首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We prepared 1 cm × 1 cm × 10 cm geopolymer bars from sodium silicate and six commercial metakaolins, both unreinforced and reinforced with 20 wt% of 55-μm wollastonite (CaO·SiO2) needles, to evaluate the relative contributions of five-coordinated aluminum in the metakaolin and the presence of a reinforcing phase to the flexural strength of geopolymers. Two metakaolins, with about 20 at% and lower of five-coordinated aluminum content, did not react sufficiently with our processing method and could not be tested. The flexural strengths of the other four geopolymers were similar at about 11–14 MPa unreinforced and 22–29 MPa reinforced. The effect of reinforcement on flexure strength is more significant than the choice of metakaolin provided that the metakaolin is reactive. The geopolymerization reaction depends on the amount of five-coordinated aluminum present in the metakaolin and is the primary difference between the samples that reacted and those that did not react.  相似文献   

2.
Geopolymers are an inorganic polymeric material composed of alumina, silica, and alkali metal oxides. Monolithic geopolymer is brittle and susceptible to dehydration cracking at elevated temperatures. The addition of a reinforcing phase not only improves strength and toughness but also maintains the structural integrity of the material at elevated temperatures. For this study, potassium‐based geopolymer (KGP) is reinforced with varying weight percent of chamotte particles. Chamotte is kaolinite grade clay calcined at 1350°C to produce 38% crystalline mullite, as well as metastable cristobalite and quartz. The chemical composition of the chamotte is almost identical to that of the metakaolin used to create the geopolymer, however, its crystalline nature prevents reactivity with the caustic potassium silicate solution and it remains as a particulate reinforcement. Flexural strength is evaluated at room temperature and in situ at elevated temperatures to just below the leucite crystallization temperature. Reinforcement with 25 wt% chamotte has shown a two‐fold increase in room‐temperature flexural strength. Flexural strength is also evaluated at room temperature after heating above the leucite crystallization temperature to determine if the chamotte aids in maintaining structural integrity during the volumetric contraction and destructive transformation from cubic to tetragonal symmetry upon forming leucite.  相似文献   

3.
Geopolymer composites containing refractory, chopped basalt fibers and low-melting glass were made and systematically heat-treated at higher temperatures. Potassium-based geopolymer of stoichiometric composition K2O·Al2O3·4SiO2·11H2O was produced by high shear mixing from fumed silica, deionized water, potassium hydroxide, (i.e., water glass) and metakaolin. With the addition of low-melting glass (Tm ~815°C) the flexure strengths of the composites increased to ~6 MPa after heat treatment above 900°C to 1100°C. A Weibull statistical analysis was performed showing how the amorphous self-healing effect of the glass frit significantly improved the flexure strength of the geopolymer and ceramic composites after high-temperature exposure. At temperatures up to 900°C, the geopolymer-basalt composite remained amorphous and the low-melting glass frit flowed into the dehydration cracks in the geopolymer matrix. This type of composite could be described as amorphous self-healed geopolymer (ASH-G). At ~1000°C, the geopolymer converted to primarily a crystalline leucite ceramic, but the basalt fiber remained intact, and the melted glass frit flowed and sealed the cracks developed at that temperature. This type of composite could then be described as amorphous self-healed ceramic (ASH-C). A temperature of 1150°C was determined to be optimum as at 1200°C the basalt fibers melted and the strength of the reinforcement was lost in the composites. The amorphous self-healing effect of the glass frit significantly improved the room temperature flexure strength of the heat-treated geopolymer-based composites.  相似文献   

4.
《Ceramics International》2022,48(18):25918-25922
Porous alumina ceramics with alumina platelets was prepared by vapor-solid reaction sintering of AlOF mesophase gas by the reaction of HF and Al2O3. The effect of heating treatment temperatures on porosity, the formation of inter-locked platelets structure and compressive strength of porous alumina ceramics was determined by Archimedes' method, XRD, SEM and compressive tests. The results indicated that after heating at temperatures from 1300 °C to 1600 °C, the porosity of alumina ceramics decreased from 61.6% to 48.4%. Increasing the heating treatment temperature was beneficial to form inter-locked structure between alumina platelets. The maximum compressive strength of porous ceramics with porosity of 48.4% can reach 29.8 MPa heated at 1600 °C; this strength was attributed to the strong bonding between the alumina platelets.  相似文献   

5.
Potassium-based, geopolymer composites were made with BASF® metakaolin and Mymensingh clay-derived metakaolin from Bangladesh. Since the natural Mymensingh clay contained 40 wt.% quartz, this same amount of quartz particulates was added to the BASF® metakaolin to make a synthetic analog of the natural calcined clay. By analogy with bone china, bone ash or calcined hydroxyapatite (5CaO•3P2O5 or “HA”) particles, having a Ca: P ratio of 3.3:1, were added to make the three types of geopolymer-based composites described above. For less refractory particulate additions, dicalcium phosphate (DCP) (2CaO•P2O5 or “DCP”) particles, having a Ca: P ratio of 2:1, were also added to another set of geopolymers. The ambient temperature compressive and flexural strengths were measured for all of the geopolymer composites. The HA or DCP reinforced geopolymer composites were fabricated and heat-treated to 1150°C/1 h, after which they were converted to their mineralogical analogs. Their mechanical properties of compressive and 3-point flexural strengths were again measured. Flexural strengths of 22.42 ± 11.0 MPa and 31.97 ± 8.3 MPa were measured in 1 × 1 × 10 cm3 heat-treated geopolymer bars reinforced with 10 wt.% of DCP and in geopolymer reinforced with 10 wt.% DCP +40 wt.% quartz additions, respectively. Significant improvements to ambient temperature properties were observed due to the self-healing effect of the flowing amorphous DCP, whose presence was verified by SEM. The geopolymer samples exhibited reduced water absorption (WA) (on a percentage dry weight basis) of within 0.03-0.5% after being heated at 1100℃/1 h and 1125℃/1 h, as compared with those at room temperature, which varied between 2.56% and 7.89%.  相似文献   

6.
The electrical, thermal, and mechanical properties of porous SiC ceramics with B4C-C additives were investigated as functions of C content and sintering temperature. The electrical resistivity of porous SiC ceramics decreased with increases in C content and sintering temperature. A minimal electrical resistivity of 4.6 × 10?2 Ω·cm was obtained in porous SiC ceramics with 1 wt% B4C and 10 wt% C. The thermal conductivity and flexural strength increased with increasing sintering temperature and showed maxima at 4 wt% C addition when sintered at 2000 °C and 2100 °C. The thermal conductivity and flexural strength of porous SiC ceramics can be tuned independently from the porosity by controlling C content and sintering temperature. Typical electrical resistivity, thermal conductivity, and flexural strength of porous SiC ceramics with 1 wt% B4C-4 wt% C sintered at 2100 °C were 1.3 × 10?1 Ω·cm, 76.0 W/(m·K), and 110.3 MPa, respectively.  相似文献   

7.
Geopolymer composites reinforced with refractory, chopped basalt fibers, and low melting glass were fabricated and heat treated at higher temperatures. K2O·Al2O3·4SiO2·11H2O was the stoichiometric composition of the potassium-based geopolymer which was produced from water glass (fumed silica, deionized water, potassium hydroxide), and metakaolin. Addition of low melting glass (Tm ~815°C) increased the flexure strength of the composites to ~5 MPa after heat treatment above 1000°C to 1200°C. A Weibull statistical analysis was performed exhibiting how the amorphous self-healing and self-glazing effect of the glass frit significantly improved the flexure strength of the geopolymer and ceramic composites after exposure for 1 hour to high temperatures. At 950-1000°C, the K-based geopolymer converted to primarily a crystalline leucite ceramic, but the basalt fiber remained intact, and the melted glass frit flowed out of the surface cracks and sealed them. 1150℃ was determined to be the optimum heat treatment temperature, as at ≤1200°C, the basalt fibers melt and the strength of the reinforcement in the composites is significantly reduced. The amorphous self-healing and amorphous self-glazing effects of the glass frit significantly improved the room temperature flexure strength of the heat-treated geopolymer and ceramic composites.  相似文献   

8.
The hot pressing process of monolithic Al2O3 and Al2O3-SiC composites with 0-25 wt% of submicrometer silicon carbide was done in this paper. The presence of SiC particles prohibited the grain growth of the Al2O3 matrix during sintering at the temperatures of 1450°C and 1550°C for 1 h and under the pressure of 30 MPa in vacuum. The effect of SiC reinforcement on the mechanical properties of composite specimens like fracture toughness, flexural strength, and hardness was discussed. The results showed that the maximum values of fracture toughness (5.9 ± 0.5 MPa.m1/2) and hardness (20.8 ± 0.4 GPa) were obtained for the Al2O3-5 wt% SiC composite specimens. The significant improvement in fracture toughness of composite specimens in comparison with the monolithic alumina (3.1 ± 0.4 MPa.m1/2) could be attributed to crack deflection as one of the toughening mechanisms with regard to the presence of SiC particles. In addition, the flexural strength was improved by increasing SiC value up to 25 wt% and reached 395 ± 1.4 MPa. The scanning electron microscopy (SEM) observations verified that the increasing of flexural strength was related to the fine-grained microstructure.  相似文献   

9.
Hot modulus of rupture of Al2O3-spinel castables containing 5–15 wt% alumina-rich magnesia alumina spinel and 1·7 wt% CaO generally increases with increase in spinel content and temperature from 1000 to 1500°C. The magnitudes of hot modulus of rupture of castables containing 15 wt% spinel and 1·7 wt% CaO are 14·3 MPa at 1400°C and 15·6 MPa at 1500°C, while those of castables containing 20 wt% spinel and 1·7 wt% CaO are 12·5 MPa at 1400°C and 14·7 MPa at 1500°C. The former castables contained 15 wt% spinel of −75 μm size, while the latter contained 10 wt% spinel of +75 μm size and another 10 wt% spinel of −75 μm size. The bond linkage between the CA6 and spinel grains in the matrix is believed to cause both the spinel content and temperature dependence of hot strength of Al2O3-spinel castables, as well as fine grain spinel even in amount less than coarser grain spinel to be more effective for enhancing hot strength. The trend of the magnitude of thermal expansion under load (0·2 MPa) above 1500°C of the castables is not necessarily indicative of the magnitude of hot modulus of rupture at 1400 or 1500°C. ©  相似文献   

10.
This research has investigated the mechanical properties and microstructure of metakaolin derived geopolymer mortars containing 50% by weight of silica sand, after exposure to temperatures up to 1200 °C. The compressive strength, porosity and microstructure of the geopolymer mortar samples were not significantly affected by temperatures up to 800 °C. Nepheline (NaAlSiO4) and carnegieite (NaAlSiO4) form at 900 °C in the geopolymer phase and after exposure to 1000 °C the mortar samples were transformed into polycrystalline nepheline/quartz ceramics with relatively high compressive strength (~275 MPa) and high Vickers hardness (~350 HV). Between 1000 and 1200 °C the samples soften with gas evolution causing the formation of closed porosity that reduced sample density and limited the mechanical properties.  相似文献   

11.
A gelling system based on the polymerization of epoxy resin ethylene glycol diglycidyl ether (EGDGE) and 3,3′‐Diaminodipropylamine (DPTA) was developed for gelcasting alumina ceramics. The gelation process of 50 vol% alumina‐epoxy resin suspensions were investigated in accordance with the change in temperature and epoxy resin concentration. The activation energy Ea of polymerization reaction was 63.76 kJ/mol and no significant gelation was observed at 25°C during the test for 50 vol% Al2O3 suspensions with 10 wt% EGDGE. With the increase in EGDGE concentration, Al2O3 green bodies exhibited higher relative density, flexural strength, and Weibull modulus, reaching 64.4%, 41.03 MPa, and 12.51, respectively, when EGDGE concentration was 20 wt%. However, for sintered Al2O3 bodies, the highest characteristic strength and Weibull modulus were obtained for 15 wt% EGDGE concentration, reaching 367.57 MPa and 14.52, respectively.  相似文献   

12.
《Ceramics International》2023,49(15):24960-24971
Stereolithography based 3D printing provides an efficient pathway to fabricate alumina ceramics, and the exploration on the mechanical properties of 3D printed alumina ceramics is crucial to the development of 3D printing ceramic technology. However, alumina ceramics are difficult to sinter due to their high melting point. In this work, alumina ceramics were prepared via stereolithography based 3D printing technology, and the improvement in the mechanical properties was investigated based on the content, the type and the particle size of sintering aids (TiO2, CaCO3, and MgO). The flexural strength of the sintered ceramics increased greatly (from 139.2 MPa to 216.7 MPa) with the increase in TiO2 content (from 0.5 wt% to 1.5 wt%), while significant anisotropy in mechanical properties (216.7 MPa in X-Z plane and 121.0 MPa in X–Y plane) was observed for the ceramics with the addition of 1.5 wt TiO2. The shrinkage and flexural strength of the ceramics decreased with the increase in CaCO3 content due to the formation of elongated grains, which led to the formation of large-sized residual pores in the ceramics. The addition of MgO help decrease the anisotropic differences in shrinkage and flexural strength of the sintered ceramics due to the formation of regularly shaped grains. This work provides guidance on the adjustment in flexural strength, shrinkage, and anisotropic behavior of 3D printed alumina ceramics, and provides new methods for the fabrication of 3D printed alumina ceramics with superior mechanical properties.  相似文献   

13.
Polycrystalline Mo4Y2Al3B6 ceramic (92.84 wt% Mo4Y2Al3B6 and 7.16 wt% MoB) was prepared by spark plasma sintering at 1250 ℃ under 30 MPa using Mo, Y, Al, and B as starting materials. The dense sample obtained has a high relative density of 96.6 %. The average thermal expansion coefficient is 8.38 × 10?6 K?1 in the range of 25–1000 ℃. The thermal diffusivity decreases from 6.50 mm2/s at 25 °C to 4.33 mm2/s at 800 °C. The heat capacity, thermal conductivity, and electrical conductivity are 0.30 J·g?1·K?1, 11.73 W·m?1·K?1, and 0.66 × 106 Ω?1·m?1 at 25 °C, respectively. Vickers hardness with increasing load in the range of 10–300 N at room temperature decreases from 10.82 to 9.49 GPa, and the fracture toughness, compressive strength, and flexural strength are 5.14 MPa·m1/2, 1255.14 MPa, and 384.82 MPa, respectively, showing the promising applications as structural-functional ceramics.  相似文献   

14.
《Ceramics International》2017,43(6):5115-5120
In this work, new foamed thermal insulation geopolymer composite based on polystyrene particles (PP) and metakaolin was developed. Compressive strength, flexural strength, high temperature resistance and microstructure were evaluated. The experimental results show that compressivestrengthand flexural strength of the thermal insulation geopolymer composite decrease with increasing polystyrene particle content. However, it still exhibits considerable and sufficient strength. The dry density and thermal conductivityalso decrease as polystyrene particle content increases due to the contribution of polystyrene particles with low density. The floatation of the thermal insulation geopolymer composite on water surface indicates the relatively low density and a good quadratic function relationship can be found between thermal conductivity and dry density. Furthermore, the dense interfacial transition zone indicates the high compressive strength and flexural strength of thermal insulation geopolymer composites. The cumulative intrusion volume corresponding to the porosity decreases and the critical pore diametersshift to lower values with addition of polystyrene particles. Geopolymer composites gain strength after exposure around 400 °C, and it suffers dramatic strength loss after 800 °C temperature exposure especially for the 100% polystyrene particles addition specimen.  相似文献   

15.
Sustainable alkali activation of pumice from Turkish origin was studied by a partial replacement of metakaolin and/or fumed silica additives. Following the characterization of as-received pumice by X-ray fluorescence spectroscopy, x-ray diffraction, and nuclear magnetic resonance spectroscopy, a series of powder mixtures were prepared by introducing metakaolin and/or fumed silica (8, 14, and 20 M) into 1 M of the pumice. The mixtures were then dissolved in 11 M NaOH or sodium silicate solutions. The slurries were poured into polyacetal molds to obtain geopolymer samples for mechanical testing and cured in a constant 50°C temperature in a humidity oven for 48 h and then left for 1 week to undergo additional curing at ambient temperature. The microstructural, mechanical, and thermal properties of the final geopolymer samples were determined by XRD, scanning electron microscopy, Weibull analysis of 3-point flexural and compressive tests and thermal conductivity measurements. Results showed that all the Weibull values were best for 14 M of metakaolin and/or fumed silica. The metakaolin-added pumice yielded higher compressive strengths of (53.78 ± 33.30 MPa) than fumed silica (10.87 ± 4.04 MPa) and fumed silica plus metakaolin (41.22 ± 5.16 MPa). Thermal conductivities (0.19–0.46 Wm–1K–1) were also comparable to the thermal conductivity of metakaolin-based geopolymers.  相似文献   

16.
Bamboo is a fast‐growing, readily available natural material with tensile specific strength equivalent to that of steel (250–625 MPa/g/cm3). In the pursuit of sustainable construction materials, a composite was made with potassium polysialate siloxo geopolymer as the matrix and randomly oriented chopped bamboo fibers (Guadua angustifolia) from the Amazon region as the reinforcement. Four‐point flexural strength testing of the geopolymer composite reinforced with bamboo fibers was carried out according to ASTM standard C78/C78M‐10e1. Potassium‐based metakaolin geopolymer reinforced with 5 wt% (8 vol%) untreated bamboo fibers yielded 7.5 MPa four‐point flexural strength. Scanning electron microscopy and optical microscopy were used to investigate the microstructure. In addition, X‐ray diffraction was used to confirm the formation of geopolymer.  相似文献   

17.
To improve the flexural strength and light‐transmission properties of bone china, the effects of adding different amounts of alumina (0–3%) to bone china bodies were studied and the phase composition and microstructure of different samples were studied by X‐ray diffraction (XRD) and scanning electron microscopy (SEM). In addition, physical properties, such as the bulk density, the thermal expansion coefficient (TEC) and thermal shock resistance, were studied. It was found that adding alumina increased the overall sintering temperature while reducing the sintering temperature range of bone china. Furthermore, addition of 1% Al2O3 improved the tree‐point flexural strength from 120 MPa to 150 MPa, the light transmittance (at 2 mm thickness) from 6.7% to 7.5%, the thermal expansion coefficient from 8.4 × 10?6°C?1 to 8.1 × 10?6°C?1 and the thermal shock resistance from 140°C to 180°C. Higher corundum content results in similar high flexural strength but lower light transmittance.  相似文献   

18.
Zirconia-toughened alumina (ZTA) ceramics with high mechanical properties were sintered by hot-pressing method using SiC particles (SiCp) and SiC whiskers (SiCw) as the reinforcing agents simultaneously. The influences of sintering temperature, SiCp, and SiCw contents on the microstructure and mechanical properties of ZTA ceramics were investigated. It was found that both SiCp and SiCw could contribute to grain refinement significantly and promote the mechanical properties of the ceramics. However, the excess addition of SiCp or SiCw led to the formation of pores with large sizes and degraded the mechanical properties instead. When 13 wt% SiCp was introduced, the maximum flexural strength of 1180.0 MPa and fracture toughness of 15.9 MPa·m1/2 were obtained, whereas the maximum flexural strength of 1314.0 MPa and fracture toughness of 14.7 MPa·m1/2 were achieved at 20 wt% SiCw. Interestingly, the simultaneous addition of SiCp and SiCw could further improve the mechanical properties, and the highest flexural strength of 1334.0 MPa and fracture toughness of 16.0 MPa·m1/2 were achieved at a SiCw/SiCp ratio of 16/4. The reinforcement mechanisms in the ceramics mainly included the phase transformation toughening of ZrO2, the crack deflection and bridging of SiCp and SiCw, and the pull-out of SiCw.  相似文献   

19.
《Ceramics International》2017,43(18):16780-16786
The high hydration potential of CaO and MgO phases restricted the application of Mag-Dol refractory composites. In this study, the impact of nano-silica (SiO2) addition on the physical, mechanical, thermo-mechanical as well as microstructure of Mag-Dol refractory composites is investigated. Mag-Dol compositions were prepared by using calcined dolomite and magnesite particles (micron, 0–1, 1–3, 3–5, and 5–8 mm), liquid resin, and 0, 0.5, 1, 1.5, 2, and 2.5 wt% nano SiO2 as additives. Specimens were heated up to 1650 °C for the 3 h soaking period. Fired specimens were characterized by physical (apparent porosity, bulk density, and hydration resistance), mechanical (cold crushing strength), and thermo-mechanical (flexural strength at 1200 °C) measurements. XRD and SEM/EDS analysis were done to study phases and microstructure analysis of the fired samples, respectively. Results showed that by adding up to 2.5 wt% nano-SiO2, due to the formation of CaO·MgO·2SiO2 (Diopside), 2CaO·MgO·2SiO2 (Akermanite), and CaO·MgO·SiO2 (Monticellite) phases, physical and mechanical properties were enhanced. But the highest flexural strength value is achieved for 1 wt% nano-SiO2 containing sample.  相似文献   

20.
A new type of non-oxide sintering additive of YH2 was introduced for the fabrication of AlN ceramics with high thermal conductivity and flexural strength. The effects of YH2 addition (0–5 wt%) on the phase composition, densification, microstructure, thermal conductivity and flexural strength of pressureless sintered AlN ceramics were investigated and compared with those Y2O3-added samples (1–5 wt%). The addition of 1 wt% YH2 led to an in-situ reduction reaction with oxygen impurities, the formation of Y2O3 and finally the formation of yttrium aluminate, which in turn improved densification and microstructure. A high flexural strength (408.69 ± 28.23 MPa) was achieved. The addition of 3 wt% YH2 increased the average grain size and purified the lattice. All these effects are believed to help achieve a high thermal conductivity of 184.82 ± 1.75 W·m?1·K?1. Although the thermal conductivity was close to the value of 3 wt% Y2O3-added sample, its strength was much increased to 381.53 ± 43.41 MPa. Meanwhile, it demonstrated a good combination of the thermal conductivity and flexural strength than the values reported in some literature. However, further increasing the YH2 addition to 5 wt% resulted in a high N/O ratio that inhibited the densification behavior of AlN ceramics. The current study showed that AlN ceramics with excellent thermal and mechanical properties could be obtained by the introduction of a suitable YH2 additive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号