首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of the study was to verify the effects of a number of materials’ parameters (crystalline content; Young's modulus, E; biaxial flexure strength, σi; Vickers hardness, VH; fracture toughness, KIc; fracture surface energy, γf; and index of brittleness, B) on the brittleness of dental ceramics. Five commercial dental ceramics with different contents of glass phase and crystalline particles were studied: a vitreous porcelain (VM7/V), a porcelain with 16 vol% leucite particles (d.Sign/D), a glass-ceramic with 29 vol% leucite particles (Empress/E1), a glass-ceramic with 58 vol% lithium-disilicate needle-like particles (Empress 2/E2), and a glass-infiltrated alumina composite with 65 vol% crystals (In-Ceram Alumina/IC). Discs were constructed according to manufacturers’ instructions, ground and polished to final dimensions (12 mm × 1.1 mm). Elastic constants were determined by ultrasonic pulse-echo method. σi was determined by piston-on-3-balls method in inert condition. VH was determined using 19.6 N load and KIc was determined by indentation strength method. γf was calculated from the Griffith–Irwin relation and B by the ratio of HV to KIc. IC and E2 showed higher values of σi, E, KIc and γf, and lower values of B compared to leucite-based glass-ceramic and porcelains. Positive correlations were observed for σi versus KIc, and KIc versus E1/2, however, E did not show relationship with HV and B. The increase of crystalline phase content is beneficial to decrease the brittleness of dental ceramics by means of both an increase in fracture surface energy and a lowering in index of brittleness.  相似文献   

2.
The effect of second phase addition of zirconia on the mechanical response of textured alumina was analysed. Highly textured monolithic tape-casted alumina was obtained through templated grain growth. Compositions containing 1, 2, 5 and 10 vol% of (i) non-stabilised and (ii) 3 mol% yttria-stabilised zirconia, respectively, were investigated. XRD analyses revealed that the texture degree decreased with increasing second phase content. Microstructural analysis showed zirconia grains inside the textured alumina grains for contents ≤ 5 vol%, affecting the mode of fracture. Fracture toughness of textured alumina significantly decreased with the addition of a second phase. In the case of non-stabilised zirconia, the constraint of the alumina matrix and the small grain size led to a lower fracture toughness in comparison to monolithic textured alumina (KIc = 5.1 MPa m1/2). The fracture toughness of textured alumina with 3 mol% yttria-stabilised zirconia was comparable to equiaxed alumina, independent of the content ratio (KIc = 3.5 MPa m1/2).  相似文献   

3.
The three methods of determining the quasi‐static Mode I fracture toughness (KIc) (surface crack in flexure—SC, single‐edge precracked beam—PB, and chevron‐notched beam—VB) found in ASTM C1421 were applied to a variety of advanced ceramic materials. All three methods produced valid and comparable KIc values for the Al2O3, SiC, Si3N4, and SiAlON ceramics examined. However, not all methods could successfully be applied to B4C, ZrO2, and WC ceramics due to a variety of material factors. The coarse‐grained microstructure of one B4C hindered the ability to observe and measure the precracks generated in the SC and PB methods while the transformation toughening in the ZrO2 prevented the formation of the SC and PB precracks and thus made it impossible to use either method on this ceramic. The high strength and elastic modulus of the WC made it impossible to achieve stable crack growth using the VB method because the specimen stored a tremendous amount of energy prior to fracture. Even though these methods have passed the rigors of the standardization process there are still some issues to be resolved when the methods are applied to certain classes of ceramics. It is recommended that, when appropriate, at least two of these methods be employed to determine the KIc, especially when a new or unfamiliar ceramic is being evaluated.  相似文献   

4.
《Ceramics International》2021,47(22):31222-31228
Inherent brittleness and low mechanical reliability usually inhibit the application of ceramic materials in many structural applications. In this work, we demonstrate that integrating crystallographic texture and second-phase toughening strategies can effectively improve fracture resistance and mechanical reliability in alumina multilayer composites. Composites consisted of equiaxed (1-x)Al2O3-xZrO2 and highly [0001]-textured Al2O3 layers were fabricated, and effects of ZrO2 amount on fracture behavior and mechanical properties of the composites were studied. Increasing ZrO2 amount x results in larger thermal expansion difference between equiaxed and textured layers. The composites with equiaxed layers containing 30 vol% ZrO2 exhibit high apparent fracture toughness Kapt, c ~11.7 MPa·m1/2 and work of fracture γWOF ~1540 J/m2, which correspond respectively to about 260% and 410% enhancements relative to those without ZrO2 addition. Moreover, adding ZrO2 remarkably reduces sensitivity of failure stress to flaw size in the multilayer composites, and the failure stress substantially increases with increasing ZrO2 content. The greatly enhanced mechanical performance achieved here can be mainly attributed to higher magnitude of compressive stresses, more crack bifurcations and longer crack deflection paths within the textured layers. This work can provide important guidelines for developing novel “bio-inspired” materials with improved fracture resistance and flaw tolerance behavior.  相似文献   

5.
《Ceramics International》2021,47(24):34199-34206
High flexural strength is an important mechanical property for a ceramic armor component to withstand high tensile stresses and protect its structural integrity against multiple hits. Also, larger fragments are required in fragmentation as larger fractured parts are harder to leave of the way for the penetrator and cause more abrasion and higher penetration resistance. In this study, the effect of different ZrO2 content (0, 0.5, 1, 3, 5, 10, 20 vol%) on the flexural strength of Al2O3–ZrO2 composites was investigated with relationship of the stored failure energy-crack length to evaluate the fragmentation behavior under possible impact conditions. Monotonic equibiaxial flexural strength test was used to measure the fracture strength. The highest strength was obtained for 20 vol% ZrO2 containing composite as 435 ± 78 MPa, ~ 24% increase in comparison with the pure Al2O3. The transformation of tetragonal to monoclinic phase occurred during the strength test in the 10 and 20 vol% ZrO2 content composites. 20 vol% ZrO2 containing composite had the smallest total crack length accompanying the largest fragment size for a given fracture energy among all the composites due to the stress-induced transformation of ZrO2 consumes energy that results in decreasing effective crack driving energy required for the crack branching.  相似文献   

6.
《Ceramics International》2022,48(18):26326-26334
The bio-inspired 2024Al/B4C composites with a laminate-reticular hierarchical architecture were constructed by squeeze casting of 2024Al into loose freeze-cast ceramic scaffolds. This pressurized infiltration process provided a clean and well-bonded interface without physical gaps. By regulating the initial suspension concentration (20, 25, 30 and 35 vol%), the effects of different ceramic content on the microstructure, damage-tolerance behavior and toughening mechanisms of the composites parallel and perpendicular to the ice-growth direction were investigated. The strength and toughness in the longitudinal direction were greater than that in the transverse direction. The 2024Al/20 vol% B4C composite in the longitudinal direction yielded the highest flexural strength of 658 MPa, crack-initiation toughness (KIc) of 18.4 MPa m1/2 and crack-growth toughness (KJc) of 27.5 MPa m1/2. The unique damage-tolerant properties were attributed to multiple toughening mechanisms, including crack deflection, branching and blunting, ductile-ligament bridging and multiple-crack propagation, as evidenced by the stable crack growth and rising R-curve behavior during fracture. The significantly decreased damage tolerance in the transverse direction was mainly due to inadequate toughening tools. On the other hand, both the flexural strength and fracture toughness reduced remarkably as the ceramic content increased. The 2024Al/35 vol% B4C composite fractured in a single-crack mode and the crack growth path was almost straight, showing a relatively low ?exural strength (502 MPa) and crack-initiation toughness (9.1 MPa m1/2). The toughening mechanism was discussed in terms of the relationship between structural characteristics and cracking mode.  相似文献   

7.
The fracture toughness properties, in terms of stress intensity factor KIc and strain energy release rate GIc, of hemp fibre mat-reinforced sheet moulding compound (H-SMC) are measured using the compact tension (CT) method and compared with those of glass fibre-reinforced SMC (G-SMC). Three material parameters were considered for composite optimisation: fibre volume fraction, CaCO3 filler content and hemp fibre surface treatments using either alkaline, silane or a combination of these two treatments. The highest fracture toughness for H-SMC composites was obtained at a fibre loading of around 30?vol.-%, while it was also shown that the fracture toughness properties of H-SMC are sensitive to mineral filler content. Surface treatment of the hemp fibres using a combined alkaline-silane treatment resulted in a significant improvement in fracture toughness of H-SMC composites. Optimised H-SMC composites exhibited fracture toughness properties similar to those of G-SMC at fibre contents of 20?vol.-%, with KIc values of around 6?MPa.m?1/2.  相似文献   

8.
The reactivity between rare‐earth (RE‐) oxide stabilized ZrO2 or HfO2 thermal barrier coatings (TBCs) and a calcium‐magnesium‐aluminum‐silicate (CMAS) melt was studied at 1310°C. These reactions are representative of the ingestion of siliceous materials by the intake air of gas turbines (e.g., in aircraft engines) at high temperatures (>1200°C). These materials can melt and react with coated components in the hot section, resulting in premature failure. The goal of this work was to probe the effect of various RE (RE = Y, Yb, Dy, Gd, Nd, and Sm) oxides in the melt phase equilibrium and stability of the top‐coating system. Thermodynamic calculations of the phase assemblage of the (1?x) ZrO2xY2O3 coating materials and CMAS melt are compared with the experimental findings. CMAS was found to penetrate the samples at the grain boundaries and dissolve the coating materials to form silicate phases containing the RE elements. Furthermore, apatite and garnet crystalline phases formed in the samples with total RE‐oxide content higher than 16 mol% in the reaction zone for the ZrO2 system. In general, samples with nominal compositions ZrO2‐9Dy2O3, HfO2‐7Dy2O3, ZrO2‐8Y2O3, HfO2‐6Er2O3, ZrO2‐9.5Y2O3‐2.25Gd2O3‐2.25Yb2O3, and ZrO2‐30Y2O3 exhibited lower reactivity, or more resistance, to CMAS than the other coating compositions.  相似文献   

9.
《Ceramics International》2020,46(6):7324-7335
In order to obtain high-quality superalloy castings, the wettability and interactions between superalloy melts with various Y contents and SiO2-based ceramic cores were investigated at 1823 K. The results indicated that the wettability and interface reactions were affected by the content of Y in the alloy. For the alloys with Y content less than 0.011 wt%, no Y-oxide was found at the interface, but HfO2, Al2O3 and ZrO2 phases were formed, and the wetting angle dropped slightly. However, different Y-oxides precipitated at the alloy-ceramic interface for the alloys with Y content more than 0.017 wt%, and the wetting angle dropped sharply. When the content of Y was 0.017 and 0.025 wt%, Al2O3, Y3Al2(AlO4)3, HfO2 and ZrO2 phases were formed at the interface. When the content of Y was 0.1 wt%, YAlO3, Y3Al5O12, Y4Al2O9, HfO2 and ZrO2 phases were formed. The formation of different reaction products was mainly caused by the change of Y activity (aY) in the alloy. The reaction between Y and SiO2 could improve the wettability of the system apparently.  相似文献   

10.
Measuring the fracture toughness (KIc) of glasses still remains a difficult task, raising experimental and theoretical problems as well. The available methods to estimate KIc are reviewed, with emphasis on their respective advantages and drawbacks. In view of our current understanding, this analysis gives precedence to the SEPB method. The ultimate glass strength, the critical flaw size, and the indentation load for the onset of crack initiation are discussed, in the light of the fundamentals of fracture mechanics and classical background regarding the mechanics of brittle materials. Analytical expressions were further proposed to predict the fracture energy and fracture toughness of glasses from different chemical systems from their nominal compositions. The theoretical values were compared with the experimental ones, as obtained by self‐consistent methods when available. The agreement observed in most cases suggests that measured KIc values correspond to the crack propagation regime (as opposed to the crack initiation threshold), and supports previous investigations in glasses and ceramics, which showed that a crack tip is nearly atomically sharp in these materials (but for metallic glasses). Some ideas to design tougher glasses are finally presented.  相似文献   

11.
Hafnia doping is expected to improve the performance of the silicon-bond layer of environmental barrier coatings (EBCs) for SiC-based ceramic matrix composites. The optimal doping ratio, distribution of HfO2, and oxidation mechanism of the bond layer have not yet been fully addressed. A prototype Si–HfO2 bond layer with a designed HfO2-rich area was used to examine its oxidation behavior. A random dispersion model was developed to calculate the optimal HfO2 doping ratio and its appropriate distribution state. The simulation results recommended that 20–30 vol% is the optimal doping ratio, where HfO2 is well dispersed inside Si without forming networks. This enables HfO2 to react with and consume SiO2 without accelerating oxygen diffusion inside the bond layer. This was confirmed by oxidation experiments on Si–xHfO2 tablets, in which the thinnest thermally grown oxide was achieved for the 20 vol% HfO2-doped Si tablet. Both the microstructure design and material composition selection are highly important to further boost the performance of the EBCs.  相似文献   

12.
Well crystallized pure rod-like α-Si3N4 powder (PRSN) without β-Si3N4 was successfully synthesized by carbothermal reduction-nitridation (CRN). In situ carbon/mesoporous silica composite (C/SBA-15) was used as a new kind of raw material. Due to in situ composited carbon, the CRN temperature was decreased and the phase transition from α to β-Si3N4 was hindered. The sintering temperature was lowered to 1380 °C and the soaking time of the optimal synthesis condition was reduced to 6 h. Moreover, the as-synthesized rod-like α-Si3N4, which is induced by SBA-15, was used to enhance the fracture toughness (KIc) of α-Si3N4 based ceramics, which was sintered by spark plasma sintering (SPS). Compared with the undoped ceramics (2.9 MPa m1/2), α-Si3N4 ceramics doped with 10 vol% PRSN exhibited a higher KIc value (4.9 MPa m1/2), and lower dielectric loss in MHz frequency range. The results demonstrated that the PRSN powder would be promising for toughening α-Si3N4 based ceramics.  相似文献   

13.
The relationship between fracture toughness and Yttria content in modern zirconia ceramics was revised. For that purpose, we evaluated here 10 modern Y2O3-stabilized zirconia (YSZ) materials currently used in biomedical applications, namely prosthetic and implant dentistry. The most relevant range between 2-5 mol% Y2O3 was addressed by selecting from conventional opaque 3 mol% YSZ up to more translucent compositions (4−5 mol% YSZs). A technical 2YSZ was used to extend the range of our evaluation. The bulk mol% Y2O3 concentration was measured by X-Ray Fluorescence Spectroscopy. Phase quantification by Rietveld refinement considered two tetragonal phases or an additional cubic phase. A first-account of the fracture toughness (KIc) of the pre-sintered blocks is given, which amounted to 0.4 – 0.7 MPa√m. In the fully-densified state, an inverse power-law behavior was obtained between KIc and bulk mol% Y2O3 content, whether using only our measurements or including literature data, challenging some established relationships. A linear relationship between KIc and the fraction of the transformable t-phase was established within the range of 30–70 vol%.  相似文献   

14.
Hafnia (HfO2) and zirconia (ZrO2) are of great interest in the quest for replacing silicon oxide in semiconductor field effect transistors because of their high permittivity. Both exhibit extensive polymorphism and understanding the energetics of their transitions is of major fundamental and practical importance. In this study, we present a systematic thermodynamic summary of the influence of particle size on thermodynamic phase stability in hafnia and zirconia using recently measured enthalpy data from the literature. The amorphous phase is found to be the most energetically stable above 165 and 363 m2/g of surface area for HfO2 and ZrO2, respectively. Below 16 and 20.3 m2/g of surface area, respectively, the monoclinic phase is the most energetically stable for HfO2 and ZrO2. At intermediate sizes there are closely balanced energetics among monoclinic, tetragonal, and cubic phases. The energy crossovers reflect decreasing surface enthalpy in the order monoclinic, tetragonal, cubic and amorphous for both hafnia and zirconia.  相似文献   

15.
The critical stress field intensity factor for crack propagation, KIc, was determined for a large number of glass fiber-reinforced acetal copolymer compositions and for the unfilled resin. The results were interpreted in terms of a model previously proposed for the tensile behavior of these materials. The KIc could be regarded as a linear function of the contribution of the fiber reinforcement to the tensile strength, but was otherwise substantially independent of the amount and length of the fibers and the nature of the fiber finish. From this relationship it was estimated that the inherent flaw size of these materials was of the order of magnitude of the fiber length. The observed variation of KIc with loading rate was also consistent with the model. The notched Izod impact strength of these same materials was shown to be roughly equivalent to GIc, the critical strain energy release rate, or fracture energy per unit area, which can be computed from KIc by the methods of fracture mechanics. The behavior of these crack propagation parameters is consistent with the previous hypothesis that failure is initiated by loss of adhesion between the matrix and those fibers which lie transverse to the applied load.  相似文献   

16.
《Ceramics International》2023,49(19):31439-31444
In this study, the mechanism of the effect of ZrB2 on phase transformation of Si3N4 at a low temperature and the influence of its content on Si3N4-based ceramics were investigated. Previous study has shown that oxide impurities, i.e., B2O3 and ZrO2 on ZrB2 particles, alone cannot contribute to phase transformation of Si3N4 at a low temperature. But, the introduction of 0.5 vol% ZrB2 into Si3N4 ceramics can promote the α-β phase transformation of Si3N4, which is confirmed to be the role of boron by comparison of the experimental results obtained from the addition of 0.5 vol% Zr and 0.5 vol% B. Increasing the ZrB2 content from 0 vol% to 2.5 vol% intensifies the α-β phase transformation while decreasing the α phase content of Si3N4-based ceramics, accompanied by a slight grain growth, leading to a decrease in hardness. At the same time, aspect ratio and the quantities of elongated grains per square micron increase, and thus the fracture toughness increases significantly. However, when the content of ZrB2 increases to 5 vol%, the Si3N4-based ceramics not only have a substantial decrease in hardness, but also the fracture toughness fails to be effectively improved due to high porosity and the decrease in aspect ratio and the quantity of elongated grains per square micron. The current study demonstrates that the dense Si3N4-based ceramics with high hardness and toughness (hardness ∼19.9 ± 0.2 GPa, toughness ∼6.27 ± 0.19 MPa m1/2) can be prepared successfully at 1600 °C by introducing 0.5 vol% ZrB2.  相似文献   

17.
The structure-controlled hydroxyapatite/zirconia (HAp/ZrO2) composites were fabricated. At first, cylindrical hydroxyapatite (HAp) samples were prepared by the extrusion process, and then the extruded HAp cylindrical samples were coated with 3 mol% of Y2O3 partially stabilized ZrO2 slurry, dried and aligned unidirectionally to form a composite bulk. The volume fraction of ZrO2 in the HAp/ZrO2 composite was estimated to be about 23 vol%. Bulk density and bending strength of the composites increased with sintering temperature. Fracture energy of HAp/ZrO2 composite sintered at 1350 °C was approximately 1.6 times higher than that of monolithic HAp. Although the bending strength of HAp/ZrO2 composite prepared in this study was relatively low, it exhibited high fracture energy than HAp monolithic and a non-brittle fracture behavior was obtained without using fiber as the reinforcement.  相似文献   

18.
Summary. The effect of amine/epoxy ratio on the fracture toughness (KIc) of tetrafunctional epoxy resin was investigated. KIc value was measured by single-edge notch-bend test. The KIc value of the tetrafunctional epoxy resin increased with increasing the amount of amine curing agent. This result was explained with the structural viewpoint of the epoxy network. The network structure of the tetrafunctional epoxy was analyzed with dynamic thermomechanical measurement and in-situ near IR technique. Received: 19 June 1997/Accepted: 17 Juli 1997  相似文献   

19.
The effect of multi-walled carbon nanotubes (MWCNTs) and hexagonal boron nitride (h-BN) inclusions on the fracture toughness of yttria-stabilized zirconia (YSZ) ceramics has been studied. It is shown that an increase in the MWCNTs and h-BN content has a positive effect on the K1C of zirconia ceramics. The greatest increase in the fracture toughness of YSZ ceramics was observed with the introduction of hexagonal boron nitride particles. For YSZ ceramics, the K1C value was ≈6.1 MPa m1/2, for ceramics with a 5 wt % of h-BN K1C ≈ 9.2 MPa m1/2. It was shown that an increase of the YSZ ceramics fracture toughness with the introduction of MWCNTs and h-BN, both and separately was provided by the combined action of several mechanisms of increasing the work of crack propagation. In addition, in all composites obtained in this work, the transformation of tetragonal ZrO2 into monoclinic was observed.  相似文献   

20.
《Ceramics International》2017,43(3):3424-3430
(Mo0.94Nb0.06)(Si0.97Al0.03)2–SiC composites were consolidated via vacuum HP sintering from the mixture of (Mo0.94Nb0.06)(Si0.97Al0.03)2 powder and SiC nanoparticles. The (Mo0.94Nb0.06)(Si0.97Al0.03)2 powder was prepared by self propagating synthesis (SHS). The effects of SiC content on the ambient temperature mechanical properties and microstructure of the SHS-HP composites were investigated. The results show that the indentation fracture toughness, bending strength and Vickers hardness of (Mo0.94Nb0.06)(Si0.97Al0.03)2x vol% SiC composites increase gradually with the increase of SiC content. The grain size and relative density of the composites decrease gradually with increase of SiC content. (Mo0.94Nb0.06)(Si0.97Al0.03)2−15 vol% SiC composite exhibits excellent mechanical properties: Vickers hardness 12.62 GPa, fracture toughness 5.01 MPa m1/2, bending strength 472 MPa. With the addition of SiC, the fracture mode transforms from a mixed mode of transcrystalline and intercrystalline fracture to mainly transcrystalline fracture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号