首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
High pyroelectric performance around human body temperature is essential for ultra-sensitive infrared detectors of medical systems. Herein, toward human health monitoring, composite ceramics (1-x)Pb0.99Nb0.02[(Zr0.57Sn0.43)0.94Ti0.06]0.98O3/xAl2O3 (x = 0, 0.1, and 0.2) were designed. A metastable ferroelectric (FE) phase was induced in the anti-FE matrix by the Al2O3 component-induced internal stress, and in turn FE-anti-FE phase boundary was constructed. The ceramics at x = 0.2 exhibit high pyroelectric coefficient with p = 10.9 × 10−4 C·m−2·K−1 and figures of merit with current responsivity Fi = 6.23 × 10−10 m·V−1, voltage responsivity Fv = 12.71 × 10−2 m2·C−1, and detectivity Fd = 7.03 × 10−5 Pa−1/2 around human body temperature. Moreover, the enhanced pyroelectric coefficients exist in a broad operation temperature range with a large full width at half maximums of 18.5°C and peak value of 29.2 × 10−4 C·m−2·K−1 at 48.2°C. The designed composite ceramic is a promising candidate for infrared thermal imaging technology of noncontact human health monitoring system.  相似文献   

2.
The crystal structures, pyroelectric properties, and thermal stability of [111]-oriented 0.5 mol% Mn-doped 0.36Pb(In1/2Nb1/2)O3-0.36Pb(Mg1/3Nb2/3)O3-0.28PbTiO3 (Mn-0.36PIN-0.36PMN-0.28PT) ternary single crystal were investigated. The temperature dependence of the Raman spectra and dielectric properties revealed that the crystal exhibited a rhombohedral (R) structure at room temperature, and ferroelectric R → tetragonal (T) and ferroelectric T to paraelectric cubic (C) phase transitions at 130 and 175°C respectively. The single crystal had a high remnant polarization of Pr = 38 μC cm–2 and coercive field of EC = 12 kV cm–1 at room temperature and a frequency of f = 100 Hz. The values of Pr and EC decreased with increasing temperature, exhibiting anomalies near their phase-transition temperatures, which coincided with changes in the Raman spectra and dielectric properties. Furthermore, at 25°C and f = 100 Hz, the single crystal had high pyroelectric coefficients of p = 8.7 × 10−4 C m−2 K−1, figures of merit for the current responsivity of Fi = 3.5 × 10−10 m V−1, the voltage responsivity of Fv = 0.08 m2 C−1, and the detectivity of Fd = 30.1 × 10−5 Pa−1/2. These values were weakly dependent on temperature below 120°C. In addition, the room-temperature pyroelectric coefficients of the ternary single crystal maintain over 83% of the original value at thermal annealing temperatures below 120°C. These outstanding pyroelectric properties, together with high thermal stability, indicate that [111]-oriented rhombohedral Mn-0.36PIN-0.36PMN-0.28PT ternary single crystal is a new potential candidate for infrared detection applications.  相似文献   

3.
Both high pyroelectric coefficient and figure of merits of ferroelectric materials are desirable for infrared detection. In this work, we prepared Pb0.99Nb0.02[(Zr0.57Sn0.43)1−xTix]0.98O3 (0.060 ≤ x ≤ 0.080) ceramics, and the microstructure and electric properties were studied systematically. It is observed that the composition x = 0.07 shows enhanced pyroelectric properties around ambient temperature due to the ferroelectric–antiferroelectric phase transition, with the pyroelectric coefficient p = 6.83 × 10−4 C m−2 K−1 and the figures of merit Fi = 5.04 × 10−10 m V−1, Fv = 7.61 × 10−2 m2 C−1, and Fd = 3.46 × 10−5 Pa−1/2 at room temperature and the highest pyroelectric coefficient of 695.5 × 10−4 C m−2 K−1 and Fi = 1410.46 × 10−10 m V−1, Fv = 1587.39 × 10−2 m2 C−1, and Fd = 1182.94 × 10−5 Pa−1/2 at 36.7°C. These values are superior to other pyroelectric materials. These results indicate that this system is a promising pyroelectric material for the applications of infrared detectors.  相似文献   

4.
Achieving excellent pyroelectric performance remains a challenge for lead-free piezoelectric ceramics. To meet the requirements of both an enhanced pyroelectric coefficient at room temperature and good thermal stability during the encapsulation of pyroelectric devices, (1–x)K0.48Na0.52NbO3xBi0.5Ag0.5ZrO3–0.2%Fe2O3 (KNN–BAZ–Fe) lead-free ferroelectric ceramics with high Curie temperatures were prepared to obtain improved pyroelectric performance via the coexistence of multiple symmetries. The variation of BAZ content led to the formation of rhombohedral–orthorhombic–tetragonal phase boundary and promoted grain growth, resulting in the best pyroelectric coefficient (p = 5.09 × 10−4 C m−2°C−1) and enhanced figures of merit (Fi = 0.2084 × 10−9 (m V−1), Fv = 0.0142 m2 C−1, Fd = 0.0947 × 10−4 Pa−1/2, and Fe = 17.66 J m−3 K−2) for infrared (IR) detection when x = 0.05. The room-temperature pyroelectric coefficient obtained in this study is approximately four times that of the pure KNN ceramic and is the maximum value reported for niobate-based piezoelectric ceramics. Moreover, compared with the poor thermal stability of barium titanate- and bismuth sodium titanate-based ceramics because of their ultralow Curie temperature or thermal depolarization temperature, the ceramics investigated here exhibit much better thermal stability because of their high Curie temperature (TC > 300°C) and diffused phase-transition behavior, making them more adaptable for practical applications. These results suggest that KNN–xBAZ–Fe ceramics are attractive candidates for applications in the field of IR sensors.  相似文献   

5.
In this study, (1 − x)NaNbO3xBa0.6(Bi0.5K0.5)0.4TiO3 (abbreviated as NN-xBBKT, x = 0.05, 0.10, 0.15, and 0.20) lead-free pyroelectric ceramics were synthesized by conventional solid-state reaction method. Moreover, their microstructure, phase structure, dielectric, ferroelectric, piezoelectric, and pyroelectric characteristics were studied systematically. The X-ray diffraction result showed that the phase structure of NN-xBBKT ceramics changed from orthorhombic to tetragonal and finally became pseudocubic symmetry. The ferroelectric-paraelectric phase transition temperature and depolarization temperature shifted to lower temperature with the increase in BBKT content. Furthermore, with increasing BBKT content, piezoelectric coefficient, figures of merit, and pyroelectric coefficient first increased and then decreased. The optimum pyroelectric properties (eg Fd = 0.81 × 10−5 Pa−1/2, Fv = 1.02 × 10−2 m2 C−1, Fi = 1.04 × 10−10 m V−1, and p = 3.11 × 10−8 C cm−2 K−1) were observed in sample composition with x = 0.15. More importantly, the pyroelectric coefficient of ceramic with x = 0.15 also displayed relatively high thermal stability because of high depolarization temperature (~110°C). These parameters demonstrate that the novel Pb-free NaNbO3-based ceramics form an important class of pyroelectric material with broad range of application prospect.  相似文献   

6.
《Ceramics International》2023,49(13):21777-21787
Ce2[Zr1-xMx]3(MoO4)9 (M = Mn1/3Nb2/3, Mn1/3Ta2/3; x = 0.02, 0.04, 0.06, 0.08 and 0.10) (abbreviated as CZ1-xNx and CZ1-xTx) ceramics were prepared through the solid-state reaction method. Effects of (Mn1/3Nb2/3)4+ and (Mn1/3Ta2/3)4+ ions on the sintering characteristics, crystal structures, microwave dielectric properties and infrared vibrational modes were studied in detail. X-ray diffraction (XRD) results reveal the formation of solid solutions for all components. Based on the chemical bond theory and Rietveld refinement, intrinsic structure parameters including the polarizability (P), the packing fraction (P.F.) and the octahedral distortion (Δocta.), and bond parameters including the lattice energy (U), bond energy (E) and thermal expansion coefficient (α) were calculated. Interestingly, the Ce–O bond plays a major role in the bond ionicity (fi), while Mo–O bond dominates the contributions in the lattice energy (U), bond energy (E) and thermal expansion coefficient (α). In addition, these parameters are used to explain the variations of the microwave dielectric properties of ceramics either changing the doping contents or replacing different ions at x = 0.06. Furthermore, far infrared (FIR) spectra uncover that the phonon modes provide the major polarization contribution of 68.59% in the CZ0.9T0.1 ceramic, implying that the main contribution to εr stems from the ionic polarization instead of the electronic polarization. Typically, the optimum microwave dielectric properties are achieved for the CZ0.9N0.1 and CZ0.9T0.1 ceramics with εr = 10.76, Q × f = 85,893 GHz (at 9.52 GHz), τf = −14.83 ppm °C−1 and εr = 10.72, Q × f = 87,355 GHz (at 9.81 GHz) and τf = −8.68 ppm °C−1, respectively. Notably, the CZ0.9T0.1 ceramic has a markedly increased Q × f while maintaining a good τf = −8.68 ppm °C−1 and a low sintering temperature of 700 °C.  相似文献   

7.
With growing demand for high-sensitivity infrared detectors in industrial temperature monitoring and medical systems, high-performance pyroelectric materials are vitally required. In this work, large pyroelectric performance is achieved in (1 − x)Pb0.99Nb0.02[(Zr0.57Sn0.43)0.937Ti0.063]0.98O3xBaTiO3 (1 − x)PNZST–xBT ceramics by tuning the ferroelectric (FE)-relaxor phase boundary near room temperature. The FE- and ergodic-relaxor phase boundaries are engineered by breaking the long-range antiferroelectric order with the introduction of BaTiO3. It is found that the ceramics with x = 0.15 exhibit a large pyroelectric coefficient of 11.3 × 10–4 C m–2 K–1 and figures of merit of Fi = 20.1 × 10–10 m V–1, Fv = 3.44 × 10–2 m2 C–1, and Fd = 3.87 × 10–5 Pa–1/2 around room temperature due to engineered phase boundary. Our results provide the potential technological application for ultrasensitive infrared detector and scientific insights into pyroelectric ceramic design.  相似文献   

8.
Ceramics in the system Ba(Ni1/3Nb2/3)O3–Ba(Zn1/3Nb2/3)O3 (BNN–BZN) were prepared by the mixed oxide route. Powders were mixed and milled, calcined at 1100–1200 °C then pressed and sintered at temperatures in the range 1400–1500 °C for 4 h. Selected samples were annealed or slowly cooled after sintering. Most products were in excess of 96% theoretical density. X-ray diffraction confirmed that all specimens were ordered to some degree and could be indexed to hexagonal geometry. Microstructural analysis confirmed the presence of phases related to Ba5Nb4O15 and Ba8Zn1Nb6O24 at the surfaces of the samples. The end members BNN and BZN exhibited good dielectric properties with quality factor (Qf) values in excess of 25,000 and 50,000 GHz, respectively, after rapid cooling at 240 °C h−1. In contrast, mid-range compositions had poor Qf values, less than 10,000 GHz. However, after sintering at 1450 °C for 4 h and annealing at 1300 °C for 72 h, specimens of 0.35(Ba(Ni1/3Nb2/3)O3)–0.65(Ba(Zn1/3Nb2/3)O3) exhibit good dielectric properties: τf of +0.6 ppm °C−1, relative permittivity of 35 and quality factor in excess of 25,000 GHz. The improvement in properties after annealing is primarily due to an increase in homogeneity.  相似文献   

9.
Lead-free 0.94NBT-0.06BT-xLa ceramics at x = 0.0–1.0 (%) were synthesized by a conventional solid-state route. XRD shows that the compositions are at a morphotropic phase boundary where rhombohedral and tetragonal phases coexist. With increasing La3+ content pyroelectric coefficient (p) and figures of merits greatly increase; however, the depolarization temperature (Td) decreases. p is 7.24 × 10−4C m−2 °C−1 at RT at x = 0.5% and 105.4 × 10−4C.m−2 °C−1 at Td at x = 0.2%. Fi and Fv show improvements at RT from 1.12 (x = 0%) to 2.65 (x10 −10 m v−1) (x = 0.5%) and from 0.021 to 0.048 (m2.C−1) respectively. Fi and Fv show a huge increase to 37.6 × 10−10 m v−1 and 0.56 m2 C−1 respectively at Td at x = 0.2%. FC shows values of 2.10, 2.89, and 2.98 (x10−9C cm−2 °C−1) at RT at 33, 100 and 1000 (Hz) respectively. Giant pyroelectric properties make NBT-0.06BT-xLa at x = 0.2% and 0.5% promising materials for many pyroelectric applications.  相似文献   

10.
A series of regular shaped Pb(Zn1/3Nb2/3)O3‐based ternary ferroelectric single crystals (1 ? x)Pb(In1/2Nb1/2)O3–0.33Pb(Zn1/3Nb2/3)O3xPbTiO3 (PIN–PZN–PT) have been grown by means of the top‐seeded solution growth method that prevented pyrochlore phase and promoted [001] or [111] growth. The nucleation and crystallization behavior of the Pb(Zn1/3Nb2/3)O3‐based ferroelectric single crystals differed from other relaxor‐based ferroelectric single crystals was discovered. Di‐/piezo‐/ferro‐/pyroelectric properties were characterized systematically. The PIN–PZN–PT single crystals showed large coercive fields Ec, high Curie temperature TC and high pyroelectric coefficient P, presenting similar performance but better thermal stability compared with the PZN–PT single crystals, and making it a promising material for transducers and IR detectors in a wider temperature range.  相似文献   

11.
《Ceramics International》2017,43(4):3726-3733
Ta-doped lead-free 0.94NBT-0.06BT-xTa (x=0.0–1.0%) ceramics were synthesized by a conventional solid-state route. XRD shows that the compositions are at a morphotropic phase boundary where rhombohedral and tetragonal phases coexist. The depolarization temperature (Td) shifted to lower temperature with the increase of Ta content. The pyroelectric coefficient (p) of doped ceramics greatly enhanced compared with undoped material and reached a maximum of 7.14×10−4 C m−2 °C−1 at room temperature (RT) and 146.1×10−4 C m−2 °C−1 at Td at x=0.2%. The figure of merits, Fi and Fv, also showed a great improvement from 1.12×10−10 m v−1 and 0.021 m2 C−1 at x=0.0 to 2.55×10−10 m v−1 and 0.033 m2 C−1 at x=0.2% at RT. Furthermore, Fi and Fv show the huge improvement to 52.2×10−10 m v−1 and 0.48×10−10 m v−1 respectively at Td at x=0.2%. FC shows a value between 2.26 and 2.42 ×10−9 C cm−2 °C−1 at RT at x=0.2%. The improved pyroelectric properties make NBT-0.06BT-0.002Ta ceramics a promising infrared detector material.  相似文献   

12.
《Ceramics International》2020,46(9):13737-13742
Aiming to establish relationships between intrinsic structure factors and dielectric characteristics, a series of Li2Mg3Ti1-x(Al1/2Nb1/2)xO6 (x = 0.0, 0.04, 0.08, 0.12, 0.16, 0.20) ceramics were synthesized to investigate the influences of (Al1/2Nb1/2)4+ substitution on the dielectric properties of Li2Mg3TiO6 ceramics. The XRD and SEM results revealed that the pure rock salt phase (space group: Fm-3m) with a dense microstructure could be obtained with increasing the (Al1/2Nb1/2)4+ concentration, which is accompanied by an increase in the grain size from 11.69 to 22.81 μm. Meanwhile, some intrinsic factors, such as the average ionic polarizability, bond energy, packing fraction and lattice energy were calculated according to the complex chemical bond theory and refinement results. The unusual change in the dielectric constant (εr) was explained by the combined effects of the average ionic polarizability and relative density. The variation in the quality factor (Q × f) was ascribed to the packing fraction and lattice energy. The temperature coefficient of the resonant frequency (|τf|) reduced gradually with the increase in the octahedral bond energy, which enhanced the system thermal stability. Particularly, the Li2Mg3Ti0.92(Al1/2Nb1/2)0.08O6 sample exhibited outstanding dielectric characteristics:εr = 15.256, Q × f = 174,300 GHz and τf = −19.97 ppm/°C.  相似文献   

13.
In this paper, we theoretically and experimentally reported a lead-free pyroelectric infrared (PIR) detector using (Bi1/2Na1/2TiO3)-BaTiO3(BNT-BT) ferroelectric ceramics as the sensitive material. The variation of noise density, voltage response rate (RV), and specific detection rate (D*) with the modulation frequency under the current mode amplification circuit was investigated, and it was found that the lead-free PIR detector showed high RV in the low frequency band. The RV and D* reached 1.51 × 105 V/W and 2.02 × 108 cmHz1/2W−1 at 10 Hz, respectively. The results were much superior to the PIR based on traditional commercial pyroelectric ceramics, indicating that BNT-BT lead-free ceramics have great potential in application to PIR detectors.  相似文献   

14.
Five Ba(Co1/3Nb2/3)O3 samples sintered at different temperatures (form 1350 to 1550 °C), one Ba(Mg1/3Ta2/3)O3 and a Ba(Mg1/3Nb2/3)O3 sample were examined by Raman scattering to reveal the correlation of the 1:2 ordered perovskite structure with the microwave properties, such as dielectric constant and Q factors. The Ba(Co1/3Nb2/3)O3 sample sintered at 1400 °C, which possesses the highest microwave Q value and the lowest dielectric constant among five Ba(Co1/3Nb2/3)O3 samples, has the narrowest width and the highest frequency of the stretch mode of oxygen octahedron (i.e. A1g(O) near 800 cm−1). We found that the dielectric constant is strongly correlated with the Raman shift of A1g(O) stretch modes, and the width of A1g(O) stretch mode reflects the quality factor Q × f value in the 1:2 ordered perovskite materials. This concludes that the oxygen octahedron play an important role of the material's microwave performance. Based on the results of Q × f values and the lineshapes of A1g(O) stretch mode, we found that the propagation of microwave energy in Ba(Mg1/3Ta2/3)O3 and Ba(Mg1/3Nb2/3)O3 shows weak damping behavior, however, Ba(Co1/3Nb2/3)O3 samples sintered at different temperature exhibit heavily damped behavior.  相似文献   

15.
Structural evolution and microwave dielectric properties of LiNb0.6(Ti1-x[Co1/3Nb2/3]x)0.5O3 (.05≤x≤.2) ceramics have been studied in this paper. Although the doped compositions maintain the M-phase solid solutions, compositional fluctuation due to nonuniform dispersion of minor dopants could be observed as x < .05, and trace amount of Li2TiO3-based solid solution (Li2TiO3ss) secondary phase presents in the x > .05 compositions. The microwave dielectric properties could be remarkably improved by the doping of (Co1/2Nb1/2)4+ in comparison to the undoped counterpart. Optimized microwave dielectric properties with Q × = ∼6500 GHz, εr = ∼74 and τ= +8.2 ppm/°C could be obtained at x = .10 after sintering at 1050°C/2 h. The sintering temperature could be further reduced to 900°C/2 h by adding .2 wt% B2O3 without affecting significantly its microwave dielectric properties: εr = 73, Q × = 6000 GHz, τ= +8.5 ppm/°C. The LiNb0.6(Ti1-x[Co1/3Nb2/3]x)0.5O3 ceramics obtained in this case exhibit large dielectric permittivity coupled with much improved Q × f values, near zero τf, and low sintering temperature simultaneously, which makes it a promising high-k microwave dielectric material for low temperature cofired ceramic applications.  相似文献   

16.
High pyroelectric performance and good thermal stability of pyroelectric materials are desirable for the application of infrared thermal detectors. In this work, enhanced pyroelectric properties were achieved in a new ternary (1?x)(0.98(Bi0.5Na0.5)(Ti0.995Mn0.005)O3–0.02BiAlO3)–xNaNbO3 (BNT–BA–xNN) lead‐free ceramics. The effect of NN addition on the microstructure, phase transition, ferroelectric, and pyroelectric properties of BNT–BA–xNN ceramics were investigated. It was found that the average grain size decreased as x increased to 0.03, whereas increased with further NN addition. The pyroelectric coefficient p at room temperature (RT) was significantly increased from 3.87 × 10?8Ccm?2K?1 at = 0 to 8.45 × 10?8Ccm?2K?1 at = 0.03. The figures of merit (FOMs), Fi, Fv and Fd, were also enhanced with addition of NN. Because of high p (7.48 × 10?8Ccm?2K?1) as well as relatively low dielectric permittivity (~370) and low dielectric loss (~0.011), the optimal FOMs at RT were obtained at = 0.02 with Fi = 2.66 × 10?10 m/V, Fv = 8.07 × 10?2 m2/C, and Fd = 4.22 × 10?5 Pa?1/2, which are superior to other reported lead‐free ceramics. Furthermore, the compositions with  0.03 exhibited excellent temperature stability in a wide temperature range from 20 to 80°C because of high depolarization temperature (≥110°C). Those results unveil the potential of BNT–BA–xNN ceramics for infrared detector applications.  相似文献   

17.
High-quality ternary relaxor ferroelectric (100)-oriented Mn-doped 0.36Pb(In1/2Nb1/2)O3-0.36Pb(Mg1/3Nb2/3)O3-0.28PbTiO3 (Mn-PIMNT) thin films were grown on SrRuO3-buffered SrTiO3 single-crystal substrate in a wide deposition temperature range of 550-620°C using the pulsed laser deposition method. The phase structure, ferroelectric, dielectric, piezoelectric properties, and nanoscale domain evolution were studied. Under the deposition temperature of 620°C, the ferroelectric hysteresis loops and current-voltage curves showed that the film owned significantly enhanced remnant ferroelectric polarization of 34.5 μC/cm2 and low leakage current density of 2.7 × 10−10 A/cm2. Moreover fingerprint-type nanosized domain patterns with polydomain structures and well-defined macroscopic piezoelectric properties with a high normalized strain constant of 40 pm/V was obtained. Under in situ DC electric field, the domain evolution was investigated and 180° domain reversal was observed through piezoelectric force microscope. These global electrical properties make the current Mn-PIMNT thin films very promising in piezoelectric MEMS applications.  相似文献   

18.
The charge release and related mechanisms for Pb(In1/2Nb1/2)–Pb(Mg1/3Nb2/3)–PbTiO3 (PIN–PMN–PT) ferroelectric crystals under one‐dimensional shock wave compression were investigated using discharge current profile measurement, by which the piezoelectric stress coefficient e31 and the phase transition (from tetragonal to orthorhombic phase) pressure were obtained, being ?2.9 C/m2 and 2.3 GPa, respectively. Based on experiment results and thermodynamics analysis, it was found that the one‐dimensional shock compression favored ferroelectric phase, being different from the effect of hydrostatic pressure, which favored paraelectric phase. This phenomenon can be attributed to the crystal anisotropy and electromechanical coupling effects as one‐dimensional shock compression is applied to PIN–PMN–PT ferroelectric crystals.  相似文献   

19.
A ternary ferroelectric ceramic system, (1?x?y)Pb(In1/2Nb1/2)O3xPb(Zn1/3Nb2/3)O3yPbTiO3 (PIN–PZN–PT, x = 0.21, 0.27, 0.36, 0.42), was prepared using a two‐step precursor method. The phase structure, dielectric, piezoelectric, and ferroelectric properties of the ternary ceramics were systematically investigated. A morphotropic phase boundary (MPB) was identified by X‐ray diffraction. The optimum piezoelectric and electromechanical properties were achieved for a composition close to MPB (0.5PIN–0.21PZN–0.29PT), where the piezoelectric coefficient d33, planar electromechanical coupling factor kp, and remnant polarization Pr are 660 pC/N,72%, and 45 μC/cm2, respectively. The Curie temperature TC and rhombohedral to tetragonal phase transition temperature TR?T were also derived by temperature dependence of dielectric measurements. The strongly “bended” MPB in the PIN–PT system was found to be “flattened” after addition of PZN in the PIN–PT–PZN system. The results demonstrate a possibility of growing ferroelectric single crystals with high electromechanical properties and expanded range of application temperature.  相似文献   

20.
Evolution of crystal structure in Pb1‐xBax(Fe1/2Nb1/2)O3 ceramics has been investigated by X‐ray diffraction and Raman spectra analysis together with the dielectric characterization. The crystal structure for all compositions is cubic and the cell volume indicates a sudden change at = 0.075. Pb1‐xBax(Fe1/2Nb1/2)O3 ceramics with > 0.075 are paraelectric, whereas those for < 0.075 are ferroelectric at room temperature. The evolution of phonon modes indicates that the ferroelectricity of Pb1‐xBax(Fe1/2Nb1/2)O3 solid solution ceramics is caused by the off‐center Nb5+ in BO6 octahedron. The ferroelectric‐related distortion is still observed in paraelectric solid solutions with > 0.075.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号