首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-efficiency and far-red light phosphors based on Mn4+-doped inorganic luminescence materials are beneficial to plant cultivation. However, Mn4+-doped oxide phosphors have a common problem of low quantum efficiency. Alkali metal ion codoping can effectively improve the luminescence properties of Mn4+-activated oxide phosphors. Herein, a series of Sr2InSbO6:Mn4+, M (SISO:Mn4+, M) (M = Li+, Na+, and K+) far-red-emitting phosphors codoped alkali metal ions were first synthesized. Density functional theory calculation indicated that SISO is a kind of indirect bandgap material with a bandgap of ∼1.60 eV. The SISO:Mn4+ samples showed a far-red light at 698 nm upon 365 nm, which perfectly matched the absorption spectrum of the far-red-phytochrome (Pfr) of plants. The doping concentration of the SISO:Mn4+ samples was optimized to be 0.006 mol. The concentration quenching mechanism was defined as dipole–dipole interaction by combining the Dexter theory and the Inokuti–Hirayama model. Optimizing the sintering temperature and codoped with alkali metal ions (Li+, Na+, and K+) could improve the luminescent intensity of SISO:Mn4+. The optimum sintering temperature was 1300°C. The internal quantum efficiencies of SISO:0.006Mn4+ and SISO:0.006Mn4+, 0.006Li+ phosphors are 22.67% and 60.56%, respectively. SISO:Mn4+, Li+ phosphors-based plant growth light-emitting diodes (LEDs) demonstrate excellent optical stability and long lifetime. Thus, these phosphors are promising candidates for plant cultivation LEDs.  相似文献   

2.
Broadband near-infrared (NIR) phosphors have received increasing attention for fabricating phosphor-converted light-emitting diodes (pc-LEDs) as NIR light source. Most of the reported broadband NIR phosphors originate from Cr3+ in weak crystal field environments. Herein, we report a luminescent material, MgAlSiN3:Mn2+ with CaAlSiN3-type structure, demonstrating that broadband deep-red-to-NIR emission can be achieved via doping Mn2+ into crystallographic sites with strong crystal field in inorganic solids. This phosphor is synthesized via easy-handle solid-state reaction, and the optimized sample, (Mg0.93Mn0.07) AlSiN3 shows an emission band with peak at ~754 nm, FWHM of 150 nm, and internal quantum efficiency of 70.1%. The photoluminescence intensity can further be enhanced by co-doping Eu2+ as sensitizer. This work provides a new strategy for discovering new broadband NIR phosphors using Mn2+ in strong crystal field as luminescence center.  相似文献   

3.
Charge compensation was the effective methods to enhance the luminescence properties of phosphors. In this paper, novel single‐phased orange light emitting Sr2Mg3P4O15:Eu3+ phosphors were prepared by solid state method. The phase purity and luminous characteristics were examined in detail. Meanwhile, three kinds of charge compensation methods (co‐doping the alkali metal R+ (R+ = Li, Na, and K), substituting Si4+ for P5+ and self‐compensation) were employed to solve the charge imbalance problem between Sr2+ and Eu3+. The results showed that emission intensity of Eu3+ was improved by 1.43 (Li+), 1.58 (Na+), 1.53 (K+), 1.61 (Si4+), and 1.30 (self) times than that of Sr1.6Mg3P4O15:0.40Eu3+, respectively, and there was no change in the emitting color simultaneously. Furthermore, as the temperature reached at 423 K, the emission intensity increased from 41.67% of Sr1.6Mg3P4O15:0.40Eu3+ to 55.69% (Li+), 61.62% (Na+), 58.98% (K+), 71.15% (Si4+), and 80.59% (self) of that at room temperature. The reasons of those phenomena were the reduction in ion vacancies caused by charge imbalance through the charge compensation process. The specific mechanisms were elaborated in detail. Overall, this research validated that the charge compensation strategies could be severed as the key method to improve the luminescence properties, especially the thermal stability of phosphor.  相似文献   

4.
Eu2+ and Eu2+/Mn2+‐activated Na5Ca2Al(PO4)4 phosphors have been synthesized by the combustion method. X‐ray powder diffraction profiles, luminescence spectra, chromaticity variation, and energy transfer of Na5Ca2Al(PO4)4:Eu2+, Mn2+ were investigated as a function of the Eu2+ and Mn2+ concentrations in Na5Ca2Al(PO4)4. The Na5Ca2Al(PO4)4:Eu2+,Mn2+ phosphors can be effectively excited at wavelength ranging from 300 to 430 nm, which matches well with that for near‐ultraviolet (UV) light‐emitting diode (LED) chips. Under excitation at 354 nm, Na5Ca2Al(PO4)4:Eu2+,Mn2+ not only exhibits blue‐green emission band attributed to 4f65d1→4f7 of Eu2+ but also gives an orange emission band attributed to 4T16A1 of Mn2+. The emission color of the phosphor can be systematically tuned from blue‐green through white and eventually to orange by adjusting the relative content of Eu2+ and Mn2+ through the principle of energy transfer. The results indicated that Na5Ca2Al(PO4)4:Eu2+, Mn2+ may serve as a potential color‐tunable phosphor for near UV white‐light LED.  相似文献   

5.
《Ceramics International》2017,43(12):8824-8830
A series of Eu2+ and Mn2+ co-doping Sr3GdLi(PO4)3F phosphors have been synthesized through high temperature solid state reaction. Eu2+ single doped Sr3GdLi(PO4)3F phosphors have an efficient excitation in the range of 230–430 nm, which is in good agreement with the commercial near-ultraviolet (n-UV) LED chips, and gives intense blue emission centering at 445 nm. The critical distance of the Eu2+ ions in Sr3GdLi(PO4)3F is computed and demonstrated that the concentration quenching mechanism of Eu2+ is mostly caused by the dipole-dipole interaction. By co-doping Eu2+ and Mn2+ ions in the Sr3GdLi(PO4)3F host, the energy transfer from Eu2+ to Mn2+ that can be discovered. With the increase of Mn2+ content, emission color can be adjusted from blue to white under excitation of 380 nm, corresponding to chromatic coordinates change from (0.189, 0.108) to (0.319, 0.277). The energy transfer from Eu2+ to Mn2+ ions is proven to be a dipole-dipole mechanism on the basis of the experimental results and analysis of photoluminescence spectra and decay curves. This study infers that the obtained Sr3GdLi(PO4)3F:Eu2+, Mn2+ phosphors may be a potential candidate for n-UV LEDs.  相似文献   

6.
《Ceramics International》2021,47(24):34721-34731
A series of Sr9Y(PO4)7:Eu3+ and Sr9Y(PO4)7:Eu3+, Gd3+ red-emitting phosphors were prepared via a high-temperature solid-state method, Gd3+ ion was co-doped in Sr9Y(PO4)7:Eu3+ as sensitizer to enhance the luminescence property. The X-ray diffraction results verify that the structure of the as-prepared samples is consistent with the standard Sr9Y(PO4)7 phase. All the Sr9Y(PO4)7:Eu3+ samples show both characteristic emission peaks at 594 nm and 614 nm under near-ultraviolet excitation of 394 nm. The co-doping of Gd3+ significantly improves the luminescence intensity of the Sr9Y(PO4)7:Eu3+ phosphors due to the crystal field environment effect and energy transfer of Gd3+→Eu3+ caused by the introduction of Gd3+, especially Sr9Y(PO4)7:0.11Eu3+, 0.05Gd3+, which emission intensity is higher than that of Sr9Y(PO4)7:0.11Eu3+ by 1.21 times. The color purity and lifetime of Sr9Y(PO4)7:0.11Eu3+, 0.05Gd3+ phosphor are 88.26% and 3.7615 ms, respectively. A w-LED device was packaged via coating the as-prepared phosphor on n-UV chip of 395 nm with commercial phosphors. These results exhibit that the Sr9Y(PO4)7:Eu3+, Gd3+ red-emitting phosphor can be used as a red component in the w-LEDs application.  相似文献   

7.
Mn4+ doped aluminate materials with efficient red emission are promising components for warmer white light-emitting diodes. However, it still remains as a challenge on increasing its luminous efficiency. For Mn4+ doped aluminate phosphors, co-dopants such as Li+, Mg2+, Na+, Si4+, or Ge4+ ions are often added to tailor the photoluminescence properties of phosphors during preparing process. However, the role of the ions is still in debate. In this work we took BaMgAl10O17:Mn (BMA:Mn) and α-Al2O3:Mn as examples to study the effects of Li+, Mg2+, Na+, and Si4+ on their luminescent properties. The energy levels induced by the co-dopants and some possible intrinsic defects of hosts (Al2O3) were calculated using the first-principles method. It is found that the Mg2+ and Na+ ions, compared with Li+ and Si4+, can prefer to form hole-type defects which enhance the valence stability of Mn4+ and thus enhance the emission intensity of the as-prepared phosphors.  相似文献   

8.
《Ceramics International》2017,43(9):6949-6954
Mn4+ doped and Mn4+/Cr3+ co-doped alkali metal titanate phosphors have been prepared by solid state reaction method. A part of Li+ ions in the Li2MgTiO4: Mn4+ are substituted with Na+ and K+ ions and consequently the intensity of Mn4+ emission at 678 nm is enhanced by 1.7 and 2.5 times, respectively. In the Mn4+/Cr3+ co-doped (Li0.95K0.05)2MgTi0.999O4, both emission of Cr3+at 726 nm and emission of Mn4+ at 678 nm of Mn4+ are observed. It is interesting to find that the intensity ratio of 726–678 nm emissions in the Mn4+/Cr3+ phosphor continually increases with excitation wavelength increasing from 290 nm to 455 nm, which means that the intensity ratio in turn can be used to identify the excitation light wavelength. This refers a possible approach to design novel compact light-wavelength detector or spectrometer based on the phosphor. The mechanism of Na+ or K+ substitution induced luminescence enhancement in the Mn4+ phosphor and the competition between the Cr3+ and Mn4+ emissions in the Mn4+/Cr3+ co-doped has been discussed.  相似文献   

9.
Nitride phosphors of Ca0.99−xSrxAl1.01Si0.99N3:0.01Ce3+ (0 ≤ ≤ 0.9) were synthesized by conventional solid-state method. XRD data analysis shows that all samples are single phase with CaAlSiN3-type structure. Under blue or near-ultraviolet (~400 nm) light excitation, the emission peak can be tuned largely from 615 to 568 nm by increasing Sr content, and the emission intensity is maximal at = 0.8. With the Sr content increase, the emission band blue-shifts due to the decreased crystal field splitting and the reduced centroid shift; while the thermal luminescence quenching resistance is almost unchanged. The quenching temperature (T50) is well above 500 K for all samples, which satisfies the requirement of commercial application. The quenching process is mainly attributed to the radiationless transitions by thermally activated crossover from the 5d excited state to 4f ground state in the configurational coordinate diagram. The luminescence properties show that the (Ca,Sr)AlSiN3:Ce3+ phosphors are very promising for use in blue and near-ultraviolet light excited white-light-emitting diodes.  相似文献   

10.
《Ceramics International》2022,48(11):15755-15761
In this work we detail the preparation of new luminescent Li+ and K+ doped Na2Zn3Si2O8: Er3+ up-conversion phosphors using the high-temperature solid-phase method. We investigate the phosphors phase structure, elemental distribution, up-conversion luminescence characteristics and temperature sensing properties. Our fabricated samples were found to be homogeneous and when excited using 980 nm light, they emitted wavelengths in the green and red visible wavelength bands, which correspond to two major emission bands of Er3+. Doping with Li+ and K+ increased the luminescence intensity of the Na2Zn3Si2O8: Er3+ phosphor at 661 nm by 36 and 21 times respectively. The highest relative temperature sensitivity (Sa) of the fabricated phosphor reached a value of 19.69% K?1 and the highest absolute temperature sensitivity (Sr) reached 1.20% K?1. These values are superior to other materials which utilize up-conversion by Er3+ ions as a tool for temperature sensing. We anticipate that these new phosphors will find significant application as components in optical temperature measurement systems.  相似文献   

11.
《Ceramics International》2017,43(12):9117-9123
In this work, a series of Eu2+-doped (Ca1−xSrx)8MgLu(PO4)7 and Eu2+/Mn2+-codoped Ca6.5Sr1.5MgLu(PO4)7 phosphors were prepared via the combustion-assisted solid-state reaction process. XRD patterns and Rietveld refinements were used to verify the incorporations of Sr into Ca8MgLu(PO4)7:Eu2+. Upon the same excitation wavelength of 380 nm, the emission peaks of Eu2+-doped (Ca1−xSrx)8MgLu(PO4)7 (0≤x≤1) phosphors red-shifted from 453 to 519 nm with increasing Sr/Ca ratio. The red-shift of the Eu2+ emission with increasing Sr/Ca ratio was ascribed to the change of Eu2+ emission at different lattice sites. With variation of the Mn2+ content, the emission color of Eu2+/Mn2+ codoped Ca6.5Sr1.5MgLu(PO4)7 phosphors exhibited the luminescence tunable from greenish blue to white and eventually to red. The energy transfer from Eu2+ to Mn2+ in Ca6.5Sr1.5MgLu(PO4)7 host matrix was demonstrated to be of a resonant type via a dipole- dipole mechanism with the critical distance of ∼16.7 Å. By the Sr substitution for Ca and properly tuning by the relative composition change of Eu2+/Mn2+, chromaticity coordinates of (0.329, 0.326) can be reached at near UV light excitation. The combination of host composition design and energy transfer may provide a novel strategy to obtain white light and tunable luminescence.  相似文献   

12.
Eu2+, Mn2+ doped Sr1.7Mg0.3SiO4 phosphors were prepared by high temperature solid-state reaction method. Their luminescence properties were studied. The emission spectra of Eu2+ singly doped Sr1.7Mg0.3SiO4 consist of a blue band (455 nm) and a green band (550 nm). The relative intensities of two emissions varied with Eu2+ concentration. Eu2+ and Mn2+ co-doped Sr1.7Mg0.3SiO4 phosphors emit three color lights and present whitish color. The blue (455 nm) and green (550 nm) emissions are attributed to the transitions of Eu2+, while the red (670 nm) emission is originated from the transition of Mn2+ ion. The results indicate the energy transfer from Eu2+ to Mn2+. The mechanism of the energy transfer is resonance-type energy transfer due to the spectral overlap between the emission of Eu2+and the absorption of Mn2+.  相似文献   

13.
《Ceramics International》2022,48(22):33143-33150
Bi3+ ions can regulate and control the fluorescence of a phosphor by transferring energy to the activating agent or occupying different luminescent centers, which is important for modifying phosphors and revealing fluorescence mechanisms. As a base material, Sr3Al2O5Cl2 has three types of Sr sites (Sr 1, Sr 2, and Sr 3) that may be occupied by Bi3+ ions (Sr2+ has a similar radius to Bi3+). Herein, we successfully synthesized a series of Sr3Al2O5Cl2:x%Bi3+ phosphors using the high-temperature solid-state method and determined a two-site-occupying emission mechanism. X-ray diffraction patterns indicated that the samples were synthesized well, and Rietveld refinement results provided their structural information. Photoluminescence spectra showed 490 nm (λex = 345 nm) and 556 nm (λex = 376 nm) emission peaks, which might arise from different luminescent centers. The concentration quenching study, peak separation analysis, fluorescence lifetime spectra, and diffuse reflection spectra indicated that the Bi3+ ions occupied two of the three Sr sites. Calculations of relative system energies and distortion index proved that the occupation only occurred in the Sr 1 and Sr 3 sites, and crystal splitting analysis determined that Sr 1 site generated 490 nm emission light and Sr 3 site generated 556 nm emission light. The charge compensator and flux were added to enhance the fluorescence intensity of the phosphor, and 5% K+ along with 1% BaF2 is the optimal dosage. Finally, the SrAlSiN3:Eu2+, BaMgAl10O17:Eu2+, and optimized Sr3Al2O5Cl2:5%Bi3+ phosphors were combined as a luminous layer and a warm-white light-emitting diode was realized; the color rendering indices were 84.3, 85.8, 86.4, and 86.2 under working currents of 20, 30, 40, and 50 mA, respectively.  相似文献   

14.
《Ceramics International》2023,49(3):4622-4630
Long persistent luminescence materials developed to commercial standards are primarily concentrated in the blue and green regions, with only a few in the red region. Red, as one of the three basic colors, can be mixed in various proportions with blue and green to yield various colors. The development of red persistent phosphors has a broader application potential but remains a challenge. A solid-state reaction method was used to synthesize new red persistent luminescent materials of Ba1-xSrxGa2O4:Sm3+ (x = 0–0.09). In BaGa2O4, both Sr2+ and Sm3+ preferentially occupy the Ba2+ site rather than the Ga3+ site. When exposed to UV light at 254 nm, the phosphors emit the characteristic red emission of Sm3+ at wavelengths ranging from 500 nm to 750 nm. After removing the UV light source, an intense red afterglow that lasted more than 1400 s was observed. The red afterglow signal reappears after a heating process. Doping Sr2+ reduces the trap depth and improves the red persistent luminescence significantly. Because the escaped electrons from traps compensate for the emission loss of Sm3+ during the heating process, the red phosphors have unimaginably luminescent thermal stability. Thus, the emission intensity at 200 °C is 1.6 times that at room temperature. The prepared red persistent phosphors show multimode luminescence, with the output signal being time and temperature sensitive, indicating that they are potential luminescent materials for anti-counterfeiting applications. Finally, a building-block strategy for advanced anti-counterfeiting applications of dynamic display information is proposed, with red persistent phosphors serving as an important component combined with upconversion phosphors of NaYF4:Yb3+, Tm3+, and green persistent phosphors of SrAl2O4:Eu2+, Dy3+.  相似文献   

15.
《Ceramics International》2023,49(10):15700-15709
The solid-state reaction method was used to develop a series of Na2Ca1-x-yCexMnyP2O7 phosphors in an H2–N2 environment. The crystal structure of the pyrophosphate host, valence state of dopants (Ce, Mn), emission behavior of dopants, energy transfer mechanism, and thermal quenching behavior were thoroughly examined. Doping with Ce3+ and Mn2+ ions enhanced the photoluminescence characteristics of Na2Ca1-x-yCexMnyP2O7 while having negligible effect on the host's phase purity. Under 365 nm UV light irradiation, the addition of Ce3+ ion in the Na2CaP2O7 host revealed an asymmetric band with the typical blue emission around 415 nm and a shoulder around 455 nm. To obtain white light, Mn2+ ion was supplementarily substituted to the present system. When the Mn2+ ions concentration was elevated in the Na2CaP2O7 host, the emission intensity of 560 nm peak corresponding to Mn2+ transition enhanced significantly at the cost of Ce3+ emission of 415 nm. The systematic decrease of Ce3+ emission intensity and corresponding increase in the Mn2+ intensity with the increase in Mn2+ concentration indicated the possibility of effective energy transfer from Ce3+ to Mn2+ ions. The obtained results indicated that energy transfer from the Ce3+ to Mn2+ ions governed by dipole-quadrupole interaction. Because of the efficient energy transfer, the blue emission from Ce3+ and the orange red emission of Mn2+ provide white light from a single host along with high value of activation energy and low thermal quenching behaviour make the present phosphors to be suitable for high-power LEDs.  相似文献   

16.
《Ceramics International》2022,48(11):15695-15702
The exploration of efficient and high-purity red phosphors is an urgent need in LED development. Due to the compact and compositional-tunable structure of whitlockite compound, manganese-based Ca19Mn2(PO4)14 is chosen as phosphor host for Eu2+ sensitization. Rietveld refinement, steady-state spectra, decay lifetime analysis and temperature-dependent emission spectra were investigated and clearly discussed. Under 360 nm excitation, Ca19Mn2(PO4)14: Eu2+ shows a strong Mn2+ sensitized emission at 655 nm with FWHM of 82 nm, benefiting from the short-distance-induced high-efficient Eu2 -Mn2+ energy transfer. Emission engineering of Ca19Mn2(PO4)14: Eu2+ is achieved by Sr2+ co-doping, leading to both tunable peak wavelength (ranging from 650 to 610 nm) and improved intensity (130% of original value). Moreover, Ca19Mn2(PO4)14: Eu2+ exhibits a promising thermal stability where only 40% of emission intensity is lost at 200 °C. Finally, we explored the working performance of the fabricated RGB phosphor-converted white LED. The present work indicates that Ca19Mn2(PO4)14: Eu2+ phosphor is of great potential as a promising and efficient red phosphor in phosphor-converted white LED.  相似文献   

17.
A novel blue‐emitting phosphor Na2ZnGeO4 and a novel green‐emitting phosphor Na2ZnGeO4:Mn2+ have been newly developed via high‐temperature solid‐state reaction. The crystal structure of Na2ZnGeO4 has been identified. Energy transfer from Na2ZnGeO4 host to Mn2+ ions was affirmed. Undoped and Mn2+‐doped Na2ZnGeO4 phosphors exhibit blue and green long persistent luminescence (LPL) with persistent duration more than 40 min and 4 h, respectively. The traps created in host lattice were clarified. The LPL mechanism in Na2ZnGeO4 and Na2ZnGeO4: Mn2+ was discussed briefly. This investigation provides two new and efficient long persistent phosphors (LPPs).  相似文献   

18.
《Ceramics International》2023,49(8):12088-12096
Mn4+ activated fluoride red phosphors, as candidate red materials in white light-emitting diodes (WLEDs), have received widespread attention. However, the poor water stability limits their application. Herein, a novel dodec-fluoride red phosphor Na3Li3In2F12:Mn4+ with good waterproof stability was successfully synthesized by solvothermal method. The crystal structure, optical property, micro-morphology, element composition, waterproof property and thermal behavior of Na3Li3In2F12:Mn4+ phosphor were analyzed. Under the 468 nm blue light excitation, the Na3Li3In2F12:Mn4+ phosphor has narrow emission bands in the area of 590–680 nm. Compared with commercial red phosphor K2SiF6:Mn4+, the Na3Li3In2F12:Mn4+ phosphor possesses better waterproof stability. When soaked in water for 360 min, the PL intensity of the Na3Li3In2F12:Mn4+ phosphor remains at initial 80%. Finally, warm WLEDs with CRI of 87 and CCT of 3386 K have been fabricated using blue InGaN chip, YAG:Ce3+ yellow phosphor and Na3Li3In2F12:Mn4+ red phosphor.  相似文献   

19.
《Ceramics International》2020,46(13):21351-21359
The luminescence properties of ceramic phosphors based on two spinel hosts MgAl2O4 and ZnAl2O4 doped with manganese ions have been studied. It has been found that the spectral properties of these phosphors can be strongly varied by changing synthesis conditions. Both types of doped ceramic spinel can serve as efficient Mn2+ green-emitting phosphors having peak emissions at 525 and 510 nm, respectively. Mn-doped MgAl2O4 spinel can also be prepared as an efficient Mn4+ red-emitting phosphor having peak emission at ~651 nm by using specific temperatures of heat treatment in air. It has also been shown that the conversion of Mn2+ to Mn4+ and viсe versa, as well as the coexistence of Mn2+ green and Mn4+ red emissions, can be accomplished by properly chosen annealing conditions of the same initially synthesized MgAl2O4:Mn sample. Manganese doped MgAl2O4 spinel with an optimal intensity ratio of green and red emissions can be a promising single-phase bicolor phosphor suitable for the development of warm white phosphor-converted LED lamps. On the other hand, it has been determined that perfectly normal ZnAl2O4 spinel cannot be doped with Mn4+ ions in contrast to partially inverse MgAl2O4 spinel. However, ZnAl2O4 samples unintentionally doped with impurity Cr3+ ions show emission spectra in the far-red region with well pronounced R, N and vibronic lines of Cr3+ luminescence due to the perfect normal spinel structure of synthesized ZnAl2O4 ceramics. Also, by partially substituting Al3+ cations for Mg2+ in ZnAl2O4 there is an opportunity to obtain Mn4+ doped or Mn4+/Cr3+ codoped far-red emitting phosphors which can be suitable for indoor plant growth lighting sources.  相似文献   

20.
《Ceramics International》2019,45(14):16963-16968
Cationic substitution is a prevalent strategy to tune the luminescence spectra of phosphors. In this work, we reported a series of Eu2+-activated whitlockite type Ca7Sr3.5-0.5xAx(PO4)7 (CSPA; A =Li, Na, K) (x = 0–1.00) phosphors. The substitution by Na+ for both half occupied/vacant M(4) site was verified via Raman spectra, Reitveld refinement and HR-TEM, whereas a similar accommodation of K+ into the Ca2Sr(PO4)2 (CSP) host cannot be realized due to the significant size mismatch. A continuous increase of Na+ contents led to the progressively structural contraction, promoting the migration of Eu2+ activator from looser M(4) to other sites, and regulating the luminescence behaviors. Consequently, the gradual red-shift of emission band terminated at a new yellow phosphor Ca7Sr3Na(PO4)7:0.04Eu2+. The cation vacancy repair developed in this work can not only migrate the Eu2+ activator among different cation sites, but also serves as a new strategy for tuning the luminescence properties of phosphor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号