首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Yttria-stabilised zirconia (Y-TZP) based composites with a tungsten carbide (WC) content up to 50 vol.% were prepared from nanopowders by means of conventional hot pressing. The mechanical properties were investigated as a function of the WC content. The hardness increased from 12.3 GPa for pure Y-TZP up to 16.4 GPa for the composite with 50 vol.% WC, whereas the bending strength reached a maximum of 1551 MPa for the 20 vol.% WC composite. The toughness of the composites could be optimised by judicious adjustment of the overall yttria content by mixing monoclinic and 3 mol% Y2O3 co-precipitated ZrO2 starting powders. An optimum fracture toughness of 9 MPa m1/2 was obtained for a 40% WC composite with an overall yttria content of 2 mol%. The hardness, strength as well as fracture toughness of the ultrafine grained composites with a nanosized WC source was significantly higher than with micron-sized WC. The experimentally measured contribution of the different observed toughening mechanisms was evaluated as a function of the WC content. Transformation toughening was found to be the major toughening mechanism in ZrO2–WC composites with up to 30 vol.% WC, whereas the contribution of crack deflection and bridging is significant at a secondary phase content above 30 vol.%.  相似文献   

2.
A series of 50 vol/% unidirectional Nicalon™ fiber/zirconium titanate matrix composites were fabricated by alkoxide infiltration of the fiber tows. The fibers had a thin, amorphous boron nitride coating that was either heavily or lightly bridged. The bridged coatings were a result of localized excess boron nitride deposits and had the effect of binding adjacent fibers at boron nitride nodules during the immersion process. The resultant composites contained matrix-rich ribbons, which exhibited laminate-like mechanical behavior reported previously. Highest strength was obtained when the composites were loaded parallel to the ribbon orientation, and highest toughness (WOF) was obtained when the composites were loaded perpendicular to the ribbons. The ribbon orientation had a more pronounced effect on composite behavior than the presence or lack of bridging boron nitride nodules. However, the bridging nodules altered the relative orientation of the matrix-rich ribbons during fabrication and, thus, the direction of optimal strength or toughness.  相似文献   

3.
The reinforcement by crack deflection in boron carbide laminar composites is obtained by both controlling macrostructure and microstructure. This structure had never been studied before in boron carbide materials.

Composites were prepared using tape-casting technique. Different composites with either porous interlayers obtained by pore forming agent, or weak interlayers obtained without adding sintering aid, or weak interlayers obtained by a mixture of boron carbide and boron nitride, or weak graphite or boron nitride interfaces have been elaborated and characterized. Reinforcement by crack deflection was observed in most of these composites. In comparison to the work of rupture of the dense material, i.e. 23.09 kJ m−3, the following values were obtained for the laminar composites: 38 kJ m−3 for composites with interlayers with corn starch (55 vol.%), 40 kJ m−3 for composites with B4C-BN interlayers, 30 kJ m−3 for composites with weak interlayers in BN and 39 kJ m−3 for composites with weak interlayers in graphite.  相似文献   


4.
Steven Seghi  James Lee 《Carbon》2005,43(10):2035-2043
This paper describes the fabrication of high density (ρ ∼ 1.75 g/cc) composites containing a hybrid (carbon and boron nitride), or complete boron nitride matrix. The composites were reinforced with either chopped or 3D needled carbon fibers. The boron nitride was introduced via liquid infiltration of a borazine oligomer that can exhibit liquid crystallinity. The processing scheme was developed for the chopped carbon fiber/boron nitride matrix composites (C/BN) and later applied to the 3D carbon fiber reinforced/boron nitride matrix composites (3D C/BN). The hybrid matrix composites were produced by infiltrating the borazine oligomer into a low density 3D needled C/C composite to yield 3D C/C-BN. In addition to achieving high densities, the processing scheme yielded d002 spacings of 3.35 Å, which afforded boron nitride with excellent hydrolytic stability. The friction and wear properties of the composites were explored over the entire energy spectrum for aircraft braking using an inertial brake dynamometer. The C/BN composites outperformed both the previously reported C/C-BN and chopped fiber reinforced C/C. The high density 3D C/BN performed as well as both the 3D C/C and the C/BN. The 3D C/C-BN provided outstanding wear resistance, incurring nearly zero wear across the entire testing spectrum. The coefficient of friction was relatively stable with respect to energy level, varying from 0.2 to 0.3.  相似文献   

5.
In this study, polyethylene-g-maleic anhydride was utilized to enhance interfacial interaction between boron nitride and polyethylene. Moreover, KH550 was used as a surface treatment agent to improve interfacial interaction between boron nitride and polyethylene. It was found that surface functionalization of boron nitride particles and the addition of polyethylene-g-maleic anhydride can promote dispersion of boron nitride particles with reduced aggregation, resulting in the improvement of both tensile and impact strength of polyethylene/boron nitride composites. Compared to surface functionalization of boron nitride particles, the addition of polyethylene-g-maleic anhydride was much effective to enhance thermal conductivity of polyethylene/boron nitride composites and drop effectively rheological percolation threshold and gel point of polyethylene/boron nitride composites.  相似文献   

6.
Tungsten carbide (WC) with different amounts of Cubic boron nitride (cBN) were synthesized by High Pressure-High Temperature (HPHT) method. The mapping correlation between thermodynamic condition, cBN addition, and microstructure, mechanical properties of WC–cBN composites was established and analyzed by response surface methodology. The main factors affecting the properties of composites were identified by ANOVA. The optimum thermodynamic condition was calculated. It was found that a minor phase transformation of cBN into the low-hardness hBN occurred at a temperature of 1300 °C and intensified at 1500 °C. The homogeneously dispersed cBN particles in the WC matrix promoted an improvement of hardness and fracture toughness, but the phase transition of cBN and its truss effect can dramatically reduce the mechanical properties. The Vickers hardness and fracture toughness of the well-sintered WC-cBN bulks reached a high value of 34 GPa and 13.6 MPa·m1/2, which are improved by 17% and 52% respectively compared with the pure WC samples sintered under similar high-pressure level.  相似文献   

7.
Well-dispersed boron nitride nanosheets (BNNSs) reinforced fused silica composites were successfully fabricated by surface modification assisted flocculation method. Surface modification can enhance the performance of flocculation process. BNNSs were homogeneously mixed with fused silica through the electrostatic interaction between hydroxylated BNNSs with negative charge and amino-modified fused silica with positive charge. The BNNSs can act as excellent nanofillers for enhancing the mechanical properties of fused silica composites. Approximately 74% and 48% increases in flexure strength and fracture toughness can be achieved for the 1.5 wt% BNNSs/fused silica composite, respectively. The toughening mechanisms were analyzed by microstructural characterization, especially for pull-out mechanism.  相似文献   

8.
Influence of different inorganic particulate mineral fillers on polycarbonate composites was explored. Among all the fillers assessed here only boron nitride and mica could appreciably reduce the thermal expansion of polycarbonate, particularly along the direction of flow. While measured in the normal to flow (cross‐flow) direction, the coefficient of thermal expansion (CTE) values decreased marginally in presence of boron nitride and mica as compared to the unfilled specimen. The anisotropicity in CTE is presumable due to preferential orientation of boron nitride and mica along the direction of flow in the injection molded samples. The effectiveness of fillers in reducing CTE of the polycarbonate composites was correlated to the dispersion of fillers in the polymer matrix. Better dispersion of boron nitride and mica, as observed through SEM, ensured their improved interaction with the matrix and thereby reducing the CTE. It was observed that in presence of particulate fillers the impact performance of the composites decreased appreciably with an increase in tensile modulus, in general. The flow behavior of the composites was by large dependent on the types of fillers used. In presence of some of the fillers such as BaSO4, ZnO, ZnS, TiO2, and alumina, flow of the composites increases significantly, primarily associated to appreciable reduction in molecular weights of the polycarbonate. On the other hand, with boron nitride flow remained almost unchanged upon its addition of 5 vol %. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

9.
陶瓷纤维填充聚烯烃复合材料的导热性能研究   总被引:7,自引:0,他引:7  
康学勤  孙智 《塑料工业》2004,32(3):52-53
制备了硅酸铝纤维、氧化铝纤维填充聚乙烯(PE)复合材料和硅酸铝纤维、氧化铝纤维填充聚丙烯(PP)复合材料;用稳态法考察了纤维用量对复合材料导热性能的影响。结果表明:硅酸铝纤维和氧化铝纤维填充PP、PE复合材料的热导率基本随纤维用量的增加而增加,在某些用量时稍有波动,纤维质量分数为35%的试样导热效果最好。  相似文献   

10.
In this work, a simple and novel method was applied to prepare polymer composites by taking the advantage of melt flow shear force driving orientation of the fillers. By using this method, hexagonal boron nitride/polyethylene (hBN/PE) and hexagonal boron nitride/carbon fibers/polyethylene (hBN/CF/PE) composites were fabricated to be possessed of high thermal conductivity and mechanical properties. A high thermal conductivity of 3.11 W/mK was realized in the composite containing 35 wt% hBN and 5 wt% CF, which was over 1,200% higher than that of unfilled PE matrix. Under this component, the compressive strength and modulus of hBN/CF/PE composite were determined to be 30.1 and 870.9 MPa, respectively, which were far higher than that of unfilled PE accordingly. The bending performance was also somewhat enhanced. Meanwhile, the bulk resistivity of the composite material reached 2.55 × 1011 Ω·cm, which was basically the same as that of pure PE. The novel composites with high thermal conductivity, excellent mechanical properties, and controllable electrical insulation could be a potential thermal management material for electrical and electronics industries.  相似文献   

11.
In order to overcome intrinsic brittleness and poor mechanical properties of fused silica (FS), boron nitride nanosheets (BNNSs) as a novel reinforcement were employed for fabrication of BNNSs/fused silica composites. BNNSs with micron lateral size were homogeneously dispersed with FS powder using a surfactant-free flocculation method and then consolidated by hot pressing. The flexural strength and fracture toughness of the composite with the addition of only 0.5 wt.% BNNSs increased by 53% and 32%, respectively, compared with those of pure FS. However, for higher BNNSs contents the improvement in mechanical properties was limited. Microstructural analyzes have shown that the toughening mechanisms are combinations of the pull-out, crack bridging, and crack deflection mechanisms.  相似文献   

12.
Boron nitride nanocomposites assembled by nanosheets and nanotubes can exert multi-dimensional synergistic toughening and strengthening effects. This material is expected to be a high-efficiency reinforcement additive in advanced structural ceramics. In this study, we designed a universal method for synthesizing gram-scale boron nitride nanocomposites by annealing the precursor containing catalyst in chemical vapor deposition equipment under flowing ammonia, and a combined growth mechanism of surface-diffusion and solid-liquid-solid is proposed. The boron nitride nanosheets were initially formed by a surface-diffusion reaction between boron trioxide and ammonia at 1300°C. At elevated temperatures (1400°C-1500°C), the boron nitride nanotubes grew in-situ from the nanosheets in the presence of catalysts through a solid-liquid-solid mechanism, forming the desired boron nitride nanocomposite.  相似文献   

13.
《分离科学与技术》2012,47(15):2287-2292
In this work, porous polyethersulfone (PES)/polyethylene glycol (PEG) ultrafine fibers were prepared via electrospinning technique, and then were used to removing endocrine disrupters from their aqueous solutions. The surface and the internal structures of PES/PEG ultrafine fibers were characterized by scanning electron microscopy (SEM) and the result showed that they were both porous. The porous electrospun PES/PEG ultrafine fibers can remove endocrine disrupters such as biphenyl A (BPA) and biphenyl (BP) effectively. Compared with pure PES ultrafine fibers, PES/PEG ultrafine fibers showed larger adsorption capacity and faster kinetics of uptaking target species. The hydrophilic properties and the porosity of porous PES/PEG ultrafine fibers can be controlled by adding hydrophilic materials such as polyethylene glycol (PEG), which can improve the adsorption properties of porous PES/PEG ultrafine fibers significantly. The results showed that porous electrospun PES/PEG ultrafine fibers had the potential to be used in environmental application and water treatment.  相似文献   

14.
先进陶瓷材料具有较高的力学性能,以及较高的抗高温氧化性能等。但是先进陶瓷材料由于硬度较高、可加工性能较差,导致陶瓷材料的机械加工成本较高,所以限制了陶瓷材料的广泛应用。为了改善和提高陶瓷材料的可加工性能,向陶瓷基体中加入六方氮化硼形成可加工氮化硼系复相陶瓷。可加工氮化硼系复相陶瓷具有较高的力学性能和优良的可加工性能,氮化硼系复相陶瓷可以进行机械加工。目前研究和开发的可加工氮化硼系复相陶瓷主要包括:Al_2O_3/BN复相陶瓷,ZrO_2/BN复相陶瓷,SiC/BN复相陶瓷,Si_3N_4/BN复相陶瓷,AlN/BN复相陶瓷等。目前可加工氮化硼系复相陶瓷的研究主要集中在氮化硼系复相陶瓷的制备工艺,力学性能,可加工性能,抗热震性能,抗高温氧化性能等。本文主要叙述可加工氮化硼系复相陶瓷的制备工艺,力学性能和可加工性能,抗热震性能,抗高温氧化性能等。并叙述可加工氮化硼系复相陶瓷的研究发展现状和发展趋势,并对可加工氮化硼系复相陶瓷的未来发展趋势进行分析和预测。  相似文献   

15.
Cylindrical and bamboo-like boron nitride nanotubes (BNNTs) have been used to reinforce brittle amorphous borosilicate glass matrix materials prepared by spark plasma sintering. The mechanical properties, such as hardness, Young's modulus, fracture toughness, and scratch resistance of the materials have been investigated. The fracture toughness of the composites showed an improvement of ∼30% compared to the pure amorphous glass. BNNTs pull-out, crack bridging, stretching, and crack deflection toughening mechanisms were observed in the reinforced glass matrix composites. Extensive pull-out of the BNNTs (>400 nm) was observed in the form of the telescopic “sword-in-sheath” mechanism, resulting in poor energy dissipation due to the weak Van der Waals force between the inner walls of the BNNTs. The scratch resistance was significantly improved (∼26%) after the addition of the BNNTs, and the results correspond well with the brittleness index of the materials.  相似文献   

16.
Composites made with boron might be absorbers of low energy neutrons, and could be used for structural materials for spacecraft. Polyethylene/boron nitride composites were fabricated using conventional polymer processing techniques, and were evaluated for mechanical and radiation shielding properties. The boron nitride powder surfaces were also functionalized to improve interfacial adhesion. Addition of neat boron nitride to an injection molding grade HDPE increased the tensile modulus from 588 to 735 MPa with 15 vol % filler. The bonding of a trifunctional alkoxysilane to the powder surface prior to processing increases the composite modulus to 856 MPa at the same loading. Scanning electron microscopy of fracture surfaces verified that the silane‐treated powders had improved adhesion at the filler/polymer interface. Radiation shielding measurements of a 2 wt % boron nitride composite were improved over those of the neat polyethylene. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

17.
A procedure was developed to fabricate oxide-fiber-reinforced minicomposites with a dense matrix and evaluate two oxidation-resistant interface coatings, porous oxide (zirconia-silica mixture) and monazite. The coatings were evaluated using NextelTM 720-fiber-reinforced BlackglasTM-matrix minicomposites. Boron nitride (BN) coated and uncoated fibers were used as controls for comparison. The evaluation was based on ultimate failure strengths, fractography, and fiber pushin tests. All the composites that used fiber coatings had ultimate strengths significantly better than the control that used uncoated fibers. In addition, porous-oxide-coated fibers were found to be similar to BN-coated fibers in strength, fractography, and fiber pushin behavior. Monazite-coated fibers resulted in similar ultimate strengths but showed no appreciable fiber pullout. Fiber pushin tests showed that monazite debonds readily but frictional resistance is higher than for BN or porous oxide fiber coatings.  相似文献   

18.
The boron nitride (BN) interphase of silicon nitride (Si3N4) fiber-reinforced BN matrix (Si3N4f/BN) composites was prepared by chemical vapor deposition (CVD) of liquid borazine, and the microstructure, growth kinetics and crystallinity of the BN coating were examined. The effects of coating thickness on the mechanical strength and fiber/matrix interfacial bonding strength of the composites were then investigated. The CVD BN coating plays a key role in weakening the interfacial bonding condition that improves the mechanical properties of the composites. The layering structure of the BN coating promotes crack propagation within the coating, which leads to a variety of toughening mechanisms including crack deflection, fiber bridging and fiber pull out. Single-fiber push-out experiments were performed to quantify the fiber/matrix bonding strength with different coating thicknesses. The physical bonding strength due to thermal mismatch was discussed.  相似文献   

19.
《Ceramics International》2022,48(22):32628-32648
The atomically laminated materials with high temperature resistance, including graphite, hexagonal boron nitride (h-BN) and MAX phases, have special mechanical performance compared to isotropic materials. The intrinsic mechanical responses of these layered structures can play an important role in strengthening and toughening ceramic matrix composites. In this review, the synthesis processes and applications of pyrolytic carbon (PyC) interphase, graphite nanoplates (GNPs), h-BN interphase, and h-BN nanoplates (BNNPs) and MAX phases are summarized. Besides, this review also analyzes the differences between the graphite-like structure and the MAX phase structure, in terms of modulus, toughness, anisotropy, and toughening mechanisms. These differences are based on their crystal structures. Finally, we look forward to the future development direction of high-temperature atomically laminated materials for toughening applications.  相似文献   

20.
Different amounts (0.5, 1, 2.5 and 5 wt%) of hollow “cylindrical” and “bamboo-like” boron nitride nanotubes (BNNTs) have been used to reinforce 3Y-TZP zirconia ceramics via spark plasma sintering. No significant influence of different morphologies of BNNTs on the mechanical properties at the macro-scale (elastic modulus, hardness, and fracture toughness) has been observed. The fracture toughness increased continuously with the increasing amount of the BN nanotubes up to 2.5%, resulted in the improvement of ∼100% compared to the reference ZrO2. A direct influence of BNNTs on the toughening of ZrO2 has been recognized. The BNNTs strengthen the zirconia grain boundaries resulting in the alteration in fracture mode from inter- to trans-granular. The BNNTs also promoted the transformation toughening of zirconia. Their influence on the bridging and pull out has been confirmed by the investigation of the composites with the amorphous borosilicate matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号