首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low-density polyethylene (LDPE) films were supplemented with lauroyl arginate ethyl (LAE) and characterized for physical, mechanical and antimicrobial properties as well as their use for fresh ‘Sulhyang’ strawberries packaging. LAE powder was added into the LDPE films at 0, 1, 3, 5, and 10% (w/w) and assessed for physical properties, gas permeation, thickness and color values. The results showed that incorporation of LAE into the LDPE matrix did not affect film thickness and color. The thermal stability of the LAE/LDPE film decreased with increasing concentrations of LAE. The LAE/LDPE film exhibited a rough surface and compact structure. Tensile strength were affected by addition of LAE on the other hand value of elongation at break were increased. The LAE/LDPE containing 5 and 10% LAE showed significant antimicrobial properties against mycelium growth. Further, 5 and 10% LAE/LDPE films were used for storage study and it showed that incorporation of LAE into LDPE film was an effective method for maintaining the quality of strawberries. Films containing LAE were very effective at reducing the total weight loss, maintaining firmness, and reduced fungal decay compared to the control strawberries at 10?°C. These results suggest that LAE/LDPE films are potential candidates for advanced packaging materials for the fruits packaging application.  相似文献   

2.
The purpose of this study was to evaluate the activity of a novel antimicrobial substance lauric arginate ester (LAE) against selected foodborne pathogens (Escherichia coli O157:H7, Listeria monocytogenes and Salmonella spp.) in biofilm. Minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were determined and showed that LAE exhibits a strong antimicrobial activity. Biofilms were grown on abiotic stainless steel, rubber, MBEC biofilm device) and biotic (lettuce) surfaces. The efficacy of LAE (50, 100 and 200 ppm) at reducing the biofilm cells on these surfaces was examined by applying LAE for 2 h. Results revealed that LAE exhibited the reduction in biofilm bacteria up to 7 log CFU cm?2, 3.5 log CFU cm?2, 4.0 log CFU peg?1 and 1.5 log CFU cm?2 on stainless steel, rubber, MBEC and lettuce surfaces, respectively. Overall, these results suggest that LAE has been shown to be a potential alternative to control bacteria in biofilm mode in food industry.  相似文献   

3.
A novel type of environmentally friendly packaging with antibacterial activity was developed from lauric arginate (LAE)-coating of polylactic acid (PLA) films after surface activation using a corona discharge. Scanning electron microscopy (SEM)-based analysis of the LAE/PLA films confirmed the successful coating of LAE on the PLA surface. The mechanical properties of the LAE/PLA films with different levels of LAE-coating (0% to 2.6%[w/w]) were essentially the same as those of the neat PLA film. The antibacterial activity of the LAE/PLA films against Listeria monocytogenes and Salmonella enterica Serovar Typhimurium (S. Typhimurium) was confirmed by a qualitative modified agar diffusion assay and quantitative JIS Z 2801:2000 method. Using the LAE/PLA film as a food-contact antimicrobial packaging for cooked cured ham, as a model system, suggested a potential application to inhibit L. monocytogenes and S. Typhimurium on ham with a 0.07% (w/w) LAE coating on the PLA when high transparency is required, as evidenced from the 2 to 3 log CFU/tested film lower pathogen growth after 7 d storage but even greater antibacterial activity is obtained with a LAE coating level of 2.6% (w/w) but at the cost of a reduced transparency of the finished product. This article shows how we can simply develop functional green packaging of PLA for food with effective and efficient antimicrobial activity by use of LAE coating on the surface via corona discharge. PRACTICAL APPLICATION: The effectiveness of an innovative antimicrobial LAE-coated PLA film against foodborne pathogens was demonstrated. Importantly, the application of the LAE to form the LAE-coated PLA film can be customized within current film manufacturing lines.  相似文献   

4.
Antimicrobial food packaging film based on the release of LAE from EVOH   总被引:1,自引:0,他引:1  
The aim of this work was to develop antimicrobial films for active packaging applications containing the natural antimicrobial compound LAE (lauramide arginine ethyl ester) in EVOH copolymers with different mol % ethylene contents (i.e. EVOH-29 and EVOH-44). EVOH-29 and EVOH-44 films were made by casting and incorporating 0.25%, 1%, 5%, and 10% LAE in the film forming solution (w/w with respect to polymer weight). Previously, the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of LAE against Listeria monocytogenes, Escherichia coli, and Salmonella enterica were determined by a microdilution assay. The antimicrobial activity of the resulting films was tested in vitro against these microorganisms in liquid culture media. The activity of the films was also evaluated over time. The results showed that films containing 5% and 10% LAE produced total growth inhibition and viable counts decreased with 0.25% and 1% LAE. Finally, the effectiveness of the films was tested by applying them to an infant formula milk inoculated with L. monocytogenes and S. enterica and stored for 6 days at 4°C. The application of films with LAE to infant formula milk inoculated with L. monocytogenes reduced at the end of storage period about 4 log in case of 10% LAE and with S. enterica reduced 3.74 log and 3.95 log with EVOH 29 5% and 10%, respectively, and EVOH-44 5% and 10% LAE reduced 1 log and 3.27 log, respectively, at the end of storage. The antimicrobial capacity of EVOH-29 films was greater than that of EVOH-44 films in all the cases tested. In general, the films were more effective in inhibiting the growth of L. monocytogenes than S. enterica, this inhibition being more acute at the end of the storage time.  相似文献   

5.
The contamination of Listeria monocytogenes and Salmonella spp. in ready-to-eat (RTE) meat products has been a concern for the meat industry. In this study, edible chitosan-acid solutions incorporating lauric arginate ester (LAE), sodium lactate (NaL), and sorbic acid (SA) alone or in combinations were developed and coated on polylactic acid (PLA) packaging films. Antimicrobial effects of coated PLA films on the growth of Listeria innocua, L. monocytogenes, and Salmonella Typhimurium in a culture medium (tryptic soy broth, TSB) and on the surface of meat samples were investigated. Antimicrobial PLA films containing 1.94 mg/cm2 of chitosan and 1.94 μg/cm2 of LAE were the most effective against both Listeria and Salmonella in TSB and reduced them to undetectable level (<0.69 log CFU/ml). The same PLA films with LAE significantly (p?L. innocua, L. monocytogenes, and S. Typhimurium on RTE meat during 3 and 5 weeks’ storage at 10 °C, achieving 2–3 log reduction of Listeria and 1–1.5 log reduction of Salmonella as compared with controls. PLA films coated with 1.94 mg/cm2 of chitosan, 0.78 mg/cm2 of NaL, and 0.12 mg/cm2 of SA significantly reduced the growth of L. innocua but were less effective against Salmonella. The combination of NaL (0.78 mg/cm2) and SA (0.12 mg/cm2) with LAE (1.94 μg/cm2) did not generate additional or synergetic antimicrobial effect against Listeria or Salmonella on the meat surface. L. innocua had a similar sensitivity to the film treatments as L. monocytogenes, suggesting that L. innocua may be used as a surrogate of L. monocytogenes for further scaleup and validation studies. The film treatments were more effective against the microorganisms in TSB culture medium than in RTE meat, which suggests that in vivo studies are a necessary step to develop antimicrobial packaging for applications in foods.  相似文献   

6.
Edible antimicrobial aloe/gelatin composite films with different ratio of freeze–dried aloe leaf gel powder and gelatin (aloe/gelatin = 5/0, 4/1, 3/2, 2/3, 1/4 and 0/5) were fabricated. The thickness of the resulting films was between 0.055 (aloe/gelatin = 0/5) and 0.157 mm (aloe/gelatin = 4/1). The mechanical properties including maximum elongation, tensile strength, elongation at break and break strength were determined. The mechanical properties were increased with the increasing amount of gelatin used in the composite formulation. The tensile strength for composite films with the ratio of 4/1, 3/2, 2/3, 1/4 and 0/5 was 4.12, 5.29, 6.96, 11.47 and 37.76 MPa, respectively. Citrobacter freundii, Escherichia coli, Enterobacter aerogens, Serratia marcescens, Staphylococcus aureus and Bacillus cereus were used in antimicrobial activity test. The results showed that antimicrobial activities of the composite films increased as the amount of aloe gel powder used in the composite films increased. The average area of inhibitory zones for films with composition of aloe/gelatin = 1/4 and aloe/gelatin = 4/1 was 1.63–2.38 and 3.82–4.80 cm2, respectively.  相似文献   

7.
The efficacy of lauric arginate (LAE) on Salmonella survivability in ground chicken containing 9.8% fat was determined under refrigerated storage. The effect of LAE treatments on total aerobes, pH and objective colour were also assessed in ground chicken. LAE was highly effective against Salmonella in 0.1% peptone with no detectable survivors following treatment with 200 ppm and 400 ppm of LAE. No difference existed (P > 0.05) in the growth of Salmonella and total aerobes after treatment with 200 and 400 ppm of LAE in ground chicken inoculated with a four strain mixture of Salmonella. At these concentrations, LAE did not exhibit any treatment effect on the pH and colour of ground chicken (P > 0.05). In conclusion, although LAE possesses strong inhibitory (P < 0.05) effect against Salmonella in suspension in 0.1% peptone water, no inhibitory (P > 0.05) effect on growth of Salmonella was observed in ground chicken at the currently approved levels of 200 ppm of LAE.  相似文献   

8.
Consumers’ concerns about the environment and health have led to the development of new food packaging materials avoiding petroleum-based matrices and synthetic additives. The present study has developed polylactic acid (PLA) films containing different concentrations of essential oil from Origanum vulgare L. virens (OEO). The effectiveness of this new active packaging was checked for use in ready-to-eat salads. A plasticising effect was observed when OEO was incorporated in PLA films. The rest of the mechanical and physical properties of developed films did not show much change when OEO was included in the film. An antioxidant effect was recorded only for films containing the highest percentages of the active agent (5% and 10%). In addition, films exhibited in vitro antibacterial activity against Staphylococcus aureus, Yersinia enterocolitica, Listeria monocytogenes, Enterococcus faecalis and Staphylococcus carnosus. Moreover, in ready-to-eat salads, antimicrobial activity was only observed against yeast and moulds, where 5% and 10% of OEO was the most effective.  相似文献   

9.
The physical, optical, antimicrobial and antioxidant properties of jellyfish protein (JFP) films with added transglutaminase (TGase) and wasabi extract (WE) were studied. Among the plasticisers, 30% sorbitol was the most desirable. The optimal physical properties of the JFP films were obtained when 15 U transglutaminase g?1 JFP was added. The incorporation of WE affected the physical properties of the JFP films. The tensile strength (21.68–35.25 MPa), elongation at break (10.85–13.25%) and Young's modulus (920.18–1278.9 MPa) of the films increased as WE concentration increased from 0.5% to 1.5%. The thermal gravimetric analysis results revealed that the thermal stability of the JFP films increased with increasing concentrations of WE. The inhibition zones against Escherichia coli O157:H7 and Listeria monocytogenes and antioxidant activity also increased as the concentration of WE increased. Thus, antimicrobial and antioxidant JFP films could be prepared by the addition of WE.  相似文献   

10.
An edible bilayer film incorporated with lysozyme based on chitosan and sodium alginate was prepared via the layer-by-layer method. The film was characterized and its effects against the fish spoilage bacteria Pseudomonas fluorescens and Shewanella putrefaciens were investigated and compared to the monolayer films. The results suggest that electrostatic interactions such as hydrogen bonds occurred between the two layers of the bilayer film. Compared with monolayer films, the mechanical and gas barrier properties of the bilayer film were improved and higher inhibitory activity against both bacteria was exhibited. After treatment with the bilayer film, scanning electron microscopy revealed the serious damage to the bacterial cell surface, and cell membrane permeability and nucleic acid leakage increased. The bilayer film also affected the activity of alkaline phosphatase and adenosine triphosphatase. SDS-PAGE of bacterial total protein revealed that the protein concentration n decreased, which may be due to the leakage of proteins from the damaged bacterial cell. All the results indicate that the bilayer film possesses good physicochemical properties and can destroy the bacterial cell membrane. Such superior antibacterial properties against fish spoilage bacteria indicate a good potential application of bilayer films in fish preservation.  相似文献   

11.
Abstract: Agar‐based nanocomposite films with different types of nanoclays, such as Cloisite Na+, Cloisite 30B, and Cloisite 20A, were prepared using a solvent casting method, and their tensile, water vapor barrier, and antimicrobial properties were tested. Tensile strength (TS), elongation at break (E), and water vapor permeability (WVP) of control agar film were 29.7 ± 1.7 MPa, 45.3 ± 9.6%, and (2.22 ± 0.19) × 10?9 g·m/m2·s·Pa, respectively. All the film properties tested, including transmittance, tensile properties, WVP, and X‐ray diffraction patterns, indicated that Cloisite Na+ was the most compatible with agar matrix. TS of the nanocomposite films prepared with 5% Cloisite Na+ increased by 18%, while WVP of the nanocomposite films decreased by 24% through nanoclay compounding. Among the agar/clay nanocomposite films tested, only agar/Cloisite 30B nanocomposite film showed a bacteriostatic function against Listeria monocytogenes.  相似文献   

12.
In this study, antimicrobial packaging materials were developed by incorporating known concentrations (w/w) of essentials oils of oregano (Origanum vulgare) and thyme (Thymus vulgaris) into low-density polyethylene (LDPE), suitable for use as food packaging, via two different methods: ionizing treatment and directly by extrusion. The mechanical, barrier, and antimicrobial properties of the packaging were evaluated against the following foodborne pathogens: Salmonella typhimurium, Listeria monocytogenes, and Escherichia coli O157:H7. The results demonstrate that films developed by extrusion incorporating 4% (w/w) of essential oils had a higher inhibitory effect than those obtained using the ionizing treatment. The packaging developed by extrusion containing 1% (w/w) showed a positive inhibitory effect, while those obtained by the ionizing treatment had no inhibitory effect against any of the test microorganisms. The incorporation of essential oils on the LDPE films generated a plasticizer effect, whereas the ones obtained by means of ionizing treatment did significantly affect the barrier properties of the films. The results of this study showed that plant-derived essential oils could be incorporated in active films for food packaging.  相似文献   

13.
Chitosan films incorporated with various concentrations of gallic acid were prepared and investigated for antimicrobial, mechanical, physical and structural properties. Four bacterial strains that commonly contaminate food products were chosen as target bacteria to evaluate the antimicrobial activity of the prepared gallic acid–chitosan films. The incorporation of gallic acid significantly increased the antimicrobial activities of the films against Escherichia coli, Salmonella typhimurium, Listeria innocua and Bacillus subtilis. Chitosan films incorporated with 1.5 g/100 g gallic acid showed the strongest antimicrobial activity. It was also found that tensile strength (TS) of chitosan film was significantly increased when incorporating 0.5 g/100 g gallic acid. Inclusion of 0.5 g/100 g gallic acid also significantly decreased water vapor permeability (WVP) and oxygen permeability (OP). Microstructure of the films was investigated by Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM) and it was found that gallic acid was dispersed homogenously into the chitosan matrix.  相似文献   

14.
Active antimicrobial films were prepared by incorporating AgSiO2, AgZn and AgZ at 1, 3, 5 and 10 % (w/w) into a polypropylene (PP) matrix. Complete thermal, structural, mechanical and functional characterization as well as antimicrobial efficiency and returnable antimicrobial efficiency were determined according to the Japanese Industrial Standard method. The morphology of the films showed agglomerates of particles in the composites. The active formulation had decreased elongation compared to the pure PP sample. Thermal analyses indicated that the active formulation compositions had increased thermal stability. The films showed 50 % antimicrobial properties after the fifth wash against the tested microorganisms, presenting better activity against Gram negative organisms than Gram positive ones. These findings suggest that PP films with AgSiO2, AgZn and AgZ particles can provide a significant contribution to the quality and safety of seafood in the distribution chain.  相似文献   

15.
Propolis is a natural product that meets the requirements as functional additive for food packaging due to its antioxidant and antimicrobial activities. In this work, ethanolic propolis extract (EPE) was incorporated in cassava starch films, and characterisations with respect to their microstructure, mechanical properties, water vapour permeability (WVP), moisture sorption kinetics as well as antimicrobial and antioxidant capacities were performed. The results showed that tensile strength was not affected (P > 0.05) by the presence of EPE but Young's modulus decreased about 50% when compared to control films possibly because of EPE plasticiser effect. When 1% EPE was used, changes in moisture sorption properties were detected by a slightly hydrophobic character at films WVP. When extracted from the films, propolis retained its antioxidant activity. The films exhibited antimicrobial activity against Staphylococcus aureus and Escherichia coli even at low EPE concentrations (0.5%) mainly due to its phenolic compounds.  相似文献   

16.
The addition of nisin into a gelatin matrix can change properties of the film. The aim of this work was to develop gelatin-based films containing different nisin concentrations in order to study their influence on the film's antimicrobial and physical properties and their rheological properties as a film-forming solution (FFS). The FFS was characterised by rheological assays, and the gelatin-based active films were characterised and assessed by the effects of nisin concentrations on their various properties, including antimicrobial activity. Nisin's concentration affected not only its viscoelastic properties of FFS but also its film solubility in water, film surface roughness and light barrier. The addition of nisin also slightly modified the water contact angle and the mechanical properties of the gelatin films. Finally, the films demonstrated activity against Staphylococcus aureus and Listeria monocytogenes at concentrations above 56 mg of nisin g−1 of gelatin.  相似文献   

17.
With the purpose to improve the physico-chemical performance of plain gelatin and chitosan films, compound gelatin–chitosan films were prepared. The effect of the gelatin origin (commercial bovine-hide gelatin and laboratory-made tuna-skin gelatin) on the physico-chemical properties of films was studied. The dynamic viscoelastic properties (elastic modulus G′, viscous modulus, G″ and phase angle) of the film-forming solutions upon cooling and subsequent heating revealed that the interactions between gelatin and chitosan were stronger in the blends made with tuna-skin gelatin than in the blends made with bovine-hide gelatin. As a result, the fish gelatin–chitosan films were more water resistant (∼18% water solubility for tuna vs 30% for bovine) and more deformable (∼68% breaking deformation for tuna vs 11% for bovine) than the bovine gelatin–chitosan films. The breaking strength of gelatin–chitosan films, whatever the gelatin origin, was higher than that of plain gelatin films. Bovine gelatin–chitosan films showed a significant lower water vapour permeability (WVP) than the corresponding plain films, whereas tuna gelatin–chitosan ones were only significantly less permeable than plain chitosan film. Complex gelatin–chitosan films behaved at room temperature as rubbery semicrystalline materials. In spite of gelatin–chitosan interactions, all the chitosan-containing films exhibited antimicrobial activity against Staphylococcus aureus, a relevant food poisoning. Mixing gelatin and chitosan may be a means to improve the physico-chemical performance of gelatin and chitosan plain films, especially when using fish gelatin, without altering the antimicrobial properties.  相似文献   

18.
Three GRAS antimicrobials including, lauric arginate (LAE), bacteriophage P100 (phage P100) and bacteriocin nisin, were evaluated either singly or in combinations for the reduction of initial load of Listeria monocytogenes in cold‐smoked salmon (CSS). The stability of phage P100 in the presence of LAE (200 ppm) and nisin (500 ppm) or at 10× and 100× of these concentrations was determined at 4 °C or 30 °C for 24 h in a broth model. Phage P100 was found to be highly stable in the presence of these antimicrobial agents as plaque‐forming units (PFU) did not vary between control and antimicrobial‐treated phage. The survival of L. monocytogenes in the presence of phage P100, nisin and LAE showed remarkable reduction within 24 h both at 4 °C or 30 °C in broth. Treatment of CSS containing 3.5 log CFU cm?2 L. monocytogenes with phage P100 (10PFU mL?1), nisin (500 ppm) and LAE (200 ppm) showed strong listericidal action and reduced the L. monocytogenes by 2–3 log CFU cm?2 after 24 h. Among the combined treatments, phage P100 + LAE or nisin + LAE exhibited the most listericidal action in which L. monocytogenes cells were reduced to undetectable level within 24 h in CSS.  相似文献   

19.
ABSTRACT: Antimicrobial polyethylene and cellulose based films incorporated with triclosan were studied. The antimicrobial efficacy, the hydrophobicity, microscopic and the mechanical characteristics of the films, as well free energy of adhesion between bacteria and antimicrobial films were evaluated. It was observed that both polyethylene and cellulose based films incorporated with the antimicrobial were homogeneous. Furthermore, the addition of triclosan did not affect mechanical characteristics of the films (P > 0.05). However, triclosan incorporated into polyethylene films reduced its hydrophobicity while antimicrobial cellulose based films became more hydrophobic. The adhesion was thermodynamically favorable between tested bacteria and polyethylene films. On the other hand, the adhesion to triclosan cellulose based film was thermodynamically unfavorable to Staphylococcus aureus and Escherichia coli and favorable to Listeria innocua and Pseudomonas aeruginosa. Polyethylene and cellulose based films showed inhibitory effect against S. aureus and E. coli, being the inhibition halo higher for polyethylene films. This study improves the knowledge about antimicrobial films.  相似文献   

20.
Applications of whey protein concentrate (WPC)-based films have been limited in the food industry due to their poor mechanical properties. This research aims to evaluate the effect of silver nanoparticles (AgNPs) synthesised by Aspergillus niger on the mechanical and antimicrobial properties of WPC-based films. The biosynthesised AgNPs solution was added into the WPC film formula at the concentration of 0, 0.25 and 1.25 mm . The film samples containing AgNPs inhibited the growth of Staphylococcus aureus, Escherichia coli O157:H7, Salmonella Enteritidis, Listeria monocytogenes, Williopsis saturnus or Aspergillus sydowii with zones of inhibition ranging from 13 to 19.7 mm. Incorporation of AgNPs improved tensile strength and water barrier properties of the films by 84% and 67%, respectively. However, per cent elongation at the break of the film decreased from 37% to 11% by the addition of 1.25 mm AgNPs. This work provides a protocol for preparing improved antimicrobial WPC films with AgNPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号