共查询到5条相似文献,搜索用时 0 毫秒
1.
2.
Mina Jo Ji Eun Jung Jae Hoon Lee Se-Ho Park Hyun Joo Yoon Kee-Tae Kim Hyun-Dong Paik 《Food science and biotechnology》2014,23(1):215-219
Red ginseng extract (RGE) and white ginseng extract (WGE) were treated with partially purified β-glucosidase to increase a production of minor ginsenosides. The enzyme produced from Aspergillus usamii KCTC 6954 was precipitated with (NH4)2SO4. Ginseng extracts were treated with a crude extract possessing β-glucosidase activity (1,089.2 μM/mL·min) at 60°C for 72 h. The results of HPLC showed that enzyme-treated RGE and enzymetreated WGE have increased amounts of minor ginsenosides compared to each controls implying that the ginsenoside Rb1 in WGE and RGE is converted enzymatically to Rd, F2, Rg3, and compound K. In cytotoxicity study, 2.5 mg/mL of RGE, 1.25 mg/mL of ERGE, and 5 mg/mL of WGE and EWGE were effective against the HepG2, AGS, and DLD-1, but HeLa and SK-MES-1 were not affected at any concentration. The results suggested that cytotoxicity of ginseng extracts treated with β-glucosidase were greater than that of each control against cancer cells. 相似文献
3.
Adrián A. Perez Cecilio Carrera Sánchez Juan M. Rodríguez Patino Amelia C. Rubiolo Liliana G. Santiago 《Journal of food engineering》2012
The objective of this work was to study the effect of enzymatic hydrolysis and polysaccharide addition on the foaming characteristics of β-lactoglobulin (β-LG). Enzymatic treatment was performed in the hydrolysis degree (HD) range of 0.0–5.0% using bovine α-chymotrypsin II immobilized on agarose microbeads. Anionic non-surface active polysaccharides (PS), sodium alginate (SA) and λ-carrageenan (λ-C) were studied in the concentration range of 0.0–0.5 wt.%. Foaming characteristics were determined by conductimetric and optical methods and were linked to protein diffusion kinetics, film mechanical properties and biopolymer molecular dynamics in solution. Experiments were performed at constant temperature (20 °C), pH 7 and ionic strength 0.05 M. Limited hydrolysis improved the formation and stability of β-LG foam possibly due to an increased protein diffusion rate and film dilatational elasticity. Furthermore, PS addition caused different effects on β-LG foaming characteristics depending on the PS type, their relative concentration and extent of enzymatic treatment (HD). Diffusion rate and interfacial rheological behavior of mixed systems could exert a decisive role in foaming characteristics of β-LG and its hydrolysates in close connection with biopolymer interactions in solution, e.g., macromolecule repulsion, protein segregation/aggregation and soluble complexes formation. 相似文献
4.
5.
Maillard reaction products (MRPs) were prepared from aqueous model mixtures containing 3% (w/w) ribose and 3% (w/w) of the dairy proteins α-lactalbumin (α-LA) or β-lactoglobulin (β-LG), heated at 95 °C, for up to 5 h. The pH of MRPs decreased significantly during heat treatment of α-LA-Ribose and β-LG-Ribose mixtures from 8.4 to 5.3. The amino group content in MRPs, derived from the α-LA-Ribose and β-LG-Ribose model system, was decreased noticeably during the first hour and did not change thereafter. The loss of free ribose in MRPs was higher for β-LG-Ribose than for α-LA-Ribose. During the Maillard reaction, the concentration of native and non-native α-LA, or β-LG, decreased and the formation of aggregates was observed. Fluorescence intensity of the β-LG-Ribose MRPs reached maximum within 1 h, compared to 2 h for α-LA-Ribose MRPs. Meanwhile, modification of the UV/vis absorption spectra for α-LA and β-LG was mainly due to a condensation reaction with ribose. Dynamic light scattering showed a significant increase in the particle size of the MRPs. Size exclusion chromatography of MRPs revealed the production of both high and low molecular weight material. Electrophoresis of MRPs indicated polymerization of α-LA and β-LG monomers via inter-molecular disulfide bridge, but also via other covelant bonds. MRPs from α-LA-Ribose and β-LG-Ribose exhibited increased antioxidant activities, therefore theses MRPs may be used as natural antioxidants in food products. 相似文献