共查询到20条相似文献,搜索用时 23 毫秒
1.
2.
《Journal of the European Ceramic Society》2014,34(7):1755-1760
The dielectric properties of SrTiO3 ceramics sintered in nitrogen (N2) exhibit a weak temperature- and frequency-dependent giant permittivity (>104) as well as a very low dielectric loss (mostly < 0.02) over a broad temperature range from −100 to 200 °C. Based on the results of ac conductivity and structural analysis, the giant permittivity and low dielectric loss were due to the fully ionized oxygen vacancies and giant defect-dipoles. When further sintering these ceramics in air, the materials exhibit a large temperature- and frequency-dependent high dielectric loss, which were due to the ionization and motion of oxygen vacancies. 相似文献
3.
4.
5.
Stephan Stich Kuan Ding Qaisar Khushi Muhammad Lukas Porz Christian Minnert Wolfgang Rheinheimer Karsten Durst Jürgen Rödel Till Frömling Xufei Fang 《Journal of the American Ceramic Society》2022,105(2):1318-1329
Dislocations have been identified to modify both the functional and mechanical properties of some ceramic materials. Succinct control of dislocation-based plasticity in ceramics will also demand knowledge about dislocation interaction with point defects. Here, we propose an experimental approach to modulate the dislocation-based plasticity in single-crystal SrTiO3 based on the concept of defect chemistry engineering, for example, by increasing the oxygen vacancy concentration via reduction treatment. With nanoindentation and bulk compression tests, we find that the dislocation-governed plasticity is significantly modified at the nano-/microscale, compared to the bulk scale. The increase in oxygen vacancy concentration after reduction treatment was assessed by impedance spectroscopy and is found to favor dislocation nucleation but impede dislocation motion as rationalized by the nanoindentation pop-in and nanoindentation creep tests. 相似文献
6.
《Ceramics International》2023,49(19):31218-31227
At present, research on colossal permittivity materials is extensive but challenging to achieve simultaneous properties of colossal permittivity, low loss, and high resistivity. Resistance degradation also restricts industrial application of colossal permittivity materials. In this work, a new method has been proposed to improve resistivity of colossal permittivity ceramics by making metal ions diffuse on ceramic grain boundaries, thus inhibiting the diffusion of oxygen vacancies at grain boundaries. Sr0.99La0.01TiO3(SLT10) ceramics were synthesized by traditional solid-state method, and then Bi2O3 (35%)-Al2O3 (10%)-MgO (20%)-CuO (25%)-SiO2 (10%) mixed oxidant was selected to percolate into ceramics. The resistivity of SLT10 ceramics improved remarkably (from 2.1×108 Ω cm to 1.23×1011 Ω cm under DC 100 V) with a colossal permittivity (16695 @1 kHz) and a low dielectric loss (0.016 @1 kHz), as well as excellent frequency stability (20 Hz–2 MHz) and temperature stability (-170 °C to 375 °C). The source of high insulation resistivity of the SLT10 ceramic sample was discussed. Subsequent examination uncovered that grain in the SLT10 ceramics percolated with metal ions displayed semiconducting characteristics, wherein insulation grain boundaries significantly influenced the ceramic's resistivity and served as formidable potential barriers constraining long-range movement of charge carriers. Experimental analysis demonstrated that the resistance degradation behavior of the SLT10 ceramics was suppressed, the breakdown voltage was increased, and the service life was extended. 相似文献
7.
Zichen He Minghe Cao Eugene Furman Michael T. Lanagan Hua Hao Zhonghua Yao Zhiyong Yu Hanxing Liu 《Journal of the American Ceramic Society》2022,105(6):4143-4151
In this study, the dielectric properties of SrTiO3 ceramics prepared by plasma-activated sintering (PAS) were investigated. One of the striking findings is that the material exhibits giant room temperature permittivity (k∼3.5 × 104) and low dielectric loss (∼0.05) at 1 kHz, with the permittivity exceeding that of the conventionally prepared SrTiO3(ST) ceramics (k∼300) by two orders of magnitude. The enhancement of the polarizability was caused by the high concentration of defect dipoles. In this paper, two dielectric relaxation modes of the PAS ceramics below 0°C have been mainly discussed. One dielectric relaxation mode showed higher activation energy than that of the dielectric peak in the same temperature range for the conventional SrTiO3-based ceramics. This mode was sensitive to humidity, and the strength of this mode was associated with the oxygen vacancies concentration in the ceramics. The other mode exhibited abnormal slowing down of relaxation rate with increasing temperature, which is contrary to the typical dielectric relaxation behavior, and the anomaly persisted over a narrow temperature range. Both modes were observed at the same interface between the grain and grain boundaries. 相似文献
8.
9.
《Ceramics International》2022,48(15):21906-21912
The miniaturization and high capacitance of electronic components are driving the development of high-performance electronic ceramic materials. In this work, we design a new strategy to achieve satisfactory dielectric properties with low loss, colossal permittivity, and a high breakdown electric field (Eb) in Al-doped Y2/3Cu3Ti4O12 (YCTO) ceramics prepared by a solid-phase synthesis method. The dielectric loss decreased with Al doping in the YCTO. The dielectric constant and the Eb were improved upon Al doping. With Al doping levels of 0.03 and 0.05, Y2/3Al0.03Cu2.97Ti4O12 and Y2/3Al0.05Cu2.95Ti4O12 ceramics displayed, respectively, a suppressed loss tangent of about 0.028 and 0.031, a high dielectric constant of approximately 9540 and 11792, and an Eb of approximately 4.32 and 4.54 kV/cm. The improved dielectric properties of the produced ceramics were closely linked to enhanced grain boundaries resistance. This study explores the physical mechanism behind the high performance of the YCTO-based ceramics, and also provides theoretical support for the application of devices comprising YCTO and related materials. 相似文献
10.
Kun Yu Ye Tian Rui Gu Li Jin Ruiping Ma Hongchen Sun Youlong Xu Zhuo Xu Xiaoyong Wei 《Journal of the European Ceramic Society》2018,38(13):4483-4487
Perovskite-type solid electrolyte lanthanum lithium titanate (LLTO), exhibiting high intrinsic ionic conductivity, has been attracting interests because of its potential use in all solid-state lithium-ion batteries. In this work, we prepared LLTO ceramics by solid state reaction method and studied their conductivity and dielectric properties systematically. It is found that the bulk conductivity of LLTO is several orders of magnitude higher than the grain boundary conductivity. In addition, colossal permittivity was observed in LLTO ceramics in wide frequency/temperature ranges. Two non-Debye type relaxation peaks were observed in the imaginary part of permittivity, resulting from Li+ ions motion and accumulation near interfaces of grains/grain boundaries/electrodes. It is suggested that colossal permittivity may originate from the lithium ion dipoles inside the samples and the interfacial polarization of lithium ion accumulation near the grain boundaries. These results clarify the relations among colossal permittivity, relaxation behavior and ionic conduction in solid ion conductor ceramics. 相似文献
11.
《Ceramics International》2023,49(13):21402-21410
Dielectric ceramics with high permittivity and low loss are widely used in electronic components and devices. In this study, (Nb, Zn) co-doped NbxZnySn1-x-yO2 with different doping levels and Nb/Zn ratios was designed to tune the defect structure toward the optimal dielectric performance. The lattice parameters firstly increased from x = y = 0.01 to 0.03 and then decreased, while the oxygen vacancy concentration decreased with doping. The co-doped sample with x = y = 0.02 exhibits stable permittivity up to 800 with an ultra-low loss tanδ ∼0.03 at 40 Hz. DFT calculation showed that the oxygen vacancy was formed with single-Zn doping and co-doping at low doping level, while the hole was generated at higher doping level. The achieved large permittivity and low loss of the sample are related to both Electron-Pinned Defect Dipoles (EPDD) and Hole-Pinned Defect Dipoles (HPDD) effects in the lattice, which was determined by the relative positions of donor and acceptor dopants. 相似文献
12.
Hongbo Liu 《Ceramics International》2019,45(8):10380-10384
Manganese-doped lead zirconate ceramics were prepared by a conventional solid reaction method. Although the doping content varies from 5% (mole) to 20% (mole), significantly enhanced universal dielectric relaxation occurs only in 5% Mn-doped lead zirconate. The behavior cannot be properly explained by Maxwell-Wagner relaxation, which is commonly used for explaining giant dielectric permittivity in electroceramics. It is found that the enhanced giant dielectric permittivity is related to hetero-valence cation doping induced universal dielectric relaxation. 相似文献
13.
《Ceramics International》2023,49(12):20388-20397
The lack of systematic research on the phase structure, defect structure, and polarization mechanism hinders the full comprehension of the colossal permittivity (CP) behavior for SrTiO3-based ceramics. For this purpose, Ta-doped SrTiO3-based ceramics were synthesized in an N2 atmosphere with a traditional method. When the appropriate amount of Ta was doped, colossal permittivity (ԑr ∼ 62505), low dielectric loss (tanδ ∼ 0.07), as well as excellent temperature stability (−70 °C–180 °C, ΔC/C25°C ≤ ±15%) were obtained in the Sr0.996Ta0.004TiO3 ceramic. The relationship between Ta doping, polarization mechanism, and dielectric performance was systematically researched according to experimental analysis and theoretical calculations. The first-principle calculations indicate that the Ta5+ ion prefers to replace the Sr-site. The defect dipoles and oxygen vacancies formed by heterogeneous-ion doping play an active role in regulating the dielectric performance of ceramics. In addition, the interface barrier layer capacitance (IBLC) effect associated with semi-conductive grains and insulating grain boundaries is the primary origin of colossal permittivity for Sr1-xTaxTiO3 ceramics. The polarization mechanism and defect structure proposed in the study can be extended to the research of SrTiO3 CP ceramics. The results have a good development prospect in colossal permittivity (CP) materials. 相似文献
14.
Chenxi Wang Zujian Wang Xiaoming Yang Chao He Xifa Long 《Journal of the American Ceramic Society》2020,103(11):6445-6452
Tunable dielectric materials have drawn much attention due to their wide applications including capacitors and microwave tunable devices. Ferroelectrics materials have special spontaneous polarization which can be reversibly switched by an external electric field. Therefore, tunable dielectric constant can be easily achieved in ferroelectrics. However, the study of nonlinear dielectric response induced by defect dipoles is rarely concerned. Here, we report the effects of defect dipoles on tunable dielectric response under alternative current (AC) and direct current (DC) electric field in defect dipoles introduced Pb(Lu1/2Nb1/2)O3–PbTiO3 ceramics. A modified Rayleigh model is proposed to successfully characterize dielectric nonlinearity and reveals the interaction between domain walls and defect dipoles. The defect dipoles had more sensitive effect on dielectric response under AC field than that of defect dipoles-free samples. The drop of intrinsic dielectric contribution under AC field results from the detriment effect of defect dipoles. The irreversible contribution is altered by the movements of defect dipoles under AC field, subsequently inducing the nonlinearity of dielectric response. Samples with defect dipoles have larger tunable scope of dielectric properties than that of defect dipoles-free samples. The present work discovers the potential of application of defect dipoles-tuned dielectric response ferroelectrics in devices which requires both high AC and DC biases, and help to better understand the complex dielectric response of ferroelectrics. 相似文献
15.
Dielectric and electric relaxations induced by the complex defect clusters in (Yb+Nb) co‐doped rutile TiO2 ceramics 下载免费PDF全文
The effect of the Yb+Nb substitution for Ti on the microstructure, crystal structures, and dielectric properties of (Yb1/2Nb1/2)xTi1?xO2 (0.01≤x≤0.1) ceramics is investigated in this study. The results reveal that the solid solubility limit of the (Yb1/2Nb1/2)xTi1?xO2 ceramics is x=0.07, and the average grain sizes considerably decrease from 12 μm to 6 μm with x increasing from 0.01 to 0.1. Three types of dielectric relaxations are observed at temperature ranges of 10‐30 K, 80‐180 K, and 260‐300 K, caused by the electron‐pinned defect dipoles, polaron hopping, and interfacial polarizations, respectively. The conduction mechanism changes from nearest‐neighbor‐hopping to polaron hopping mechanism, which is confirmed by ac conductivity measurements. The present work indentifies the correlation between the colossal permittivity and polaron hopping process in the titled compound. 相似文献
16.
Hui Peng Pengfei Liang Xiaobin Zhou Zhanhui Peng Yichen Xiang Xiaolian Chao Zupei Yang 《Journal of the American Ceramic Society》2019,102(3):970-975
With the intense demand of the developing microelectronics market, the study of giant permittivity dielectric materials is being promoted. However, it is difficult to obtain suitable dielectric materials for such applications, especially due to high dielectric loss at low frequencies. In this work, Ag+Nb codoped TiO2 ceramics were designed and fabricated in a conventional solid reaction by sintering at 1290-1340°C for 5-10 hours. The issue of how the microstructure and dielectric properties of (Ag1/4Nb3/4)0.005Ti0.995O2 ceramics are affected by the sintering conditions was discussed. By optimizing sintering conditions, a dense microstructure, a high dielectric constant (εr ≈ 9410), and a low dielectric loss (tanδ ≈ 0.037) at 1 kHz were achieved. Most importantly, the temperature coefficient value of εr at different frequencies remained stable between −14.3% and 13.7% within the temperature range from −190 to 200°C, which has potential applications in X9R capacitor. 相似文献
17.
Bingcheng Luo Xiaohui Wang Enke Tian Hongzhou Song Qiancheng Zhao Ziming Cai Wei Feng Longtu Li 《Journal of the European Ceramic Society》2018,38(4):1562-1568
Fe doped BaTiO3 ceramics with giant permittivity and low dielectric loss were synthesized in N2/H2 atmosphere started with BaTiO3 powders and iron powders. XRD analysis exhibited the tetragonal-pseudocubic phase transition when the Fe content is 3 mol%. XPS spectra confirmed the iron oxides with mixed-valence structure of Fe2+/Fe3+, while Ti-ions maintain Ti4+3d0 states without any oxidization-reduction. For the case of ceramics with 5 mol% Fe, the dielectric constant was 66,650 at 1000 Hz at room temperature, 19 times higher than that of pure BaTiO3 ceramics, while the dielectric loss tangent was 0.13. Comparison with other giant-permittivity materials demonstrated the superior potential of present ceramics. First-principles calculations investigated the interfacial interaction of Fe-[TiO2] interface and Fe-[BaO] interface. Giant dielectric constant was induced by the interfacial polarization between insulating ferroelectrics and semiconducting iron oxides with mixed-valence states, as well as the contribution from the generated electron hopping conduction. 相似文献
18.
《Ceramics International》2017,43(12):9178-9183
Low temperature preparation of CaCu3Ti4O12 ceramics with large permittivity is of practical interest for cofired multilayer ceramic capacitors. Although CaCu3Ti4O12 ceramics have been prepared at low temperatures as previously reported, they have rather low permittivity. This work demonstrates that CaCu3Ti4O12 ceramics can not only be prepared at low temperatures, but they also have large permittivity. Herein, CaCu3Ti4O12 ceramics were prepared by the solid state reaction method using B2O3 as the doping substance. It has been shown that B2O3 dopant can considerably lower the calcination and sintering temperatures to 870 °C and 920 °C, respectively. The relative permittivity of the low temperature prepared CaCu3Ti4−xBxO12 ceramics is about 5 times larger than the previously reported results in the literature. Furthermore, the dielectric loss of the CaCu3Ti4−xBxO12 ceramics is found to be as low as 0.03. This work provides a beneficial base for the future commercial applications of CaCu3Ti4O12 ceramics with large permittivity for the cofired multilayer ceramic capacitors. 相似文献
19.
Zhanhui Peng Di Wu Pengfei Liang Xiaobin Zhou Jitong Wang Jie Zhu Xiaolian Chao Zupei Yang 《Journal of the American Ceramic Society》2020,103(2):1230-1240
Dielectric materials with ultrahigh permittivity are attracting attention due to the increasing demand for these types of materials for microelectronics and energy storage applications. In this work, we successfully synthesized Zn-doped CdCu3Ti4O12 (CdCTO) ceramics with low dielectric loss and large permittivity via an ordinary mixed-oxide technique. Remarkably, at a Zn doping level of 0.10, a CdCu2.9Zn0.1Ti4O12 ceramic exhibited both decreased dielectric loss tangent of ~0.058 and large dielectric permittivity > 4.0 × 104, as well as a good frequency stability over a wide frequency range from 40 Hz to 106 Hz. The high dielectric performance was attributed to the enhanced grain boundary resistance and internal barrier layer capacitor (IBLC) effect due to the fine and uniform grains that formed upon Zn doping. The findings reported in this work provide valuable insights into how to simultaneously realize a low dielectric loss and high permittivity in CdCTO and other related dielectric ceramics. 相似文献
20.
《Ceramics International》2019,45(14):17318-17324
Giant permittivity ceramic is one of the most significant classes of material to realize the miniaturization and integration of a high-performance capacitor. In this paper, to realize good giant dielectric properties, the (Nd0.5Ta0.5)xTi1-xO2 ceramics (NTTO x = 0.005, 0.01, 0.03, 0.05) were synthesized by a standard conventional solid-state reaction. Comparing with the previous co-doped TiO2 ceramics giant permittivity material system, NTTO ceramics perform extremely colossal permittivity and ultralow dielectric loss (1%NTTO: ε = 82052, tanδ = 0.008 at 1 kHz; 5%NTTO: ε = 170131, tanδ = 0.090 at 1 kHz). The broad distinction of the dielectric behavior between the (Nd0.5Ta0.5)xTi1-xO2 ceramics can be explained by the impedance analysis and the calculated polarization activation energies. The main electron-pinned defect-dipole (denoted as EPDD) polarization corresponds to the ultralow loss, embodying in the maximum value of Egb (the activation energy of the grain boundary), Ea2 (the EPDD polarization activation energies) and the minimum value of Ea1 (the total polarization activation energies). Though the interfacial polarization can cause the permittivity increase, it can also give rise to poor frequency stability and higher loss. 相似文献