首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Ceramics International》2020,46(11):18551-18561
The structure of NaF–TeO2 glasses and glass-ceramics has been studied by XRD, TEM, SEM, Raman and FTIR techniques. The results suggest that, for NaF ≤10 mol%, the entire NaF content enters the structure to convert TeO4 units into TeO3/2F and Na+[TeO3+1] units. It has also been shown that NaF partially forms amorphous and/or crystalline phases for higher NaF content, where the relative concentration of each phase depends on the NaF content. SEM images show agglomerates of different sizes, which are discrete and spread within the structure. XRD revealed formation of crystalline Te2O3F2 for NaF ≤50 mol%, and a dominant phase of crystalline NaF for NaF >50 mol%. Raman and FTIR spectra have been analyzed to calculate the concentrations of the various structural units in glasses and glass-ceramics.  相似文献   

2.
In order to provide an exact knowledge of the phase transitions and melting relationships of Ca3(PO4)2 (TCP) in the presence of zinc, a revisited version of the rich-Ca3(PO4)2 region of the phase diagram of the system Ca3(PO4)2-Zn3(PO4)2 has been established in the present work. Experimental determination of this diagram was carried out by solid-state reactions of samples prepared from pure NH4H2PO4, CaCO3 and ZnO raw materials. X-ray Diffraction, Differential Thermal Analyses and Field Emission Scanning Electron Microscopy studies allowed to revise the α, β, α + β-TCP phase stability fields, delimitating for the first time the biphasic α + α′-TCP field and the melting relationships in the high temperature region of the system. The results allowed to determine two peritectic invariant points, at ≈1400 °C for 95 mol% Ca3(PO4)2 and at ≈1490 °C for ≈99.5 mol% Ca3(PO4)2.  相似文献   

3.
Mg3–Ca3(PO4)2 bioceramics were prepared from hydroxyapatite (HAp) with high Mg contents using sol–gel method. The influence of magnesium on the phase composition, crystal structure, electrical properties, chemical structure and morphological characteristics of powder bioceramics was analyzed using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). Dielectrical properties of the bioceramics were investigated by a dielectric impedance spectroscopy method. It was observed that the crystallization degree for all the samples dramatically was decreased with the increasing Mg content. The average crystallite size of the samples was found to vary from 32 to 42 nm. The morphology, density and dielectric properties of the bioceramics were changed with the addition of the amount of Mg. The obtained results indicate that the Mg3–Ca3(PO4)2 bioceramics can be prepared by means of hydroxyapatite bioceramic.  相似文献   

4.
《Ceramics International》2017,43(15):12205-12208
GeS2.5 chalcogenide glass was selected for studying effects of Ga addition on physical and structural properties. Glassy and partially crystallized samples of (100−x)GeS2.5xGa (5 mol% ≤ x ≤ 40 mol%) were prepared, and their thermal and optical properties were characterized. With increasing Ga content (x), values of Tg and optical band gap of glasses initially increased and then decreased, showing a maximal value at x = 25 mol%, that is, with stoichiometric composition of 85.7GeS2·14.3Ga2S3. These changes were discussed and correlated to evolution of network structure, which was investigated by Raman spectra recorded in glassy matrices of (100−x)GeS2.5xGa (5 mol% ≤ x ≤ 40 mol%). This work contributes to understanding of composition–structure–property relationship of chalcogenide glasses.  相似文献   

5.
The ionic conductivity of solid electrolytes is dependent on synthesis and processing conditions, ie, powder properties, shaping parameters, sintering time (ts), and sintering temperature (Ts). In this study, Na3Zr2(SiO4)2(PO4) was sintered at 1200 and 1250°C for 0-10 hours and its microstructure and electrical performance were investigated by means of scanning electron microscopy and impedance spectroscopy. After sintering under all conditions, the sodium super-ionic conductor-type structure was formed along with ZrO2 as a secondary phase. The microstructure investigation revealed a bimodal particle size distribution and grain growth at both Ts. The density of samples increased from 60% at 1200°C for 0 hours to 93% at 1250°C for 10 hours. The ionic conductivity of the samples increased with ts due to densification and grain growth, ranging from 0.13 to 0.71 mS/cm, respectively. The corresponding equivalent circuit fitting for the impedance spectra revealed that grain boundary resistance is the prime factor contributing to the changing conductivity after sintering. The activation energy of the bulk conductivity (Ea,bulk) remained almost constant (0.26 eV) whereas the activation energy of the total conductivity (Ea) exhibited a decreasing trend from 0.37 to 0.30 eV for the samples with ts = 0 and 10 hours, respectively—both sintered at 1250°C. In this study, the control of the grain boundaries improved the electrical conductivity by a factor of 6.  相似文献   

6.
《Ceramics International》2015,41(8):9801-9805
In-situ nanostructured Fe(AlCr)2O4-based composite coating (FACr52.5 coating) was prepared by reactive plasma spraying with micro-sized Al–Fe2O3–Cr2O3 powders. The microstructure, toughness and Vickers hardness, and adhesive strength of the coating were investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and mechanical tests. The results indicated that the interlamellar spacing of the FACr52.5 coating is only 1 μm. The coating exhibited nanostructured microstructure. The in-situ Cr (20 nm) and Fe (50–200 nm) particles were uniformly distributed in an Fe(AlCr)2O4 matrix, while the grain size of the Fe(AlCr)2O4 matrix is about 60 nm. The FACr52.5 composite nano-coating exhibited much higher hardness, better wear resistance, stronger adhesive strength and toughness as compared to those of the composite nano-coating sprayed with Fe2O3–Al powders. Excellent mechanical properties of the FACr52.5 coating were attributed to the uniform distribution of the in-situ nano-sized Cr particles in the coating matrix.  相似文献   

7.
A series of bismo-borate (50-x)B2O3-xTiO2-15Na2O–30Bi2O3 glass samples (where x = 0, 2.5, 5, 7.5, and 10 wt%) doped with TiO2 were fabricated via the melt-quenching technique. The gamma and neutron shielding, physical, optical, and mechanical properties of the prepared samples were investigated. The experimental results were measured using an HPGe detector. 152Eu, 133Ba, 137Cs, and 60Co radioactive sources were used with energies in the range of 81–1408 keV. The experimental results were compared with both the FLUKA code and the XCOM database. The addition of TiO2 increased the density of the glass samples and decreased their molar volume. The mass attenuation coefficient (MAC) decreased as photon energy decreased, while it increased as TiO2 concentration increased. The half value layer (HVL) and mean free path (MFP) of the glass samples increased when the photon energy increased and decreased as the TiO2 concentration increased. The absorbance of the present samples is enhanced by using TiO2, meaning they can be used to protect humans from UV light. Both direct and indirect band gaps decreased as TiO2 content increased from 0 to 10 wt %. Moreover, the electronic transition between localized states is valid in the present samples. The radiation shielding, optical, physical, and mechanical properties of the fabricated glass samples demonstrate their utility for diagnostic gamma shielding.  相似文献   

8.
9.
10.
《Ceramics International》2015,41(8):9862-9866
Tellurite glass systems in the form 75TeO2–15ZnO–(10−x)Nb2O5xGd2O3 (x=0.0, 0.5, 1.0, 1.5, 2.0, 2.5 mol%) have been prepared by the melt quenching technique. Both longitudinal and shear ultrasonic velocities were measured by using the pulse-echo method at 5 MHz frequency and at room temperature. Elastic moduli (longitudinal modulus, shear modulus, Young׳s modulus, Bulk modulus), Poisson׳s ratio, Debye temperature, micro-hardness and softening temperature have been calculated. Quantitative analysis of elastic moduli based on the number of bond per unit volume, average crosslink and number of vibrating atoms per unit volume has been achieved.  相似文献   

11.
《Ceramics International》2021,47(22):31597-31602
Lithium-ion batteries (LIBs) present the advantages of long cycle life, high voltage, and energy density and are widely made in the field of energy storage. LiVOPO4 (LVOP), a cathode material used in LIBs, has a high conceptual capacity of 159 mAh g−1 and high operating voltage of 3.9 V. However, its low electrical conductivity and cycle performance limit its commercial applications. According to the X-ray diffraction results, orthogonal crystal LVOP and monoclinic crystal Li3V2(PO4)3 (LVP) coexisted in the synthesised composite material. The transmission electron microscopy results also indicated that the LVOP and LVP phases coexist, which were coated by carbon layer of about 2.5 nm. The discharge of LVOP–LVP composite material initially was 143.2 mAh g−1, and that after 120 cycles was 132.2 mAh g−1 (at 0.1 C and 3–4.5 V). Thus, the electronic conductivity and first discharge specific capacity of the material enhanced due to the introduction of fast ion conductor LVP into LVOP. Electrochemical performance improved because the introduction of LVP led to an increase in Li+ pervasion channels in the original material and the acceleration of the Li+ transmission speed.  相似文献   

12.
《Ceramics International》2021,47(21):30137-30146
Tellurite glass is a model material having superior features for several applications. It can be considered as a potential host matrix for different oxides, and this paper aims to study the effects of TeO2/B2O3 substitution on synthesis, physical, optical and radiation shielding properties of ZnO–Li2O-GeO2-Bi2O3 glasses produced by melt quenching technique. The physical and optical features of the fabricated glasses were experimentally investigated by determining pivotal parameters such as density, XRD, tellurium ion concentration (Ni), linear refractive index (no), polaron radius (rp) and inter nuclear distance (ri). Moreover, the relative radiation deposition within the glasses was assessed via the attenuation coefficients (e.g. MAC), specific gamma ray constant (ᴦ), total stopping power (TSP), neutron cross sections, and dose rate (D). Our results suggest that both TeO2 and B2O3 additives have a significant effect on the fundamental properties of the ZnO–Li2O-GeO2-Bi2O3 glasses. It also found that the lower thicknesses of the present glasses are required to provide the same level of shielding than ordinary, ilmenite, steel scrap, hematic-serpentine, ilmenite-limonite and basalt-magnetite concretes, RS253-G18 and RS360 glass shields. Therefore, presently investigated glasses are promising photon shields in different technological applications of gamma- and x-rays.  相似文献   

13.
《Ceramics International》2022,48(1):472-480
The unfired Al2O3–C slide plates have the advantages of energy saving, environment friendly, efficiency and relatively low-cost. However, the decomposition and oxidation of the phenol-formaldehyde (PF) resin at elevated temperatures deteriorate the properties and decrease service life of the unfired slide plates. In order to improve the property of resin, the doped PF resin is prepared by incorporating Al(H2PO4)3, Zn and B4C powders. The effects of the doped resin on medium-high temperature properties and microstructure of the unfired slide plate materials have been investigated. The results show that Zn and B4C doped resin contributes to notable increasing the density and strength properties at medium temperature, because Zn and B4C easily oxide and thus protect resin from oxidation, leading to form a dense structure. Zn and B4C doped resin can significantly improve hot modulus of rupture of the materials at 1400 °C, which is due to Zn and B4C react with oxidative gases leading to increase in concentration of C(g), CO and N2, Al and Si would react with C(g), CO(g) and N2(g) to form AlN and SiC whiskers creating strengthening effect. Specimens with Zn and B4C doped resin addition have good oxidation resistance at 1500 °C, because Zn and B4C in the surface of the material react with O2 to form ZnAl2O4 or mullite containing dense glass film, which would retard O2 diffusion into the inner of the specimens.  相似文献   

14.
Phase evolution, microstructure and the electrical properties of ZrO2-added pyrochlore-free ZnO–Bi2O3–M3O4 (MCo, Mn) varistors have been studied as functions of ZrO2 content up to 10 vol% and the sintering temperature between 900 and 1300 °C. Zirconia remained as intergranular second phase particles up to 1100 °C, which retarded densification and inhibited the grain growth of ZnO. At higher temperatures, on the contrary, ZrO2 particles began to be entrapped in ZnO grains and irreversibly transform from monoclinic to stable cubic phase dissolving transition metal ions. The grain size of ZnO decreased with increasing ZrO2 content, and increased with the increase of the sintering temperature. Accordingly breakdown voltage changed with both ZrO2 content and the sintering temperature as was expected. Nonlinear coefficient (α) depended primarily on the sintering temperature: it increased to >40 up to 1000 °C, and significantly decreased to <30 at higher temperatures probably due to the volatilization of Bi2O3. While the specimens sintered at 1200 °C or above had relatively high leakage current (IL) and large clamping ratio (CR), those with ZrO2 content of 0.5–5.0 vol% and sintered below 1200 °C revealed low IL of ⩽20 μA/cm2 and CR well below 2.0. In spite that varistor characteristics of ZrO2-added system could not match those of commercial ZnO varistors, its low temperature sinterability and ease of breakdown voltage control via ZrO2 content without a serious loss of its figures of merit are worth noticing, particularly for multi-layered chip varistor (MLV) application.  相似文献   

15.
(1−x)La(Mg0.5Ti0.5)O3 (LMT)–xCaTiO3 (CT) [0<x<1] ceramics were prepared from powder obtained by a nonconventional chemical route based on the Pechini method. The crystal structure of the microwave dielectric ceramics has been refined by Rietveld method using X-ray powder diffraction data. LMT and CT were found to form a solid solution over the whole compositional range. The 0.9LMT–0.1CT composition was refined using P21/n space group, which allows taking into account B-site ordering. The compounds having x⩾0.3 were found to be disordered and were refined using Pbnm space group. Microstructure evolution was also analysed. Dielectric characterization at microwave frequencies was performed on the LMT–CT ceramics. The permittivity and the temperature coefficient of resonant frequency of the solid solutions showed a non-linear variation with composition. The quality factor demonstrates a considerable decrease with the increase of CT content.  相似文献   

16.
Based on research on cermet inert anodes for aluminium production, it has been suggested that nickel ferrite spinel might be suitable for use as a sidewall refractory in Hall-Héroult cells. A corrosion resistant sidewall would allow elimination of the frozen bath ledge, and has potentially huge benefits in terms of energy savings and increased productivity. However, little work has been done to assess nickel ferrite's suitability as a refractory.Dense nickel ferrite samples were prepared and characterized, and corrosion tests in cryolite based baths were conducted. Results confirm that the spinel does have good corrosion resistance. The corrosion mechanism is complex, involving grain boundary attack and formation of a Ni–Fe alloy. This alloy could pose a risk in terms of contamination of the aluminium. The use of additives to restrict penetration of grain boundaries may be the key to development of a successful spinel based refractory.  相似文献   

17.
《Ceramics International》2016,42(9):10801-10807
The Ba1−xSrxMg2V2O8 (0≤x≤0.4) microwave dielectric ceramics were fabricated by a standard solid-state reaction method. The formation of a continuous solid solution within the whole composition range was identified. The ceramic samples could be well densified in the temperature range of 885–975 °C in air for 4 h. The permittivity εr was found to increase with increasing ionic polarizabilities. The Q×f values were believed to be closely related with packing fraction and grain refinement. The Sr2+ substitution contributed to a monotonous increase of the A-site bond valence, such that the τf value experienced a considerable variation from negative to positive values. The optimum microwave dielectric properties of an εr of 13.3, a high Qxf of 86,640 GHz (9.6 Hz) and a near-zero τf of −6 ppm/°C could be yielded in the x=0.15 sample when sintered at 915 °C for 4 h.  相似文献   

18.
《Ceramics International》2016,42(9):10908-10912
Pure chemosynthetic Al2O3–2SiO2 powders fabricated by a sol–gel method exhibit high phosphoric acid-activated properties and high compressive strengths. The phosphoric acid-activated properties could be characterized by compressive strength. The phase structure evolution of synthetic powders and the resulting geopolymers were investigated by DTA-TG, XRD, FTIR and MAS NMR analysis. These results show that the phosphoric acid-activation region of the synthetic powders was in the range of 200–800 °C, which was much lower than the temperature at which kaolinite was converted into metakaolinite. 31P MAS NMR analysis revealed that [PO4] tetrahedra were part of the geopolymer structure.  相似文献   

19.
The magnesium–cobalt phosphates CoxMg3–x(PO4)2 belonging to the olivine-type structure were synthesized by coprecipitation and then investigated in the oxidative dehydrogenation (ODH) of ethane and propane. The best yields, with the exception of Co0.5Mg2.5(PO4)2, were achieved with the compositions ranging between 1x2.5. Magnesium phosphate Mg3(PO4)2 displayed no activity and pure cobalt phosphate Co3(PO4)2 was found to be the less active component of the solid solution. Comparison of the catalysts performances showed that they all have similar activity in ethane and propane ODH, albeit, they are more selective in propylene than in ethylene production. The CoxMg3–x(PO4)2 solid solution was also studied, for characterization purposes, in butan-2-ol conversion. The samples presented acid–base properties due essentially to the (PO–H) groups but they do not bear conventional redox centers. All the catalysts were active at low temperatures in the alcohol dehydration. The dehydrogenation activity versus the phosphates composition displayed two maxima around x=1 and 2, respectively. Similar striking behavior was also observed in ethane and propane ODH. UV-visible investigations of CoxMg3–x(PO4)2 showed, in agreement with the XRD data, that the Co2 + ions are distributed in the phosphate framework between six- and five-coordinated sites. The cobalt atoms in the five-coordinated sites Co(5) and their Co(5)–Co(5) interatomic distances were assumed to play the main role in the C–H bond activation and the appearance of maxima in the activity. Magnesium cations presumably intervene in acid–base properties of the samples and O2 activation. Characterization of the samples showed that they do not undergo any noticeable transformation after the catalytic tests.  相似文献   

20.
Understanding and controlling liquid–liquid phase separation in aluminosilicates is crucial for optimizing glass properties. However, the metastable nature of aluminosilicates’ phase separation has made it difficult to study experimentally, and uncertainty persists regarding the compositional and temperature extents of the miscibility gap. Here, we present new experimental evidence that suggests a consolute temperature between 1440 and 1590°C and endmember compositions of 7 and 62 mol.% Al2O3 for the phase-separated glasses. Using containerless melt processing, deeply supercooled liquids over the 0–60 mol.% Al2O3 range are probed with in situ small- and wide-angle X-ray scattering, which simultaneously reveals changes in nanoscale density heterogeneity and atomic structure. Correlations between phase separation and atomic coordination environments are compared for liquids and glasses. Pair distribution function analysis shows mean O–(Si + Al) coordination increases with Al2O3 content and decreases with temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号