首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, new glass compositions were prepared in the ternary system GeO2–K2O–Ta2O5. Potassium oxide was added to reach the complete melt of the starting mixture and two composition series were investigated: the first one with a constant K2O molar content of 10% in the ternary system (90–x)GeO2–10K2O–xTa2O5 and the second one with the same molar content of K2O and Ta2O5 in the ternary system (100–2x)GeO2xK2O–xTa2O5. Homogeneous and transparent glasses could be obtained between x = 0 and 20. X‐ray diffraction analyzes of samples with x = 25 identified orthorhombic Ta2O5 in the first series and an isostructure of K3.8Ge3Nb5O20.4 in the second series where it is assumed that Ta5+ ions are inserted in the Nb5+ sites. As one of our goal with these materials is related with the preparation of glass‐ceramics containing Ta2O5 nanocrystals, the first series has been selected for further characterizations. An increase in glass‐transition temperatures with increasing Ta2O5 content as well as an increase of the thermal stability from x = 0 to 10 has been identified by differential scanning calorimetry. For higher contents, crystallization events were identified. Fourier transform infrared and Raman spectroscopic characterizations allowed to point out the intermediary behavior of Ta2O5 in the vitreous network where TaO6 octahedra are inserted inside the germanate network with TaO6 clusters identified at higher Ta2O5 contents. Heat‐treated samples with high tantalum contents (x = 15 and 20) exhibit preferential precipitation of orthorhombic Ta2O5 with nanometric size, suggesting the possibility of obtaining transparent glass‐ceramics for optical applications.  相似文献   

2.
Phosphate-based glasses of composition xNa2O−(45+(10−x))CaO−45P2O5 with different Na2O, CaO (= 1, 5, 10, 15, and 20 mol%), and invariable P2O5 (45 mol%) contents were prepared using the rapid melt quench technique. The obtained thermal data from differential thermal analysis revealed a decline in glass transition (Tg) and crystallization (Tc) temperatures of glasses against the compositional changes. The inclusion of Na2O at the cost of CaO in the glass network led to a reduction in its thermal stability. The thermal treatment carried out on glasses helped to derive their glass-ceramic counterparts. The amorphous and crystalline features of samples were characterized using X-ray diffraction patterns. The crystalline species that emerged out of the calcium phosphate phases confirmed the dominance of Q1 and Q2 structural distributions in the investigated glass-ceramics. The obtained scanning electron micrographs and atomic force microscopic images confirmed the surface crystallization and textural modification of the samples after thermal treatment. The N2-adsorption–desorption studies explored the reduction of porous structures due to thermal treatment on the melt-driven glass surface. The measured elastic moduli and Vicker's hardness values of the glasses showed an increase after thermal treatment, which were reduced against the inclusion of alkali content in both glass and glass-ceramics.  相似文献   

3.
Niobium alkali germanate glasses were synthesized by the melt‐quenching technique. The ternary system (90‐x)GeO2xNb2O5–10K2O forms homogeneous glasses with x ranging from 0 to 20 mol%. Samples were investigated by DSC and XRD analysis, FTIR and Raman spectroscopy, and optical absorption. Structural and physical features are discussed in terms of Nb2O5 content. The niobium content increase in the glass network strongly modifies the thermal, structural and optical properties of alkali germanate glasses. DSC, Raman and FTIR analysis suggest niobium addition promotes NbO6 groups insertion close to GeO4 units of the glass network. XRD analysis also pointed out that samples containing high niobium oxide contents exhibit preferential niobium oxide‐rich phase after crystallization after heat treatment, which is similar to orthorhombic Nb2O5. Absorption spectra revealed high transmission range between 400 nm to 6.2 μm, added to a considerably decreased hydroxyl group content as the addition of niobium in the alkali germanate network. The niobium oxide‐rich phase crystallization process was studied and activation energy was determined, as well as nucleation and crystal growth temperatures and time for obtaining transparent glass‐ceramics.  相似文献   

4.
The current study is concerned with the preparation and characterization of tantalum oxide-loaded Pt (TaOx/Pt) electrodes for hydrogen spillover application. XPS, SEM, EDX and XRD techniques are used to characterize the TaOx/Pt surfaces. TaOx/Pt electrodes were prepared by galvanostatic electrodeposition of Ta on Pt from LiF-NaF (60:40 mol%) molten salts containing K2TaF7 (20 wt%) at 800 °C and then by annealing in air at various temperatures (200, 400 and 600 °C). The thus-fabricated TaOx/Pt electrodes were compared with the non-annealed Ta/Pt and the unmodified Pt electrodes for the hydrogen adsorption/desorption (Hads/Hdes) reaction. The oxidation of Ta to the stoichiometric oxide (Ta2O5) increases with increasing the annealing temperature as revealed from XPS and X-ray diffraction (XRD) measurements. The higher the annealing temperature the larger is the enhancement in the Hads/Hdes reaction at TaOx/Pt electrode. The extraordinary increase in the hydrogen adsorption/desorption at the electrode annealed at 600 °C is explained on the basis of a hydrogen spillover-reverse spillover mechanism. The hydrogen adsorption at the TaOx/Pt electrode is a diffusion-controlled process.  相似文献   

5.
An Al/Ta bilayer specimen prepared by a successive sputter-deposition of a 150-nm tantalum layer and a 180-nm aluminium layer onto a silicon wafer is anodically processed in a sequence of steps in oxalic acid electrolytes, at voltages of up to 53 V, which generates a 260-nm alumina film with well-ordered nanoporous structure. Further potentiodynamic reanodizing the specimen to 220 V causes the simultaneous growth of a 65-nm tantalum oxide layer beneath the alumina film and an array of oxide ‘nanocolumns’ (∼50 mn wide, ∼80 nm apart, ∼7 × 109 cm−2 population density) penetrating the alumina pores and reaching precisely to the top of the alumina film. The complete filling of the alumina pores is assisted by the high Pilling-Bedworth ratio for Ta/Ta2O5 and a substantially increased transport number for tantalum species (0.4), which is an average value of all migrating tantalum ions with different oxidation states. The nanocolumns are shown to be composed of a unique, regular mixture of Ta2O5 (dominating amount), suboxides TaO2 and TaOx (0.5 < x < 1), Al2O3, metallic Ta and Al aggregates, tantalum diboride (TaB2) and oxidized boron from the electrolyte. The ionic transport processes determining the self-organized growth of these planar oxide nanostructures are considered and described conceptually.  相似文献   

6.
Tantalum oxynitride (TaOxN1−x) fibers were synthesized and evaluated for their electrocatalytic hydrogen activity using an in-house developed centrifugal spinning setup. By tailoring the composition of the spinning solution and optimizing collector distance and rotation speed of the spinneret, bead-free TaOxN1−x fibers with a diameter of 800 nm were obtained. The fibers were structurally characterized through phase and elemental analysis, confirming the formation of monoclinic TaOxN1−x with clear splitting of the X-ray photoelectron spectroscopy peaks indicating Ta was in +5 oxidation state. The resulting oxynitride fibers exhibited superior electrocatalytic performance with low overpotentials (250 mV) to generate 10 mA/cm2 compared to Ta2O5 oxide fibers. Interestingly, the enhanced activity of oxynitride fibers was observed to be suppressed in basic medium due to the high oxophilicity of tantalum ions and a negative Gibbs adsorption-free energy, leading to poisoning of the active sites. This work demonstrates a facile pathway for the fabrication of high-performance electrocatalysts, based on TaOxN1−x fibers, from a cost-effective and energy-efficient centrifugal spinning technique.  相似文献   

7.
High refractive index glasses with nominal composition of 0.35La2O3–(0.65?x)Nb2O5xTa2O5 (x ≤ 0.35) were prepared by aerodynamic levitation method. The effect of Ta2O5 substituting on their thermal and optical properties was investigated. All the glasses obtained were colorless and transparent. Differential thermal analyzer results show that as the content of Ta2O5 increased, the thermal stability of the glasses increased but the glass‐forming ability decreased. The transmittance spectra of all the obtained glasses exhibited a wide transmittance window ranging from 380 to 5500 nm. As the content of Ta2O5 increased, the refractive index of the glasses was enhanced from 2.15 to 2.21 and the dispersion was reduced with the Abbe number increasing from 20 to 27.  相似文献   

8.
The compounds formed from the Lu2O3–Ta2O5 system in the composition range 25–60 mol% Ta2O5 were prepared by solid‐state reaction from 1350°C to 2058°C, and the phase transitions were investigated by X‐ray diffraction (XRD). Cubic Lu3TaO7, M′‐LuTaO4, M‐LuTaO4, O‐Ta2O5, and T‐Ta2O5 are observed. With the temperature increase, there is an irreversible phase transition from M′ to M‐LuTaO4 near 1770°C in the composition of 30–52 mol% Ta2O5, and another phase transition from T‐Ta2O5 to O‐Ta2O5 at about 1685°C when the ratio of Ta2O5 is >52 and ≤60 mol%. A phase diagram of the Lu2O3–Ta2O5 system in the range 0–100 mol% Ta2O5 was constructed. These results are helpful to explain the phase transition of Lu2O3–Ta2O5 system and design the preparation technique of LuTaO4 single crystal or ceramic scintillator, which may be applied in the fields of nuclear medicine and high‐energy physics.  相似文献   

9.
TiO2 alloying effect is applied to optimize the thermophysical properties of fluorite-type Sm3TaO7 ceramics synthesized via solid-state reaction, and the influence of TiO2 alloying effect on the optical properties and elastic modulus is determined. According to the decreasing unit cell volume calculated by the X-ray diffraction and the broadening Raman peak, Ti4+ substitutes the same number of Sm3+ and Ta5+ ions of Sm3TaO7 ceramics at the same time. As Ti4+ substitutes Sm3+ and Ta5+ ions, the band gap of TiO2-Sm3TaO7 ceramics decreases from 4.71 to 4.11 eV. The phase transition of Sm3TaO7 ceramics is eliminated by TiO2 alloying effect and the coefficient of thermal expansion is increased. Via TiO2 alloying effect, two different phonon scattering mechanisms: (a) the misfit of atomic weight and ionic radius among Ti4+, Sm3+, and Ta5+ ions; (b) the rattling Ti4+ ions are introduced in Sm3TaO7 ceramics. The lowest thermal conductivity of TiO2-Sm3TaO7 ceramics reaches 1.37 W K−1 m−1 (800°C, 9 mol% TiO2-Sm3TaO7), which is much lower than 7YSZ and Sm2Zr2O7 ceramics. Accordingly, it is believed that TiO2-Sm3TaO7 ceramics are promising thermal barrier coatings.  相似文献   

10.
Tantalum pentoxide (Ta2O5) and its solid solution phases are candidate coatings for components to be used in combustion environments. Thus, it is important to understand the response of Ta2O5 to high‐temperature water vapor, a product of combustion. Thermogravimetric methods are used to examine the oxide in reactant streams of controlled water vapor contents at 1250°C‐1450°C. The observed weight loss indicates a reaction of the general form ½ Ta2O5(s) + x H2O(g)=TaOy(OH)x(g). Methodical variation in the water vapor pressure suggests the products are a mix of TaO(OH)3(g) and Ta(OH)5(g). Evidence of TaO(OH)3(g) was observed with a sampling mass spectrometer. The measured hydroxide and oxyhyroxide vapor fluxes from Ta2O5 are compared with calculated vapor fluxes from SiO2 and Al2O3. Ta2O5 exhibits fluxes similar to those from SiO2 due to gaseous metal hydroxide formation.  相似文献   

11.
Tantalum silicate glasses serve as laser host materials to take advantage of their high refractive index and the ability to tailor their physical properties in the design of high-performance photonic and photoelectric components. However, successful attainment of feature control in tantalum-doped materials remains a longstanding problem due to the limited understanding of local structure around the tantalum ions, a problem that lies at the heart of predicting the micro- and macroscopic properties of these glasses. Herein, we present a novel approach for predicting the local structural environments in tantalum silicate glass based on a phase diagram approach. The phase relations and glass formation region of Li2O–Ta2O5–SiO2 ternary systems are explored to calculate the structure and additive physical properties of lithium tantalum silicate glasses. These measured and calculated results are in good quantitative agreement, indicating that the phase diagram approach can be applied broadly to Li2O–Ta2O5–SiO2 ternary glass systems. Using the phase diagram approach, the local structure of tantalum can be directly obtained. Each Ta atom is surrounded by six atoms, and its polyhedron, the TaO6 octahedron, bonds through oxygen to Li and Ta. As a network modifier, Ta5+ depolymerizes the silicate glass structure by modulating the local structure of lithium atoms in Li2O–Ta2O5–SiO2 ternary glass system. The compositional dependence of structure in lithium tantalum silicate glasses is quantitatively determined based on the structure of the nearest neighbor congruent compound through the lever rule. These findings offer a precise prediction of tantalum silicate glass properties with quantitative control over local structural environment of the disordered materials.  相似文献   

12.
Tantalum (oxy)nitrides (TaOxNy) have been investigated as new cathodes for polymer electrolyte fuel cells without platinum. TaOxNy films were prepared using a radio frequency magnetron sputtering under Ar + O2 + N2 atmosphere at substrate temperatures from 50 to 800 °C. The effect of the substrate temperature on the catalytic activity for the oxygen reduction reaction (ORR) and properties of the TaOxNy films were examined. The catalytic activity of the TaOxNy for the ORR increased with the increasing substrate temperature. The ORR current density at 0.4 V vs. RHE on TaOxNy prepared at 800 °C was approximately 20 times larger than that on TaOxNy prepared at 50 °C. The onset potential of the TaOxNy for the ORR was obtained at the ORR current density of −0.2 μA cm−2. The onset potential of the TaOxNy prepared at 800 °C was ca. 0.75 V vs. RHE. The X-ray diffraction patterns revealed that Ta3N5 structure grew as the substrate temperature increased. While, the ionization potentials of all specimens were lower than that of Ta3N5, and decreased with the increasing substrate temperature. The TaOxNy which had Ta3N5 structure and lower ionization potential might have a definite catalytic activity for the ORR.  相似文献   

13.
In this study, we have investigated the use of silver cation as nucleating agent in germanotellurite glass matrix of compositions (100?x) [70TeO2–10GeO2–10Nb2O5–10K2O]–xAg2O (x=0‐6 mol%), in order to promote bulk crystallization. Density measurements, differential scanning calorimetry, X‐ray diffraction, UV‐Vis, and Raman spectroscopies have been performed to study the crystallization process. We have observed bulk crystallization of a unique noncentrosymmetric phase, K[Nb1/3Te2/3]2O4.8, which has been investigated for its second‐order optical activity. Transparent to translucent glass‐ceramics have been successfully tailored under thermal treatment and second harmonic generation signals were recorded on the glass‐ceramic samples as a function of their synthesis procedure. It is suggested that the second‐order optical properties observed are strongly related to the organization of crystallites within phase‐separated domains.  相似文献   

14.
Ceramics samples of Sr0.9La0.1Ti1−xTaxO3 have been synthesized by conventional solid-state reaction method. X-ray powder diffraction characterization indicates that all samples are of single phase with cubic symmetry. The high-temperature electrical resistivity decreases with the increasing of tantalum content except for x = 0.05 sample. Negative Seebeck coefficients have been obtained for all samples, which means conduction mechanism being n-type. The absolute Seebeck coefficient decreases with the increase of tantalum concentration. The power factor decreases with increasing of tantalum substitution. Small amount tantalum doping can reduce the thermal conductivity. The lowest thermal conductivity obtained is 2.9 W/mK for x = 0.03 at 1074 K. The highest thermoelectric figure of merit still observes in Sr0.9La0.1TiO3, reaches 0.29 at 1046 K, which is a relatively higher value in n-type oxide thermoelectric materials.  相似文献   

15.
Influences of thermal annealing on structural, optical and morphological properties of the tantalum pentoxide (Ta2O5) thin films were investigated and anti-reflective performances were discussed in detail. The Ta2O5 thin films were deposited onto Corning Glass (CG), Si, GaAs and Ge substrates by radio-frequency (RF) magnetron sputtering technique using Ta2O5 ceramic target. The obtained secondary ion mass spectroscopy (SIMS) analysis results showed that uniform Ta and O distribution have formed throughout depth of the films deposited on substrates. The X-Ray diffraction (XRD) results indicated that the annealed Ta2O5 thin films at 100, 200, 300 and 500?°C have exhibited amorphous (a-Ta2O5) characteristic. The increased temperature has resulted in increasing the surface roughness from 0.67 to 1.60?nm. The optical transmittance of the annealed thin films has increased from 70.85 to 80.32% with increasing temperature. Spectroscopic ellipsometer (SE) measurement results demonstrated that the increased temperature has increased the refractive index of the Ta2O5 thin film from 2.11 to 2.18. The Ta2O5 thin film has reduced the average optical reflectivity of the Si, GaAs and Ge substrates by 78, 55 and 70%, respectively. In addition, thermal annealing process has decreased the optical reflectivity of the film. The obtained experimental results showed that single-layer Ta2O5 thin films can be used as anti-reflective layer in optical and optoelectronic applications. The best optical transmittance and anti-reflective performance were obtained at the annealing temperature of 500?°C.  相似文献   

16.
《Ceramics International》2017,43(15):12061-12069
Melt-quenching method was employed for obtaining a glass-ceramic with the following composition 42P2O5·40CaO·5SrO·10Na2O·3TiO2 (mol%) glass. The crystallization and sintering behavior of glass have been studied by using DTA, HSM, XRD, FTIR and SEM methods. It was determined that the surface and volume crystallization mechanisms act simultaneously in bulk glass samples. The comparison of DTA and HSM data revealed that the sintering and crystallization processes are independent. The sintered calcium phosphate glass-ceramic which contained bioactive β-Ca3(PO4)2 and β-Ca2P2O7 phases was successfully prepared. It was determined that during crystallization the primary phase in the precipitate was β-Ca(PO3)2. Other phases appearing in the resulting glass-ceramic were: α-Ca2P2O7, γ-Ca2P2O7, Ca4P6O19 and CaHPO4(H2O)2. Crystalline phases containing Sr and Ti were not detected. SEM analysis of the glass-ceramic microstructure revealed surface crystallization of glass particles and plate-like morphology of crystal growth. The result of the in vitro bioactivity showed that no apatite layer was formed on the surface of the as-prepared glass-ceramic samples after immersion in the simulated body fluid (SBF).  相似文献   

17.
Thermal expansion of high-purity niobium and tantalum pentoxides is studied. It is shown that specimens of Nb2O5 and Ta2O5 obtained by melting in an optical furnace and subsequent rapid cooling in air to room temperature possess a domain of negative thermal expansion and hysteresis of the dependence of the elongation on the temperatures of heating and cooling. Since the volume of a test cell computed from data of x-ray measurement increases with growth in the temperature, the negative values of the elongation of specimens of melted Nb2O5 and Ta2O5 can be explained by merging of microcracks formed due to anisotropy of the thermal expansion when the ingots are cooled. When designing and fabricating ceramic articles with protective coatings from niobium and titanium pentoxides to be used at 1000°C, preference should be given to ceramics with low and even negative values of CLTE. __________ Translated from Novye Ogneupory, No. 4, pp. 38–43, April, 2007.  相似文献   

18.
《Ceramics International》2023,49(3):4872-4880
CaO–B2O3–SiO2–Ta2O5 (CBST) glass-ceramics, with different Ta2O5 content, (up to 6 mol%), have been prepared by using glass melt quenching followed by heat treatment between 800 and 880 °C. The Fourier Transform Infrared (FTIR) results showed that the stronger the attraction of Ta5+ to the oxygens in the BO33? and SiO32? structures, the more easily the B–O and Si–O bonds will be destroyed. The underlying reason is most probably the high field strength of Ta5+, which results in a weakening of the vibration intensities of the [BO3] and [SiO4] units. Moreover, the Differential Scanning Calorimetry (DSC) results showed that the softening point (Tg), crystallization starting temperature (Tc1), and exothermic crystallization peak temperature (Tp1), of the CaSiO3 phase, shifted to higher values with the addition of Ta2O5. Also, the crystallization activation energy (Ea) and the glass stability factor (ΔT) of the CaSiO3 phase increased, which indicated that the CaSiO3 phase of the glass became inhibited by the addition of Ta2O5. It was, thus, obvious that there was a need of glass characterization. The results of the crystallization kinetics showed that the critical cooling rate decreased with the addition of Ta2O5, which indicated that the viscosity of the system had increased. The CBST glass-ceramics, containing 1 mol% Ta2O5, that were sintered at 875 °C for 15 min showed excellent dielectric properties: εr = 6.22 and tanδ = 1.19 × 10?3 (1 MHz). To sum up, CaO–B2O3–SiO2–Ta2O5 glass-ceramics are potential low temperature co-fired ceramic substrate materials.  相似文献   

19.
Bismuth oxide in δ-phase is a well-known high oxygen ion conductor and can be used as an electrolyte for intermediate temperature solid oxide fuel cells (IT-SOFCs). 5-10 mol% Ta2O5 are doped into Bi2O3 to stabilize δ-phase by solid state reaction process. One Bi2O3 sample (7.5TSB) was stabilized by 7.5 mol% Ta2O5 and exhibited single phase δ-Bi2O3-like (type I) phase. Thermo-mechanical analyzer (TMA), X-ray diffractometry (XRD), AC impedance and high-resolution transmission electron microscopy (HRTEM) were used to characterize the properties. The results showed that holding at 800-850 °C for 1 h was the appropriate sintering conditions to get dense samples. Obvious conductivity degradation phenomenon was obtained by 1000 h long-term treatment at 650 °C due to the formation of α-Bi2O3 phase and Bi3TaO7, and 〈1 1 1〉 vacancy ordering in Bi3TaO7 structure.  相似文献   

20.
La2O3–Ga2O3M2O5 (M = Nb or Ta) ternary glasses were fabricated using an aerodynamic levitation technique, and their glass‐forming regions and thermal and optical properties were investigated. Incorporation of adequate amounts of Nb2O5 and Ta2O5 drastically improved the thermal stabilities of the glasses against crystallization. Optical transmittance measurements revealed that all the glasses were transparent over a wide wavelength range from the ultraviolet to the mid‐infrared. The refractive indices of the glasses increased and the Abbe number decreased upon substituting Ga2O3 with Nb2O5, and the decrease in the Abbe number was significantly suppressed when Ta2O5 was incorporated into the glass. As a result, excellent compatibility between high refractive index and lower wavelength dispersion was realized in La2O3–Ga2O3–Ta2O5 glasses. Analysis based on the single‐oscillator Drude–Voigt model provided more systematical information and revealed that this compatibility was due to an increase in the electron density of the glass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号