首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Dietary fibre (DF)-anthocyanin formulation was incorporated in bread to develop anthocyanin rich DF powder (ARDFP) fortified bread. Prior to incorporation of DF-anthocyanin formulation in bread preparation, the cytotoxicity of DF and anthocyanin extracts was assessed. The effect of incorporation of different level of ARDFP with moisture on bread quality characteristics such as specific volume, textural, colour, sensory properties and starch digestibility was studied. The results revealed that extracted DF and anthocyanin of culinary banana bracts were nontoxic towards peripheral blood mononuclear cell and cytotoxic towards HT29 cancerous cell line. Incorporation of 2% ARDFP with 68% moisture was rated as best with higher specific volume (5.50 cm3 g−1), improved textural properties (high springiness and cohesiveness), anthocyanin content (9.08 mg per 100 g), colour characteristics and sensory acceptability next to control. The in vitro digestibility study suggested increased incorporation of ARDFP in bread flour reduced the rate of starch digestibility (0.0035 min−1).  相似文献   

2.
The main objective of this study was to increase the folate content in Egyptian baladi bread using germinated wheat flour (GWF). The effect of germination temperature and drying conditions on the folate content of wheat grains was studied. Wheat flour was substituted with unsieved and sieved GWF at different levels and the effects on folate content and the rheological properties of dough were determined. Germination of wheat grains resulted in a 3- to 4-fold higher folate content depending on the germination temperature. Maximum folate content (61 μg/100 g dry matter (DM)) occurred at 30 °C. Drying did not affect folate content in germinated grains. After replacement with GWF, folate content in both flour and bread increased 1.5- to 4-fold depending on the level of replacement. Rheological properties of dough were adversely affected by increasing replacement level (as determined by farinograph). While the folate content in bread was as high as 66 μg/100 g DM at complete replacement of flour with sieved GWF, the bread was dark and layers were not separated. After replacement of half of the flour with sieved GWF (50 g/100 g), the baladi bread was acceptable with respect to colour and layer separation. The folate content in this bread was 50 μg/100 g DM, compared with 30 μg/100 g DM in bread without GWF (0 g/100 g).  相似文献   

3.
L. Flander  T. Suortti  K. Katina  K. Poutanen 《LWT》2011,44(3):656-664
The aim of this work was to study the effects of sourdough fermentation of wheat flour with Lactobacillus plantarum, on the quality attributes of mixed oat-wheat bread (51 g whole grain oat flour and 49 g/100 g white wheat flour). Emphasis was laid both on β-glucan stability as well as bread structure and sensory quality. The variables of the sourdough process were: dough yield (DY), fermentation time, fermentation temperature, and amount of sourdough added to the bread dough. The sourdough process was shown to be a feasible method for mixed oat-wheat bread, and, when optimized, provided bread quality equal to straight dough baking. A small amount (10g/100 g dough) of slack sourdough fermented at high temperature for a long time resulted in the most optimal sourdough bread with the highest specific volume (3.5 cm3/g), the lowest firmness after 3 days storage (0.31 kg), and low sensory sourness with high intensity of the crumb flavour. Wheat sourdough parameters did not affect the content of oat β-glucan in the bread. Additionally, both straight dough and sourdough bread contained 1.4-1.6 g β-glucan/100 g fresh bread. The average molecular weight of β-glucan was 5.5 × 105 in both types of bread, while that of oat flour was 10 × 105. This indicates that a slight degradation of β-glucan occurred during proofing and baking, and it was not affected by variation in the acidity of the bread between pH 4.9-5.8.  相似文献   

4.
The impact of associated viscous dietary fibres (hydroxypropylmethylcellulose semi‐firm – SFE‐ and weak – NE‐gel forming, and barley ß‐glucan, BBG) incorporated at different amounts (1.6–7.5%, flour basis) into gluten‐free rice‐based dough formulations on the breadmaking performance and staling behaviour of hydrated (70–110%, flour basis) fibre‐flour composite blends has been investigated. Single BBG addition fails to mimic gluten visco‐elasticity properly, but simultaneous incorporation of either SFE or NE contributes to bread improvement in terms of bigger volume and smoother crumb. 3.3 g of BBG (70% purity) and 104 mL of water addition to 100 g rice flour provided sensorially accepted breads (7.6/10) with a theoretical ß‐glucan content of 1.24 g per 100 g GF bread that would allow a daily ß‐glucan intake of 3 g provided a bread consumption of 240 g day?1. Complementary tests should be carried out to know the amount and molecular weight of ß‐glucan in the final bread before assuring the nutritional benefit of this addition.  相似文献   

5.
The ability of white (W) and yellow (Y) maize flour as basic ingredients to make nutritious and healthy breads meeting functional and sensory standards is investigated. Resistant starch (R) and common wheat flour (WF) were incorporated into formulations as single and associated extra ingredients, and dough machinability, bread nutritional and functional profiles, starch hydrolysis kinetics and keeping behaviour were assessed in blended maize matrices and compared with the maize and wheat flour counterparts. Simultaneous replacement of maize flour samples by R and WF at 40 % significantly modified textural profile, crumb grain features and firming kinetics, and free polyphenol pattern of breads thereof compared to the respective Y or W maize counterparts. Bigger specific volume (+28 % Y-R-WF, +36 % W-R-WF), softer crumb bread (?64 % Y-R-WF, W-R-WF), more aerated structure and homogeneous crumb grain, and lower and slower staling kinetics are observed in composite Y and W maize-based breads, respectively. Nutritional information on maize-based blended breads showed most appealing nutritional quality than WF breads, in terms of lower digestible starch (up to ?21 % in Y-R-WF, W-R-WF, WR) and rapidly digestible starch (up to ?37 % in W-R-WF), higher slowly digestible starch (up to three times in WR) and resistant starch contents (from five to six times in Y-R-WF, W-R-WF, W-R, Y-R) of medium-high sensorially rated bread matrices. All single and blended maize-based breads can be labelled as high-fibre breads (6 g dietary fibre (DF)/100 g food). According to health-related benefits and prebiotic dosage of resistant starch a daily intake of 100 g of single Y-R, W-R, W-R-WF and W-R-WF provides enough resistant starch to positively affect postprandial glucose and insulin levels, while 170 g covers the amount necessary to enhance health.  相似文献   

6.
The by-product of plant-based beverages, okara, can be dried in a nutritious flour, but it generates dense bakery products due to high water absorption. Gluten-free bread often tastes dry, so the objective of this work was evaluating okara flour as thickener for mouthfeel enhancement. Proximate analysis revealed that chickpea okara contained more starch than soy (35.3 vs. 3.41 g/100 g), less insoluble fibre (43.3 vs. 57.0 g/100 g) and protein (9.51 vs. 18.1 g/100 g). Water absorption capacity was higher in okara than flour and for soy (8.29 vs. 6.01 g g−1, respectively). When added to a gluten-free batter, both okara flours significantly increased viscosity. Upon addition of either okara to gluten-free bread (2% w/w) moisture content increased from 31.6 to 33.5 and 36.5 g/100 g, while crumb hardness increased by up to 45% and specific loaf volume decreased by up to 42%. Soy okara flour enhanced moistness of gluten-free bread.  相似文献   

7.
Potatoes have been added to bread for improvement of texture and moisture retention. The functional quality and starch digestibility in bread containing 5%, 10% or 15% potato flour were evaluated. Farinograph absorption of wheat and potato flour blends ranged from 59.0% to 77.7%. Bread with potato flour had significantly (P < 0.05) lower bread firmness during storage. There was a significant (P < 0.05) decrease in starch molecular weight as the level of potato flour increased. Inclusion of potato flour in these breads significantly (P < 0.05) increased the level of resistant starch (RS), while significantly (P < 0.05) decreasing the estimated glycemic index (eGI). Bread with no potato flour had 5.2% RS and an eGI of 95, while the bread with 15% potato flour had 11.3% RS and an eGI of 87. Overall, the addition of potato flour may reduce dough strength and loaf volume, but it reduced staling and increased resistant starch content of the bread.  相似文献   

8.
BACKGROUND: Roller milling of hull‐less barley generates fibre‐rich fractions (FRF) enriched in non‐starch polysaccharides from the endosperm cell walls (β‐glucans and arabinoxylans). This investigation was initiated to compare the suitability of different baking processes and to determine the optimal conditions for incorporation of barley FRF into pan bread. RESULTS: Addition of FRF from waxy and high‐amylose starch hull‐less barley genotypes was evaluated in pan bread prepared from Canada Western Red Spring (CWRS) and Canada Western Extra Strong (CWES) wheat flour. Three bread processes were used: Canadian short process (CSP), remix‐to‐peak, and sponge‐and‐dough. Addition of 20% FRF (equivalent to enrichment with 4.0 g of arabinoxylans and β‐glucans per 100 g of flour) disrupted dough properties and depressed loaf volume. CSP was not suitable for making FRF‐enriched bread because dough could not be properly developed. FRF‐enriched remix‐to‐peak bread was better, especially for the stronger CWES flour. The better bread quality compared to CSP was probably due to redistribution of water from non‐starch polysaccharides to gluten during fermentation prior to remixing and final proof. The sponge‐and‐dough process produced the best FRF‐enriched bread because of the positive effect of sponge fermentation on gluten development and hydration. FRF was added at the dough stage to fully developed dough. CONCLUSION: The method of bread production strongly influences bread quality. Pre‐hydration of FRF improved bread quality. CWRS and CWES flour produced comparable FRF‐enriched sponge‐and‐dough bread. Addition of xylanase to the sponge‐and‐dough formula improved the loaf volume, appearance, crumb structure and firmness of FRF‐enriched bread. Copyright © 2007 Society of Chemical Industry  相似文献   

9.
Resistant starch (RS) is a nutritional ingredient commonly used in bread products as dietary fibre (DF). This ingredient presents similar physiological functions than those imparted by DF, promoting beneficial effects such as the reduction of cholesterol and/or glucose levels on blood. Quality improvement of bread containing RS, with an optimized combination of emulsifiers, will be useful in the development of new and healthy bakery products. The objective of this research was to analyse the effects of different emulsifiers on several quality parameters of dough and bread prepared with wheat flour partially substituted with resistant starch as a dietary fibre. A blend of wheat flour/maize-resistant starch (MRS; 87.5:12.5) with sodium chloride, ascorbic acid, α-amylase, compressed yeast and water was utilized. Emulsifiers were incorporated to formulations in different levels according to a simplex centroid design. The viscoelastic, textural and extensional properties of dough were analysed. Bread quality was evaluated throughout the gelatinization and retrogradation of starch, specific volume of loaves, and texture and firmness of bread crumb. The incorporation of 12.5% (w/w) of MRS to wheat flour caused an increase of 5% in water absorption. Stability decreases markedly (from 9.9 to 2.2 min) and the mixing tolerance index increased (from 79 to 35 UF). The sodium stearoyl lactylate (SSL)–diacetyl tartaric acid esters of monoglycerides (DATEM) mixture increased hardness and resistance to extension on dough, whilst dough containing Polysorbate 80 (PS80) was softer; nevertheless, both types of dough retained less CO2. An optimized concentration of the three emulsifiers (0.24% SSL, 0.18% PS80, 0.08% DATEM, w/w) was obtained by surface response methodology. The bread prepared with this combination of emulsifiers presented a considerable specific volume with a very soft crumb.  相似文献   

10.
The importance of polyunsaturated fatty acids (PUFA) in health and nutrition is well recognised. Flaxseed (Linum usitatissimum) has recently gained a lot of attention as functional food because of its unique nutrient profile. In the present work efforts were made to develop omega-3 enriched functional bread using raw and roasted ground flaxseed flour. Initially optimisation of each bread ingredient viz., salt, sugar, and shortening, GMS, yeast and water was carried out on the basis of sensory overall acceptability score. The standardised bread was incorporated with raw and roasted ground flaxseed (5, 10, and 15 g/100 g) flour. The effect of flaxseed incorporation on bread dough rheology parameters viz., dough stickiness and water absorption was studied. Increase in water absorption and dough stickiness was observed with increased flaxseed level. Further breads were evaluated for sensory parameters, colour and texture. The crumb softness increased with increase in flaxseed level. Bread was optimised at 10(g/100 g) flaxseed level based on sensory evaluation.  相似文献   

11.
This study aimed to investigate effect of butter content (0–30 g/100 g flour) and baking conditions hot air baking (HA), microwave baking (MW) and hot air‐microwave baking (HA‐MW) on quality of the rice flour dough and bread. The increased butter (up to 15 g butter/100 g flour) enhanced elastic modulus (G′) and viscous modulus (G″) of dough and specific volume of bread. Additionally, the increased butter improved crust colour and reduced hardness of the bread. The HA‐MW and MW conditions were useful for the gluten‐free bread by reducing baking time and predicted glycemic index (GI), regardless of butter content. However, enthalpy of retrogradation and crystallinity in the HA‐MW and MW bread stored at 4 °C for 7 days were increased and higher than those of the HA bread, indicating a faster staling. The predicted GI of both MW and HA‐MW bread remained at a medium level during storage.  相似文献   

12.
Green plantain flour (GPF) was used as a functional ingredient to produce gluten‐free (GF) bread based on a flour blend of rice flour and GF wheat starch (50:50) to improve their functional properties and to increase their resistant starch (RS) content. In pretrials, an addition of up to 30% GPF provided acceptable bread quality with maximum RS content. Based on these trials, two 23 factorial screening experimental designs were applied, where water content, baking temperature and baking time of GF bread containing 30% GPF addition were optimised. The best baking conditions to achieve satisfying GF bread quality – higher loaf volume, softer crumb firmness and regular porosity structure at the highest RS content could be defined to a maximum addition of water at 160%, baking temperature of 180 °C and baking time of 90 min. The incorporation of GPF showed good potential to improve the quality of GF bread.  相似文献   

13.
This study evaluates the effect of the incorporation of whole‐grain wheat flour (WGWF) and of extrusion process parameters on the nutritional and technological quality of breakfast cereals. The corn flour‐based breakfast cereals were elaborated in a twin‐screw extruder following a rotatable central composite design with varied WGWF (0–100%), feed moisture (14–24%) and zones 3 and 4 barrel temperature (76–143 °C). Dietary fibre and resistant starch were significantly increased with WGWF addition. Total and digestible starch showed a decrease when WGWF increased. The RVA parameters were significantly affected by all the extrusion conditions and WGWF content. The cell structure of the extrudates was dependent of WGWF and moisture.  相似文献   

14.
Wheat flour (WF) flat bread was prepared with varying levels of wholegrain “white” sorghum flour (WSF) or “red” sorghum flour (RSF). Farinograph dough rheology indicated reduced water absorption and stability time and increased breakdown with increased sorghum flour addition. The total phenolic content and antioxidant capacity of the 40% RSF flat bread >40% WSF flat bread > control (100% WF) flat bread. The rapidly digestible starch (RDS) level was lower in the 40% WSF and 40% RSF flat breads than the control (100% WF). Hedonic sensory evaluation indicated that sorghum addition did not reduce the sensory preference for the flat breads. Human clinical studies are now required to determine if the lower levels of RDS and higher antioxidants observed in the sorghum containing flat breads translate into beneficial low glycemic index and reduced oxidative stress in vivo.  相似文献   

15.
Phenol and fibre‐rich flour obtained by air‐drying and grinding of lettuce waste was partially substituted (26, 53, 170 and 575 g kg?1) to wheat flour to produce functional bread. The addition of flour progressively decreased dough leavening capacity while increased bread moisture and firmness. Lettuce waste flour significantly increased the polyphenolic content (up to 3.4 g GAE kg?1) of bread samples and enhanced their antioxidant activity by 200%. Bread containing 170 and 575 g kg?1 of lettuce waste flour presented sensory properties and consumer acceptability comparable to those of commercial wholemeal bread with similar rye bran content. Bread containing at least 170 g kg?1 of lettuce waste flour could be associated to nutritional claims related to its enhanced fibre content (>30 g kg?1). Data obtained by conjoint analysis demonstrate the possibility of increasing consumer preference for lettuce waste flour bread by proper nutritional (fibre content) and sustainability (lettuce waste valorisation) claims.  相似文献   

16.
Nada Nikoli?  Marijana Saka? 《LWT》2011,44(3):650-655
In this paper, the rheological properties and lipids composition with an emphasis on acylglycerols and fatty acids composition of dough with various portions of buckwheat flour (BWF) are investigated. The results show lipids from wheat-buckwheat flour mixture has higher ratio of total unsaturated to saturated fatty acids content (3.77-4.78 g/100 g) than those of wheat flour only (3.71 g/100 g). The value of dough water absorption (WA), development time (DT), dough stability (DSt), gelatinization temperature (Tmax) and maximal pasta viscosity (ηmax) increases when content of free fatty (FFA) acids increases, i.e. when buckwheat flour portion in flour mixtures increases, so FFA content has a proper influence on these dough properties. Dough with buckwheat flour has higher WA (54.3-56.0 ml/100 g), Tmax (82.0-84.1 °C) and ηmax (630-860 AU), longer Dst (0.7-4.6 min) and lower Dsf (82-90 FU) than dough with wheat flour only, whose appropriate values are 54.3 ml/100 g, 81.2 °C, 480 AU, 0.3 min and 90 FU, respectively. So, the flour mixture with buckwheat flour of at least 5 g/100 g can be considered good quality flour.  相似文献   

17.
Wheat flour was ground in an ultrafine pulveriser to obtain different levels of damaged starch (DS). The effect of DS content on physicochemical properties of flour and quality attributes of Chinese noodles and northern‐style Chinese steamed bread were investigated. Results showed that the degree of starch damage raised from 6.54% to 12.06% as grinding intensity increased from 0 to 130 Hz (P < 0.05). The falling number, sedimentation value, starch pastes' viscosity, dough proofing stability were negatively, while water absorption, pastes thermal stability, the degree of starch pastes and dough level were positively correlated with DS content, respectively (P < 0.05). The increase in DS content from 6.54% to 8.86% did not lead to a deterioration of texture characteristic, which might be attributed to the slight declining in hardness while enhancing in springiness and cohesiveness. The flour with DS content of 6.54–9.66% was suitable for steamed bread making.  相似文献   

18.
Addition of raw black rice flour leads to deficient processability on bread making quality. One of the effective methods to modify the functional properties of black rice flour (BRF) composite dough is to extrude black rice flour (EBRF) before incorporation. This study investigated and compared the effect of BRF and EBRF addition level of 10%–50% on the rheology, microstructure of dough and bread quality. The rheological properties of composite dough were recorded by Mixolab, stress relaxation and tensile test. The substitution of EBRF presented higher water absorption but lower development time, protein weakening, starch gelatinization, starch gel stability and starch retrogradation than wheat flour dough. Both the BRF and EBRF dough presented solid-like behaviour, while the EBRF dough showed more viscous, higher resistance and extensibility than BRF dough. The dough microstructure of dough was observed by SEM, and a more compact structure of EBRF dough could be seen than BRF dough. The incorporation of EBRF in bread quality presented higher specific volume, lower bake loss and firmness than BRF bread. These findings indicated the potential utilisation value of extruded black rice flour in bread making.  相似文献   

19.
D. Sabanis 《LWT》2009,42(8):1380-1389
The enrichment of gluten-free baked products with dietary fibre seems to be necessary since it has been reported that coeliac patients have generally a low intake of fibre due to their gluten-free diet. In the present study different cereal fibres (wheat, maize, oat and barley) were added at 3, 6 and 9 g/100 g level into a gluten-free bread formulation based on corn starch, rice flour and hydroxypropyl methyl cellulose (HPMC). Doughs were evaluated based on consistency, viscosity and thermal properties. Results showed that maize and oat fibre can be added to gluten-free bread with positive impact on bread nutritional and sensory properties. All breads with 9 g/100 g fibre increased the fibre content of control by 218%, but they were rated lower than those with 3 and 6 g/100 g fibre due to their powdery taste. The formulation containing barley fibre produced loaves that had more intense color and volume comparable to the control. During storage of breads a reduction in crumb moisture content and an increase in firmness were observed. The micrographs of the crumb showed the continuous matrix between starch and maize and/or oat fibre obtaining a more aerated structure.  相似文献   

20.
Response surface methodology was used to investigate the influence of three factors namely mill aperture, feed rate and moisture content of wheat grain on the damaged starch content of whole wheat flour from Lokwan wheat cultivar, dough stickiness and chapatti (Indian unleavened flat bread) quality. Each predictor variable was tested at three levels. Aperture was varied as 2, 3 and 4 mm in a stone mill, feed rate as 0.21, 0.63 and 1.05 min for 200 g wheat grains and grain moisture content as 8.6, 14.3 and 20% w/w. Flours containing varying amounts of damaged starch ranging from 6.1% to 26.90% were obtained and these were evaluated for dough stickiness and chapatti quality. Dough stickiness was increased with decreased aperture. With decreased aperture and increased grain moisture content softness of the chapatti was improved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号