP3A4. Toxicity by CYP2B6 was abolished with the reactive oxygen species scavenger N-acetylcysteine. We concluded that outdoor PM(10) and indoor PM(10) from homes were devoid of toxicity. Indoor PM(10) was elevated, chemically different and toxicologically more active than outdoor PM(10). Whether the effects translate into a significant health risk needs to be determined. Until then, we suggest better ventilation as a sensible option. PRACTICAL IMPLICATIONS: Indoor air PM(10) on an equal weight base is toxicologically more active than outdoor PM(10). In addition, indoor PM(10) concentrations are about six times higher than outdoor air. Thus, ventilation of classrooms with outdoor air will improve air quality and is likely to provide a health benefit. It is also easier than cleaning PM(10) from indoor air, which has proven to be tedious.  相似文献   

12.
Polycyclic aromatic hydrocarbons (PAHs) are a group of pollutants of widespread concerns. Gaseous and size‐segregated particulate‐phase PAHs were collected in indoor and outdoor air in rural households. Personal exposure was measured and compared to the ingestion exposure. The average concentrations of 28 parent PAHs and benzo(a)pyrene (BaP) were 9000 ± 8390 and 131 ± 236 ng/m3 for kitchen, 2590 ± 2270 and 43 ± 95 ng/m3 for living room, and 2800 ± 3890 and 1.6 ± 0.7 ng/m3 for outdoor air, respectively. The mass percent of high molecular weight (HMW) compounds with 5–6 rings contributed 1.3% to total 28 parent PAHs. Relatively higher fractions of HMW PAHs were found in indoor air compared to outdoor air. Majorities of particle‐bound PAHs were found in the finest PM0.25, and the highest levels of fine PM0.25‐bound PAHs were in the kitchen using peat and wood as energy sources. The 24‐h personal PAH exposure concentration was 2100 ± 1300 ng/m3. Considering energies, exposures to those using wood were the highest. The PAH inhalation exposure comprised up to about 30% in total PAH exposure through food ingestion and inhalation, and the population attributable fraction (PAF) for lung cancer in the region was 0.85%. The risks for inhaled and ingested intakes of PAHs were 1.0 × 10?5 and 1.1 × 10?5, respectively.  相似文献   

13.
14.
Although solid fuel use has been increasingly linked to cardiovascular events (CVEs), conclusions have been inconsistent. We systematically searched 3 databases (PubMed, Embase, and Web of Science) up to July 3, 2020, to identify English language reports that assessed the association of solid fuel use with CVEs. Summary relative risks (RRs) and 95% confidence intervals (CIs) were estimated with a random-effects model. Subgroup analyses and sensitivity analyses were conducted to explore the potential sources of heterogeneity and to test the stability of the results. We finally included 13 observational studies (8 cohort, 3 cross-sectional, and 2 case-control studies comprising 791,220 participants) in the meta-analysis. The risk of CVEs was increased 21% with the highest versus the lowest solid fuel use (highest/lowest, RRpooled = 1.21, 95% CI: 1.10–1.34). As for the subgroup analyses on study design, the pooled RR for cohort studies, case-control studies, and cross-sectional studies were 1.11 (95%CI: 1.03–1.19), 4.80 (95%CI: 2.22–10.39), and 1.46 (95%CI: 0.82–2.62), respectively. The results of this study suggested that high solid fuel use was associated with increased CVE risk, and that reducing the use of solid fuel will be important for improving the health of the populations in developing countries.  相似文献   

15.
In Paraguay, 49% of the population depends on biomass (wood and charcoal) for cooking. Residential biomass burning is a major source of fine particulate matter (PM2.5) and carbon monoxide (CO) in and around the household environment. In July 2016, cross‐sectional household air pollution sampling was conducted in 80 households in rural Paraguay. Time‐integrated samples (24 hours) of PM2.5 and continuous CO concentrations were measured in kitchens that used wood, charcoal, liquefied petroleum gas (LPG), or electricity to cook. Qualitative and quantitative household‐level variables were captured using questionnaires. The average PM2.5 concentration (μg/m3) was higher in kitchens that burned wood (741.7 ± 546.4) and charcoal (107.0 ± 68.6) than in kitchens where LPG (52.3 ± 18.9) or electricity (52.0 ± 14.8) was used. Likewise, the average CO concentration (ppm) was higher in kitchens that used wood (19.4 ± 12.6) and charcoal (7.6 ± 6.5) than in those that used LPG (0.5 ± 0.6) or electricity (0.4 ± 0.6). Multivariable linear regression was conducted to generate predictive models for indoor PM2.5 and CO concentrations (predicted R2 = 0.837 and 0.822, respectively). This study provides baseline indoor air quality data for Paraguay and presents a multivariate statistical approach that could be used in future research and intervention programs.  相似文献   

16.
In 1943 the German hospital ship s/s Stuttgart (Lazaretschiff “C”) was sunk close to the port of Gdynia (Gulf of Gdańsk — Polish coast). This and other actions (undertaken after the war to remove the wreck) led to pollution of the sea bottom with oil derivatives.During our studies (2009) 11 surface sediment and water samples were collected as well as sediment core samples at 4 locations in order to determine the concentration levels of priority pollutants belonging to polycyclic aromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCB). The concentrations of 16 PAH and 7 PCB were analysed with GC-MS. ΣPAH varied between 11.54 ± 0.39 and 206.7 ± 6.5 mg/kg dry weight in the surface sediments, and from 0.686 ± 0.026 to 1291 ± 53 mg/kg dry weight in the core samples. Contamination in the core samples collected may reach a depth of at least 230-240 cm (deepest sample studied). The PAH-group profiles in all surface sediment samples suggest a pyrolytic source of PAH, while the results obtained for core samples indicate a mixed pattern of pyrolytic and petrogenic inputs of PAH. Results obtained may suggest also that fuel residues being present at sea bottom is not crude oil derived but results from coal processing (synthetic fuel). The sum of PCB in surface sediments ranged from 0.761 ± 0.068 to 6.82 ± 0.28 μg/kg dry weight (except for sampling point W2, where ΣPCB was 108.8 ± 4.4 μg/kg dry weight). The strong correlation between PAH and PCB levels, and the fact that PCB are present only in the surface sediments, suggest that the compounds in these sediments got there as a result of emission from urban areas, entering the aquatic environment via atmospheric deposition. PCB levels in the sediment core samples were generally very low and in most cases did not exceed the method quantification limit.  相似文献   

17.
Particulate matter (PM, especially PM2.5 with diameter 2.5 microns) has been regarded as the major air pollutant. Negative air ions (NAIs) could electrically charge PM and remove it much more efficiently. In this study, a bio-generator of NAIs has been developed, which helps plants to generate NAIs at around 100 × 106 ions/cm3 under pulsed electrical field (PEF) treatment. By using the bio-generator, PM2.5 concentration in a growth chamber could be reduced from around 500 to near 0 µg/m3 within 5 minutes. It could also be used to remove continuously generated PM. Upon PEF treatment, genes encoding oxidoreductases and other enzymes were up-regulated, some of which might contribute to the generation of superoxide anions (one of NAIs). On the other hand, the emission of large numbers of electrons from the surface/edge of plant leaves has been detected upon PEF treatment and these electrons might be captured by surrounding air molecules to generate high concentration of NAIs.  相似文献   

18.
In the wake of the growing popularity of pedestrian-oriented community designs, it is timely to assess potential risk trade-offs of such urban planning strategies. Pedestrian-friendly designs are currently being called for and implemented in the US to tackle in particular problems associated with insufficient physical activity in the population. Unintended consequences may emerge, however, especially due to potential increases in the inhalation of pollutants as the population walking or cycling in polluted environments increases. A risk assessment of such built environment transformations was undertaken to evaluate quantitatively the competing risks and benefits of community design changes in active travel. A simulation model, built incorporating research from the fields of transportation, environmental sciences and exposure analysis, is applied to a case study area that undergoes hypothetical urban transformations. We find that the simulated population experiences roughly the same number of days in a year with decreases as number of days with increases in energy expenditure or inhalation of pollutants. In the 5% of days with greatest shifts, PM10 inhalation was shown to increase by 175% or more, while the 5% of days of greatest decreases exhibited reductions of 45% or more (with similar results for ozone). Of particular concern, some individuals are shown to double their intake of the pollutants on high pollution days. However, uncertainty in the estimates is high. In particular, interpretations are very different according to the approach used to characterize year-long activity patterns. This innovative risk assessment uncovers critical gaps in the literature that must be further researched to allow essential comprehensive analyses of planning decisions.  相似文献   

19.
Y. Chen  W. Du  G. Shen  S. Zhuo  X. Zhu  H. Shen  Y. Huang  S. Su  N. Lin  L. Pei  X. Zheng  J. Wu  Y. Duan  X. Wang  W. Liu  M. Wong  S. Tao 《Indoor air》2017,27(1):169-178
Residential solid fuels are widely consumed in rural China, contributing to severe household air pollution for many products of incomplete combustion, such as polycyclic aromatic hydrocarbons (PAHs) and their polar derivatives. In this study, concentrations of nitrated and oxygenated PAH derivatives (nPAHs and oPAHs) for household and personal air were measured and analyzed for influencing factors like smoking and cooking energy type. Concentrations of nPAHs and oPAHs in kitchens were higher than those in living rooms and in outdoor air. Exposure levels measured by personal samplers were lower than levels in indoor air, but higher than outdoor air levels. With increasing molecular weight, individual compounds tended to be more commonly partitioned to particulate matter (PM); moreover, higher molecular weight nPAHs and oPAHs were preferentially found in finer particles, suggesting a potential for increased health risks. Smoking behavior raised the concentrations of nPAHs and oPAHs in personal air significantly. People who cooked food also had higher personal exposures. Cooking and smoking have a significant interaction effect on personal exposure. Concentrations in kitchens and personal exposure to nPAHs and oPAHs for households using wood and peat were significantly higher than for those using electricity and liquid petroleum gas (LPG).  相似文献   

20.
X. Yang  X. Jia  W. Dong  S. Wu  M. R. Miller  D. Hu  H. Li  L. Pan  F. Deng  X. Guo 《Indoor air》2018,28(5):777-786
To assess the cardiovascular benefits of protecting against particulate air pollution and noise, we conducted a randomized crossover study with 40 young healthy college students from March to May 2017 in the underground subway, Beijing. Participants each received 4 treatments (no intervention phase [NIP], respirator intervention phase [RIP], headphone intervention phase [HIP], respirator plus headphone intervention phase [RHIP]) in a randomized order during 4 different study periods with 2‐week washout intervals. We measured personal exposure to particulate matter (PM), noise and electrocardiogram (ECG) parameters (heart rate variability (HRV), heart rate (HR) and ST segment changes), ambulatory blood pressure (BP) continuously for 4 hours to investigate the cardiovascular effects. Compared with NIP, most of the HRV parameters increased, especially high frequency (HF) [21.1% (95% CI: 15.7%, 26.9%), 18.2% (95% CI: 12.8%, 23.9%), and 35.5% (95% CI: 29.3%, 42.0%) in RIP, HIP, and RHIP, respectively], whereas ST segment elevation and HR decreased for all 3 modes of interventions. However, no significant differences were observed in BP among the 4 treatments. In summary, short‐term wearing of a respirator and/or headphone may be an effective way to minimize cardiovascular risk induced by air pollution in the subway by improving autonomic nervous function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号