首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the Yb3+/Er3+ co-doped parent glass (PG) with composition (in mol%) of 30P2O5-10B2O3-38SrO-22K2O and transparent glass-ceramics (GCs) containing hexagonal Sr10(PO4)6O nanocrystals (NCs) were synthesized for the first time by melt-quenching method and subsequent heating treatment in air. Under 980 nm laser prompting, the GCs samples showed intense red and green up-conversion emissions compared to those characteristics for the PG sample. The emission intensities varied with Er3+ concentration and heat treatment conditions. Furthermore, in Yb3+/Er3+ co-doped GCs specimens, the optical thermometry was researched by means of fluorescence intensity ratio (FIR) of 4S3/2 and 2H11/2 levels. The GC sample heated at 620°C for 5 hours possessed a high relative temperature sensitivity (Sr) of 0.769% K−1 at 303 K and the maximal absolute temperature sensitivity (Sa) of 5.951 × 10−3 K−1 at 663 K, respectively. It is expected that the as-fabricated GC materials with Sr10(PO4)6O NCs are promising efficient up-conversion materials for optical temperature sensor.  相似文献   

2.
《Ceramics International》2023,49(8):11829-11836
Fluorescence temperature measurement technology has set off another upsurge in non-contact temperature measurement, but still suffers from the large error for single-mode thermometry. Herein, in a broad temperature range of 93–633 K, a dual-mode modulation thermometry based on up-conversion phosphor of GaNbO4:Yb3+/Er3+ is realized with the maximum relative sensitivity (Sr) of 11.7% K−1 (93 K) and 13.1% K−1 (123 K), respectively. GaNbO4:Yb3+/Er3+ phosphors were synthesized by high temperature solid-state method. The structure, surface morphology and the optical properties were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence (PL). The fluorescence intensity ratio (FIR) readout method based on Er3+ thermal-coupled energy level (TCL) and non-thermal-coupled energy level (NTCL) was used to achieve the dual-mode temperature measurement with high temperature resolution and good repeatability in GaNbO4:5 mol% Yb3+ and 5 mol% Er3+ phosphors. All the results show that GaNbO4:Yb3+/Er3+ phosphors have great application potential in high sensitivity broadband thermometry.  相似文献   

3.
《Ceramics International》2023,49(12):20051-20060
Rare earth ions doped upconversion materials have an extensive range of utilizations because of their exceptional luminescence properties. Here, scheelite type Yb3+, Er3+ co-doped KBi(MoO4)2 nanomaterials were produced by means of a conventional co-precipitation method at room temperature with a typical crystallite size of 13 nm. 980 nm excitation aided in the investigation of the concentration and power-dependent upconversion emission. The optimum upconversion emission is obtained with Er and Yb concentrations of 0.035 and 0.125 mol%, respectively in KBi(MoO4)2 nanomaterials. The intensity ratio of upconversion emission bands based on 529 and 551 nm is investigated in the temperature range of 200–550 K and the theoretical function is used for fitting the exploratory information. The absolute sensitivity is found to be of maximum value of 0.0123 K-1, indicating that this double molybdate can be utilized as a potential probe for luminescence-based temperature sensing.  相似文献   

4.
Fluoro-sulfo-phosphate (FPS) glass is of current interest as potential material for laser application due to its good glass-forming ability, thermal, and chemical stability as well as the complicated local environment for incorporated species. Herein, the physical and luminescent properties of Er3+ and Yb3+/Er3+-doped FPS glasses vs S/F ratio are investigated comprehensively. The low melting temperature (750°C) leads to fewer ingredients evaporation and easier operation. The sulfate addition depolymerizes the structure of FPS glasses, leading to either monotonic or nonmonotonic variations of physical properties, while no deterioration in thermal and limited one in chemical stability is caused. The addition of sulfate also modifies the local structure around optical active species and thus, leading to higher emission cross section (1.52 × 10−20 cm2), effective linewidth (68.4 nm), figure of merit (5.61 × 10−23 s cm2), gain bandwidth (102.44 × 10−27 cm3), and energy-transfer microparameters (51.87 × 10−39 cm6/s), implying high possibility to serve as 1.5 μm laser application.  相似文献   

5.
A conventional high temperature solid state method was utilized to prepare CaO-Y2O3, which is a potential candidate for manufacturing crucible material to melt titanium and titanium alloys with low cost. Meanwhile, Yb3+ ions and Er3+ ions were selected as the sensitizers and activators respectively to dope into CaO-Y2O3, aimed at providing real-time optical thermometry during the preparation process of titanium alloys realized using fluorescence intensity ratio (FIR) technology. The results reveal that a high measurement precision can be acquired by using the Stark sublevels of Er3+ 4F9/2 to measure the temperature with a maximum absolute error of only about 3 K. In addition, by analyzing the dependence of 4I13/2 → 4I15/2 transition on pump power of 980 nm excitation wavelength, it was found that the laser-induced thermal effect has almost no influence on the temperature measurement conducted by using the FIR of the Stark sublevels of Er3+ 4I13/2, which means that a high excitation pump power can be used to obtain strong NIR emission and good signal-to-noise ratio for optical thermometry without the influence of the laser-induced thermal effect. All the results reveal that CaO-Y2O3: Yb3+/Er3+ is an excellent temperature sensing material with high measurement precision.  相似文献   

6.
《Ceramics International》2023,49(13):21932-21940
Due to the non-contact and high sensitivity, optical thermometry based on rare earth doped phosphors has been paid much attention to. Herein, dual-mode optical thermometers are designed using up-conversion luminescence of Er3+/Ho3+-Yb3+ doped LaNbO4 phosphors, which were synthesized for the first time by high-temperature solid-state reaction method. The LaNbO4:1Er3+:10Yb3+ and LaNbO4:1Ho3+:10Yb3+ phosphors exhibit reliable and excellent thermometric performance by combining fluorescence intensity ratio and decay lifetime for self-calibration. Specifically, the maximal relative sensitivities based on fluorescence lifetime were 0.27 %K−1 and 0.33 %K−1 for LaNbO4:1Er3+:10Yb3+ and LaNbO4:1Ho3+:10Yb3+ phosphors, respectively. The maximal relative sensitivity is 1.12 %K−1 when using intensity ratio between thermal coupling energy levels in LaNbO4:1Er3+:10Yb3+ as a detecting signal. Furthermore, the maximal relative sensitivity reaches as high as 0.98 %K−1 when taking advantage of special non-thermal coupling energy levels in LaNbO4:1Ho3+:10Yb3+. These results indicate that Er3+/Ho3+-Yb3+ doped LaNbO4 phosphors possess great potential in self-calibrated optical thermometric techniques.  相似文献   

7.
Self-monitored photo-thermal therapy (PTT) still faces huge challenge in cancer treatment, which aims to realize the real-time temperature reading during the course of optical heating. Exploiting new-type photo-thermal therapeutic agent (PTA) with thermometric function is considered to be one of effective methods to fulfill self-monitored PTT. In this work, spindle-like zircon-tetragonal (z-t) phase BiVO4:Yb3+/Er3+ up-conversion (UC) nano-particles as self-monitored PTAs were prepared through the combination of co-precipitation and hydrothermal method. Under 980 nm laser diode excitation, real-time thermometry was accomplished by monitoring thermo-responsive emission intensity ratio of Er3+ (2H11/2/4S3/2 → 4I15/2) transitions. Meanwhile, the photo-thermal conversion effect associated with UC process was trigged via the non-radiative transition channels. Considering the balance between UC emission intensity and heat generation, the optimal sample composition was determined as BiVO4:20%Yb3+/3%Er3+. Their maximum absolute sensitivity (Sa) reached 0.0125 K-1 at 460 K as the thermometer and the ability of photo-thermal conversion up to 3.32 K cm2/W as PTAs. Their potential applications in controlled subcutaneous photo-thermal treatment were estimated through ex vivo experiments. Results provided a new choice for nano-materials to realize real-time temperature feedback in the single host material (z-t BiVO4) during the course of PTT.  相似文献   

8.
Design and fabrication of contactless optical thermometer with rapid and accurate performance has become a research hotspot in recent years. Herein, CaSc2O4: Yb3+/Er3+ is employed as the intermediary for temperature sensing under the excitation of 980 nm, which is proven to afford an ultra-sensitive and high-resolution optical thermometry in multiple ways based on the fluorescence intensity ratio (FIR) technology. The optimal thermal sensing behaviors are realized by the FIR of Er3+:2H11/2 → 4I15/2 to 4S3/2 → 4I15/2 transition, which has a relative sensitivity of 1184/T2 and a minimal resolution of 0.03 K along with a maximal absolute error of 0.96 K. Besides that, the FIR between the thermally coupled Stark sublevels of Er3+:4F9/2 manifold (FIRR) as well as that of Er3+4I13/2 manifold (FIRN) can also provide excellent optical thermometry. The relative sensitivity of FIRR-based and FIRN-based optical thermometers are calculated to be 402/T2 and 366/T2, respectively, with a same minimal resolution of 0.09 K, which possess the potential to be used for biomedicine due to the inherent advantage of their operating wavelengths located in the biological window. The results demonstrate that CaSc2O4: Yb3+/Er3+ is a promising candidate for temperature sensing with multipath, high sensitivity, and superior resolution.  相似文献   

9.
《Ceramics International》2022,48(3):3051-3058
Contactless optical thermometers have attracted extensive attentions for applications in scientific research and technological fields due to their apparent advantages. Herein, a novel sequence of Ba3-xSrxLu4O9 (B3-xSxLO):Er3+/Yb3+ phosphors were successfully prepared to investigate the temperature sensing property. By establishing energy transfer from Yb3+ to Er3+ and regulating the local lattice environment, up-conversion luminescence of Er3+ is dramatically improved when excited by 980 nm laser. This can effectively promote signal-noise ratio and reduce the errors in temperature detection. Furthermore, a multi-mode optical thermometry, which includes the fluorescence intensity ratio (FIR) from two thermally coupled levels of 2H11/2/4S3/2, FIR based on non-thermally coupled system of 2H11/2/4F9/2 and fluorescence lifetime of 4S3/2 state of Er3+, was explored systematically. The fabricated samples exhibit the superior temperature measurement performances containing wide temperature-sensing range, superior signal discriminability, high sensitivity and favorable repeatability, indicative of the enormous utilization prospects of B3-xSxLO:Er3+/Yb3+ for thermometry.  相似文献   

10.
《Ceramics International》2016,42(12):13990-13995
A series of Yb3+/Er3+ codoped transparent oxyfluoride glass ceramics with various amounts of Yb3+ have been successfully fabricated and characterized. Under 980 nm laser prompting, the samples produce intense red, green and blue up-conversion emissions, and the emission intensities increase with Yb3+ concentration and heat treatment temperature. Before losing good transparency in the visible region, optimum emission intensities are obtained for the sample with 25 mol% of Yb3+ at a heat treatment temperature of 680 °C. A possible up-conversion mechanism is proposed from the dependence of emission intensities on pumping power. The fluorescence intensity ratio between the two thermally coupled levels 2H11/2 versus 4S3/2 was measured with the laser output power of 57 mW to avoid the possible laser induced heating effect. The fluorescence intensity ratio values in the temperature range from 295 K to 723 K can be well fitted with the equation: A exp (−∆E/kBT), where A = 6.79 and ∆E=876 cm−1. The relative temperature sensitivity at 300 K was evaluated to be 1.4% K−1. All the results suggest that the Yb3+/Er3+ codoped CaF2 glass ceramics is an efficient up-conversion material with potential in optical fiber temperature sensing.  相似文献   

11.
《Ceramics International》2016,42(4):4642-4647
Tunable up-conversion luminescent material KY(MoO4)2: Yb3+, Ln3+ (Ln=Er, Tm, Ho) has been synthesized by a typical hydrothermal process. Under 980 nm laser diode (LD) excitation, the emission intensity and the corresponding luminescence colors of KY(MoO4)2: Yb3+, Ln3+ (Ln=Er, Tm, Ho) have been investigated in detail. The energy transfer from the Yb3+ sensitizer to Ho3+, Er3+ and Tm3+ activators plays an important role in the development of color-tunable single- phased phosphors. The emission intensity keep balance through control of the Ho3+ co-doping concentrations, white light was experimentally shown at KY(MoO4)2: 20 mol% Yb3+, 0.8 mol% Er3+, 0.5 mol% Tm3+, 1.0 mol% Ho3+ phosphor with further calcination at 800 °C for 4 h under 980 nm laser excitation. The color tunability, high quality of white light and high intensity of the emitted signal make these up-conversion (UC) phosphors excellent candidates for applications in solid-state lighting.  相似文献   

12.
关丽  魏伟  刘超  尚雅轩  杨志平 《硅酸盐学报》2012,40(12):1744-1748
采用高温固相法在800℃制备了LiY(MoO4)2:Dy3+荧光粉。研究了Dy3+掺杂量、合成温度以及Li+的过量加入对LiY(MoO4)2:Dy3+荧光粉发光强度的影响。结果表明:在紫外光(386nm)激发下,该荧光粉的发射光谱为1个峰值位于488nm和575nm的双峰谱线,其中位于575nm处的黄光发射最强;监测575 nm发射峰得到的激发光谱为主峰位于351、366、386 nm和426 nm的线状谱线。煅烧温度为800℃时合成的荧光粉样品的发光强度达到最大,加入过量的Li+会降低发光强度。随Dy3+掺杂量的增大,荧光粉的发光强度逐渐增强,当Dy3+掺杂量为6%时发射的谱线强度最大。荧光粉的色参数表明,该荧光粉是一种较好的用于白光LED的黄色发光材料。  相似文献   

13.
β‐NaGdF4:Yb3+,Er3+ upconversion (UC) microcrystals were prepared by a facile hydrothermal process with the assistance of ethylene diamine tertraacetic acid (EDTA). The β‐NaGdF4 UC microcrystal morphology was controlled by changing the doses of EDTA and NaF. Uniform hexagonal structure can be obtained at the 2 mmol EDTA and 9‐10 mmol NaF. The UC emissions of β‐NaGdF4:Yb3+,Er3+ microcrystals were tuned by the variation of Eu3+ doping level (0%‐5%), where the red/green intensity ratio decreased with the Eu3+ concentration increase. It was found on the base of rate equations that with the Eu3+ doping, the energy back transfer process 2H11/2/4S3/2 (Er3+) → 4I13/2 (Er3+) decreased. In addition, an energy‐transfer process from 4F7/2 (Er3+) to 5D1 (Eu3+) and a cross relaxation process of 7H9/2 (Er3+) + 5D0 (Eu3+) → 4F7/2 (Er3+) + 5D2 (Eu3+) were proposed and verified by rate equations, which dominated the energy‐transfer mechanism between Er3+ and Eu3+, resulted in the spectra tuning of β‐NaGdF4:Yb3+,Er3+. The results suggested that the color tuning of β‐NaGdF4:Yb3+,Er3+,Eu3+ UC microcrystals would have potential applications in such fields as flat‐panel displays, solid‐state lasers, and photovoltaics.  相似文献   

14.
The effects of site symmetric distortion induced by the phase transition on up-conversion emission and thermal sensing performance of Gd2(MoO4)3:Yb3+/Er3+ (GMO) crystals were elaborately studied by minimizing interference from many factors. Monoclinic GMO showed a much stronger fluorescence intensity and larger fluorescence intensity ratio under the irradiation of 980 nm laser in comparison to the orthorhombic counterpart. These remarkable up-conversion properties stemmed from the low site symmetry with large site symmetric distortion in monoclinic GMO. Moreover, the thermal sensing property of the samples was assessed based on the fluorescence intensity ratio technique, where monoclinic GMO exhibited much higher maximum absolute sensitivity (Sa = 0.0257 K−1 at 510 K) due to the site symmetric distortion, which was further explained by the Judd–Ofelt theory and polarizability of the chemical bond volume model. Results opened an efficient avenue for achieving highly sensitive thermometry in many daily scenarios via finely tailoring the local site symmetry.  相似文献   

15.
Rare earth tri-doped precursor glasses (PGs) were prepared by traditional high-temperature melting method, and NaSr2Nb5O15 transparent glass–ceramic (GC) was obtained by subsequent heat treatment. Results exhibit that the up-conversion emission intensity of GC is greatly enhanced compared to PG. Benefiting from the multiple emission bands from Ho3+ and Tm3+ and their different temperature dependence, multi-ratio optical temperature measurement is realized. The ultimate relative sensitivity (Sr-max) can reach 2.00% K−1 between 298 and 598 K. It provides a possibility for self-reference temperature measurement. Furthermore, under the actual charging and discharge conditions, the GC heated at 750°C has great energy density (Wd = 1.15 J/cm3@600 kV/cm) and high-power density (Pd = 290.4 MW/cm3@600 kV/cm) with ultrafast discharge time (<15.8 ns). The previous results indicate that the obtained GC with good multifunctional properties is expected to be applied in the field of photoelectric conversion.  相似文献   

16.
《Ceramics International》2020,46(13):20664-20671
Trivalent Er3+-doped La2(MoO4)3 upconversion phosphors with intense green emmision were synthesized at 800 °C by the solid-state reaction route, promoting the development of novel optical thermometry. The color emitted from the samples was minorly affected by the excitation power and doping concentration. Yb3+ is a better sensitizer for the La2(MoO4)3: Er3+ phosphor and it can enhance the emission intensity when a certain amount is co-doping in the system. The up-conversion luminescent mechanism was investigated using the pump power-dependent UC emission spectra. Alkali metal doping increased the up-conversion emission intensities drastically, and Li+ ions can enhance the luminous intensity by more than 20 times. The fluorescence intensity ratio of the transition emission 2H11/2-4I15/2 and 4S3/2-4I15/2 was used to study upconversion optical temperature sensing. The sensitivity changes from doping with diverse alkali metal ions and their effects on the optimal temperature range are discussed in detail. Alkali metal ions doping extended the temperature range, indicating that this phosphor is a potential candidate for temperature-sensing probes.  相似文献   

17.
采用水热法制备出NaY(WO4):Yb3+,Er3+纳米发光粉。通过X射线衍射、扫描电子显微镜表征了制备的发光粉样品;研究了不同Yb/Er摩尔比对发光强度的影响。结果表明:Yb3+和Er3+共掺杂的NaY(WO4)2属于四方晶系,其粒径在30 nm左右,且分散均匀。当Yb/Er摩尔比为4:1时,NaY(WO4):Yb3+,Er3+发光粉样品的发射峰强度达到了最大值。用980nm激光对其进行激发,在室温下观察到了410、524、553和656nm的发射峰,分别对应于2H9/2→4I15/2,2H11/2→4I15/2,4S3/2→4I15/2和4F9/2→4I15/2的跃迁。根据激发功率与发光强度的关系得出410、524、553和656 nm发射峰均为双光子过程。  相似文献   

18.
The development of optical temperature sensors is of fundamental and industrial importance for various applications. Despite the great advance in optical temperature-sensing techniques, challenges remain to search for novel sensing materials with low cost, easy fabrication and high sensitivity. Here, transparent glass ceramics (GC) embedded with cubic Sr0.84Lu0.16F2.16:Yb3+/Er3+ nano-crystals were prepared via thermal annealing on the parent glass. The optical and structural properties were investigated. The enhanced emission intensity, obvious Stark splitting and prolonged lifetimes of Er3+ confirm the enrichment of Er3+ ions into formed Sr0.84Lu0.16F2.16 nano-crystals. The temperature sensing performance of Yb3+/Er3+ ions in Sr0.84Lu0.16F2.16GC were investigated based on up-conversion intensity ratio (FIR) from thermally coupled emitting states of Er3+. High energy difference (ΔE?=?839?cm?1) and high absolute sensitivity (27.4?×?10?4?K?1 at 606?K) are obtained. Our results reveal Sr0.84Lu0.16F2.16GC are excellent host for rare earth ions doping and potential candidate for optical thermometry.  相似文献   

19.
《Ceramics International》2023,49(16):26786-26793
Current optical temperature measurements are confined to materials with high sensitivity, while probes with fluorescence intensity ratio (FIR) sensitivity above 12% K−1 still confront severe challenges. Therefore, we propose a novel strategy to obtain temperatures in one step from the temperature-dependent emission spectra by establishing a chemometrics model instead of calculating FIR values to improve temperature measurement accuracy of materials with a low FIR sensitivity. Here, Er3+-doped Na0.5Gd0.5TiO3 with low sensitivity and the monotonic variation of FIR is used as a temperature sensing material. The temperature-dependent spectra are preprocessed by the moving average filter method, and the useful information is extracted from the preprocessed spectra by the synergy interval partial least squares (siPLS) algorithm. The extracted spectra are then combined with the partial least squares regression (PLSR), the principal component regression (PCR), the multiple linear regression (MLR), and the support vector machine regression (SVM) respectively to build chemometrics models. The errors between the predicted and the actual temperatures of different models are evaluated to verify the feasibility of the proposed strategy and to select the optimal temperature measurement model for Na0.5Gd0.5TiO3: Er3+. The results show small errors and high correlation coefficients over 0.98 between the predicted and the actual temperatures of all models, indicating the applicability of the chemometrics model strategy in optical thermometry. Finally, the best model (a combination of siPLS-PCR + SVM) and the periodic testing of FIR with temperature may make Na0.5Gd0.5TiO3: Er3+ a candidate for optical thermometer with rapidity, durability and accuracy.  相似文献   

20.
A series of Li2SrSiO4:xTb3+ (0.2%, 0.4%, 0.6%, 0.8%, 2%, 4%, and 6%) phosphors were prepared by conventional solid‐state reaction. It was found that this silicate phosphor has a wide excitation band at near‐ultraviolet region (230‐300 nm) due to spin‐allowed 4f 84f75d1 transitions of Tb3+ ions, with the exact position dependent on the crystal field of the lattice. The cross‐relaxation process originating from 5D35D4 and 7F67F0 happened between different Tb3+ ions. It leads to the luminescence color of Li2SrSiO4: xTb3+ tuning from blue to green just by controlling Tb3+ concentrations. Furthermore, concentration quenching mechanism, energy migration type, cross‐relaxation rate and efficiency, are discussed in detail. Finally, optical thermometry properties were investigated via temperature‐dependent emission spectra. The results show that low‐concentration‐doped sample (Li2SrSiO4:0.4%Tb3+) shows remarkable optical thermometry based on fluorescence intensity ratio (FIR) between the blue and green emission of Tb3+ ions, whereas the high‐concentration‐doped sample (Li2SrSiO4:4%Tb3+) demonstrates small emission intensity loss. It illustrates that terbium‐doped silicate phosphor is a multifunctional material with potential application for display field and optical thermometry .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号