首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
The prohormone convertases (PCs) are processing enzymes that activate proproteins via cleavage at specific single or pairs of basic residues. The hypothalamic paraventricular nucleus (PVN) and supraoptic nucleus (SON) are primary sites of biosynthesis of several neuroendocrine hormone precursors, including provasopressin (pro-AVP), pro-oxytocin (pro-OT), and procorticotrophin-releasing hormone (pro-CRH), which require post-translational processing to yield active products. Using in situ hybridization, we observed PC1 and PC5 mRNAs in PVN and SON magnocellular neurons, while PC2 mRNA was observed in both magnocellular and parvocellular PVN neurons as well as magnocellular SON neurons. Similar to furin, PC7 mRNA was expressed throughout the PVN and SON, whereas PACE4 mRNA levels were undetectable. Both immunohistochemical and Western blot studies were performed to demonstrate the presence of PC proteins and forms in the PVN and SON. Using double-labeling in situ hybridization, we examined the cellular colocalization of each PC mRNA with pro-AVP, pro-OT, and pro-CRH mRNAs in PVN and SON. PC1 mRNA was colocalized with both AVP and OT mRNA in PVN and SON magnocellular neurons. All AVP, OT, and CRH neurons expressed PC2. In contrast, PC5 mRNA was colocalized only with OT mRNA. We examined the effects of adrenalectomy (ADX) on PVN PC mRNA levels. PC1 mRNA levels were increased selectively within CRH/AVP parvocellular neurons but were unchanged in PVN magnocellular AVP or OT neurons. These results established the anatomical organization of each convertase and proneuropeptide substrates in the PVN and SON and suggested potential roles for each enzyme under resting and stimulated conditions.  相似文献   

3.
4.
The regulatory actions of estrogen on magnocellular oxytocin (OT) and vasopressin (VP) neurons of the paraventricular (PVN) and supraoptic (SON) nuclei are well documented. To date it is still debated whether the effect of estrogens is exerted directly or mediated by estrogen-sensitive interneurons. Previous immunocytochemical (ICC) and in situ hybridization (ISH) studies detected either low levels or absence of the classical estrogen receptor (ER-alpha) in the PVN and the SON of the rat. The present experiments using a combined ICC and ISH method were undertaken to examine the expression of the recently cloned beta form of ER (ER-beta) in OT- and VP-immunoreactive (IR) neuronal systems of the rat hypothalamus. The results demonstrate that the highest cellular levels of ER-beta messenger RNA (mRNA) in OT-IR neurons can be visualized in the caudal portion of the PVN and in an area ventro-medial to the central core of VP-IR cells. These neurons were previously shown to project caudally to the brain stem and the spinal cord to regulate autonomic functions. In addition, the whole rostro-caudal extent of the PVN and the SON contained OT-IR neurons that coexpressed variable levels of ER-beta mRNA. Similarly, the presence of ER-beta mRNA was seen in a large population of VP-IR paraventricular and supraoptic neurons. In the SON, somewhat stronger hybridization signal was detected in VP-IR neurons as compared with OT-IR neurons. Together, these findings provide strong support for the concept that the functions of OT- and VP-IR neurons in the PVN and the SON are regulated directly by estrogen and that the genomic effects of estrogens are mediated by ER-beta.  相似文献   

5.
Cytokine-induced neutrophil chemoattractant (CINC) is one of the chemokines and has chemotaxity for neutrophils. Recently, we found the presence of stress-sensitive CINC expression in the hypothalamic nuclei such as the paraventricular nucleus. Since CINC was predominantly co-localized with vasopressin in the supraoptic nucleus (SON), we investigated the effect of hyperosmotic challenge on CINC mRNA in the hypothalamus. We found that CINC mRNA expression in the hypothalamus was augmented within 30 min following osmotic stimulation and immediately returned to the basal level. The suckling, which is a stimulation to oxytocin neurons in the SON, has no effect on CINC mRNA expression in the hypothalamus. This is the first evidence that the chemokine in the brain is activated by osmotic stimulation.  相似文献   

6.
Studies were performed on the central antidiuretic actions via the tachykinin NK-3 receptor in the rat hypothalamic paraventricular nucleus (PVN). Microinjections of the selective tachykinin NK-3 receptor agonist senktide (2-200 pmol) into the PVN resulted in prolonged inhibition of urine output in water-loaded rats, its effect being dose-dependent. The antidiuretic action of senktide was blocked by pretreatment with the vasopressin V2 receptor antagonist OPC-31260 (1 mg/kg, i.v.), but not by microinjection of the angiotensin II AT-1 receptor antagonist losartan (1 nmol) into the PVN. NK-3 receptor mRNA was strongly detected in the magnocellular part of the PVN and the supraoptic nucleus (SON) of the hypothalamus as detected by in situ hybridization histochemistry. Moreover, [3H]senktide binding sites were also detected in the PVN and the SON by receptor autoradiography. These findings suggest that NK-3 receptors in the PVN may be involved in water regulation by stimulation of vasopressin secretion from the posterior pituitary gland, and that vasopressin caused water reabsorbtion via the kidney V2 receptor.  相似文献   

7.
Previous studies suggested that angiotensinergic stimulation in the subfornical organ (SFO) has effects on the anterior third ventricle (AV3V) region and the hypothalamus for dipsogenic response and vasopressin release. In this study, Angiotensin I (ANG I) was directly injected into the SFO and this stimulated drinking. Injection of ANG I into the SFO also induced Fos-immunoreactivity (Fos-ir) in the AV3V region and in the vasopressin neurons of the supraoptic and paraventricular nuclei (SON and PVN). Pretreatment of the SFO with either captopril, an ANG converting enzyme inhibitor, or losartan, an AT1 receptor antagonist, abolished both drinking and Fos-ir induced by ANG I. Water intake partially decreased ANG I-induced Fos-ir in the SON and PVN, but not in the other areas. These results indicate that there is an ANG converting system in the SFO and suggest that neurons in the AV3V region and vasopressin cells in the hypothalamus can be regulated by angiotensinergic components in the SFO.  相似文献   

8.
9.
10.
The nonapeptide oxytocin (OT) is important for uterine contractility at parturition, milk ejection during lactation, and the induction of maternal behavior. OT messenger ribonucleic acid (mRNA) levels increase in the paraventricular and supraoptic nuclei (PVN and SON) of late pregnant and lactating rats and are modulated by the steroid milieu that accompanies these states. Specifically, sequential exposure to estradiol (E2) and progesterone (P) followed by P withdrawal 48 hrs prior to sacrifice increases PVN, and to a lesser but significant degree, SON OT mRNA. To better define the time course of induction of OT mRNA levels following P withdrawal, ovariectomized Sprague-Dawley rats were treated with empty or steroid-filled capsules. On day 1, animals received an E2-filled or empty capsule, followed by P-filled or empty capsules on day 3. On day 14, P-filled or empty capsules were removed and animals were sacrificed 24, 36, or 48 hrs later. The hypothalamic PVN were analyzed for OT mRNA by in situ hybridization histochemistry. Significant differences in PVN OT mRNA were found among the groups (P<0.0001, Kruskal-Wallis). Animals in the 48 hr (P=0.007) and 36 hr (P=0.005), but not the 24 hr, steroid-treated groups had significantly increased OT mRNA relative to their respective sham-treated cohorts (Mann-Whitney U test). The relative abundance of PVN OT mRNA differed among the steroid-treated groups (Kruskal-Wallis, P<0.0003), with highest levels at 48 hr. We conclude that increases in PVN OT mRNA occur by 36 hrs, and are highest at 48 hrs, after P withdrawal in the E2-primed rat. Future studies will determine if OT-mediated changes in behavior or physiology that surround parturition are related to these changes in OT mRNA.  相似文献   

11.
A rabbit antiserum was raised against the N-terminal fragment peptide, GEGLSS (Gly-Glu-Gly-Leu-Ser-Ser) of bovine neuropeptide AF (NPAF, A18Famide). NPAF is an octadecapeptide isolated from the bovine brain together with neuropeptide FF (NPFF). GEGLSS-like immunoreactivity was localized with immunofluorescence technique in colchicine-treated rats in neuronal cell bodies of the supraoptic (SON) and paraventricular (PVN) hypothalamic nuclei. A few neurons were also observed in the retrochiasmatic part of the SON. GEGLSS-like immunoreactivity was also localized to nerve terminals of the posterior pituitary. No GEGLSS-ir neuronal cell bodies were observed in the medial hypothalamus, in an area that contains NPFF-ir neurons. GEGLSS immunoreactivity was also seen in the fibers and terminals of nucleus of the solitary tract. We injected a retrograde tracer, fluorogold, to the posterior pituitary gland and visualized GEGLSS-ir neuronal cell bodies double-labeled with the tracer in SON, PVN, and SOR. The pituitary stalk transsection totally abolished the GEGLSS-ir structures from the posterior pituitary. Our results suggest that GEGLSS immunoreactivity in the rat brain has a more limited distribution than NPFF immunoreactivity. GEGLSS immunoreactivity was partially colocalized with arginine-vasopressin and oxytocin in neuronal cell bodies in the SON and PVN. Considering the fact that the known rat NPFF-NPAF precursor does not contain GEGLSS structure, the detected GEGLSS immunoreactivity may be derived from a previously unknown precursor.  相似文献   

12.
7B2 is a neuroendocrine chaperone interacting with the prohormone convertase PC2 in the regulated secretory pathway. Its gene is located near the Prader-Willi syndrome (PWS) region on chromosome 15. In a previous study we were able to show 7B2 immunoreactivity in the supraoptic nucleus (SON) or the paraventricular nucleus (PVN) in only three of five PWS patients. Here we report that in contrast with five other PWS patients, the neurons in the hypothalamic SON and PVN of the two 7B2-immunonegative PWS patients also failed to show any reaction using two antibodies directed against processed vasopressin (VP). On the other hand, even these two cases reacted normally with five antibodies that recognize different parts of the VP precursor. This finding pointed to a processing defect. Indeed, the same patients had no PC2 immunoreactivity in the SON or PVN, whereas PC1 immunoreactivity was only slightly diminished. In conclusion, in the VP neurons of two PWS patients, greatly reduced amounts of 7B2 and PC2 are present, resulting in diminished VP precursor processing.  相似文献   

13.
During the course of aging both activation and degenerative changes are found in the human hypothalamus. Degeneration may start around middle-age in some neurotransmitter- or neuromodulator-containing neurons. For instance, a decreased number of vasoactive intestinal polypeptide (VIP) neurons was observed in the suprachiasmatic nucleus (SCN) of middle-aged males. The normal circadian fluctuations seen in the number of vasopressin (AVP) neurons in the SCN of young subjects diminished in subjects older than 50 years. Moreover, a sharp decline in cell number was found in the sexually dimorphic nucleus (SDN) after 50 years in males. On the other hand, many hypothalamic systems remain perfectly intact during aging like the oxytocin (OXT) neurons in the paraventricular nucleus (PVN). The AVP neurons in the PVN are activated during aging as appears from their increasing cell number. Also the corticotrophin-releasing hormone (CRH) neurons of the PVN are activated in the course of aging, as indicated by their increased number and their increased AVP coexpression. Part of the infundibular nucleus, the subventricular nucleus, contains hypertrophic neurokinin B neurons in postmenopausal women. It can be concluded that a multitude of changes in the various hypothalamic nuclei may be the biological basis for many functional changes in aging, i.e., both endocrine and central alterations, and that only a minority of the possible human hypothalamic changes have so far been studied.  相似文献   

14.
Intracerebroventricular (i.c.v.) infusions of angiotensin II (AII) reliably induced c-fos expression in the supraoptic (SON) and paraventricular (PVN) nuclei, as well as other areas of the basal forebrain including the OVLT, subfornical organ (SFO), and bed nucleus (BNST). Double-labelling showed that AII-induced c-fos was observed in both vasopressin (AVP-) and oxytocin (OXY)-containing neurons of the SON and PVN in male rats. Allowing rats to drink water after AII infusions suppressed c-fos expression both AVP- and OXY-stained magnocellular neurons. Intragastric infusions of water were also effective, showing that oro-pharyngeal stimuli were not critical. Maximal suppression occurred in rats in whom water had been infused intragastrically about 5 min before i.c.v. AII infusions, suggesting that changes in osmolarity were responsible. i.c.v. AII also induced c-fos expression in a number of brainstem structures, including the solitary nucleus (NTS), lateral parabrachial nucleus (LPBN), locus coeruleus (LC), and the area postrema (AP). These results indicate that AVP and OXY-containing neurons in the magnocellular parts of the SON and PVN alter their immediate-early gene response to AII after water intake, and that this does not depend upon oro-pharyngeal factors. Furthermore, AII can induce c-fos expression in a number of brainstem nuclei associated with autonomic function, and these do not respond to water intake.  相似文献   

15.
The adipose tissue-derived hormone leptin regulates body weight homeostasis by decreasing food intake and increasing energy expenditure. The weight-reducing action of leptin is thought to be mediated primarily by signal transduction through the leptin receptor (LR) in the hypothalamus. We have used immunohistochemistry to localize LR-immunoreactive (LR-IR) cells in the rat brain using an antiserum against a portion of the intracellular domain of LR that is common to all LR isoforms. The antiserum recognized the short and long isoforms of LR in transfected hematopoietic BaF3 cells. To examine the chemical nature of target cells for leptin, direct double-labeling immunofluorescence histochemistry was applied. The results show extensive distribution of LR-like immunoreactivity (LR-LI) in the brain with positively stained cells present, e.g., in the choroid plexus, cerebral cortex, hippocampus, thalamus, and hypothalamus. In the hypothalamus, strongly LR-IR neurons were present in the supraoptic nucleus (SON) and paraventricular nucleus (PVN), periventricular nucleus, arcuate nucleus, and lateral hypothalamus. Weaker LR-IR neurons were also demonstrated in the lateral and medial preoptic nuclei, suprachiasmatic nucleus, ventromedial and dorsomedial nuclei, and tuberomammillary nucleus. Confocal laser scanning microscopy showed LR-LI in the periphery of individual cells. In magnocellular neurons of the SON and PVN, LR-LI was demonstrated in vasopressin- and oxytocin-containing neurons. In parvocellular neurons of the PVN, LR-LI was demonstrated in many corticotropin-releasing hormone-containing neurons. LR-IR neurons were mainly seen in the ventromedial aspect of the arcuate nucleus, where LR-LI co-localized with neuropeptide Y. In the ventrolateral part of the arcuate nucleus, LR-LI was present in many large adrenocorticotropic hormone-IR proopiomelanocortin-containing neurons and in a few galanin-, neurotensin-, and growth hormone-releasing hormone-containing neurons. In the dorsomedial arcuate nucleus, few tyrosine hydroxylase (dopamine)-containing neurons were seen to have LR-LI. Melanin-concentrating hormone-containing neurons in the lateral hypothalamus had LR-LI. Based on the immunohistochemical results, possible interactions of leptin with brain mechanisms are discussed.  相似文献   

16.
The distribution of vasopressin (AVP) producing cells, their projections and AVP receptors was examined in the brain of common marmosets (Callithrix jacchus) using in situ hybridization, immunocytochemistry and receptor autoradiography. Clusters of cells labeled for AVP mRNA or stained for AVP immunoreactivity (AVP-ir) were found in the paraventricular (PVN), supraoptic (SON) and suprachiasmatic nuclei (SCN) of the hypothalamus. Scattered AVP producing cells were also found in the lateral hypothalamus and the bed nucleus of the stria terminalis (BST). Neither AVP mRNA-labeled nor AVP-ir cells were detected in the amygdala. Although AVP-ir fibers were evident outside of the hypothalamic-neurohypophyseal tract, a plexus of fibers in the lateral septum, as observed in the rat brain, was not detected. Receptor autoradiography using 125I-linear-AVP revealed specific binding for AVP receptors in the nucleus accumbens, diagonal band, lateral septum, the BST, SCN, PVN, amygdala, anterodorsal and ventromedial nucleus of the hypothalamus, indicating sites for central AVP action in the marmoset brain. Together, these data provide a comprehensive picture of AVP pathways in the marmoset brain, demonstrating differences from rodents in the distribution of cell bodies, fibers and receptors.  相似文献   

17.
Together with the paraventricular nucleus (PVN), the dorsomedial nucleus of the hypothalamus (DMH) acts as one of the hypothalamic centers that integrate autonomic and central information. The DMH in the rat brain has extensive intrahypothalamic connections and is implicated in a wide variety of functions. Up until now, no knowledge has been available to indicate that the human DMH might have functions similar to those of the rat DMH. In the present study, intrahypothalamic efferent projections of the human DMH were revealed by a recently developed in vitro postmortem tracing method. It was found that the most densely innervated areas are the PVN, the ventromedial nucleus of the hypothalamus, and the area below the PVN. Other significant terminal fields include the periventricular nucleus, the lateral hypothalamic area, and the medial part of the anteroventral hypothalamic area. Scarce fibers project to the suprachiasmatic nucleus, infundibular nucleus, posterior hypothalamic nucleus, and posterior part of the bed nucleus of the stria terminals. The projections of the ventral and dorsal part of the DMH show some differences. The dorsal part of the DMH has denser projections to the dorsal part of the PVN than to the ventral part of the PVN. In contrast, the ventral part of the DMH has denser projections to the ventral part of the PVN. Labeled fibers in the PVN from ventral and dorsal DMH appear to run near many vasopressin and oxytocin neurons of different sizes, and also near some corticotropin- releasing hormone neurons, suggesting that the DMH neurons may directly affect the functioning of these PVN neurons. In many aspects, the observed projections of the human DMH resemble those of the rat, indicating that the organization of DMH intrahypothalamic projections of human is similar to that of rat. The functional significance of DMH intrahypothalamic connections is discussed.  相似文献   

18.
To determine whether altered noradrenergic activation of the hypothalamo-pituitary-adrenal (HPA) axis contributes to the attenuated neuroendocrine response to stress observed during lactation, the effect of intracerebroventricular injection of the alpha1-agonist methoxamine (100 microg) was compared between virgin and lactating rats. Virgin rats showed significant increases in plasma corticosterone after methoxamine, reaching 317 +/- 44 ng/ml at 10 min and remaining significantly elevated for more than 120 min, but lactating rats showed no significant increase in corticosterone levels. Furthermore, methoxamine induced an increase in paraventricular nucleus (PVN) CRF messenger RNA expression in virgin, but not lactating, animals. Both groups of rats exhibited comparable elevations in plasma PRL after methoxamine treatment. Arginine vasopressin messenger RNA expression within the parvocellular PVN was greater in the lactating animals than in the virgin controls, but methoxamine injection was without further effect. Studies performed on ovariectomized virgin rats and ovariectomized rats receiving estradiol or progesterone replacement failed to reproduce the attenuated HPA responses seen after methoxamine treatment, although methoxamine-induced PRL levels were greatly increased by estradiol, probably arising from an effect on hormone synthesis. In vitro electrophysiological recordings of PVN neurons in hypothalamic slices from proestrous virgin and lactating rats showed that 45-52% of neurons in both groups exhibited excitatory responses to 10(-4) M methoxamine, but there was a differential response to 10(-5) M methoxamine, with PVN neurons from lactating animals failing to show a response. These data show a selective down-regulation of alpha1-mediated activation of the HPA axis in lactating animals. This may contribute to the attenuated stress-induced activation of the HPA axis during lactation.  相似文献   

19.
There is evidence indicating that the area postrema (AP), the most caudal circumventricular organ located on the dorsal surface of the medulla, is involved in several physiological regulations. In this study, we investigated the role of AP in the regulation of arginine vasopressin (AVP) synthesis and release, using rats of which the AP was lesioned 6 weeks previously. The level of plasma AVP in the AP lesioned (APX) group was significantly lower than in the sham operated (Sham) group in the basal state. AVP release induced by either hyperosmolality or hypovolemia was significantly attenuated by APX. To clarify the role of AP in AVP synthesis in the hypothalamus, we examined the AVP gene expression using in situ hybridization. AVP messenger RNA levels in paraventricular (PVN) and supraoptic nuclei (SON) in the APX group were significantly lower than in the Sham group in the basal state. Moreover, the AVP messenger RNA levels in PVN and SON in the APX group were also significantly lower than in the Sham group after water deprivation for 3 days. These results suggest that AVP synthesis and release are tonically stimulated by AP in the basal state and that AVP synthesis and release in stimulated states are also regulated, at least partially, by AP.  相似文献   

20.
Perinatal overfeeding is a risk factor for overweight and diabetes during life. Underlying pathophysiological mechanisms are unclear. The peptide galanin is suggested to stimulate food intake by acting within the paraventricular hypothalamic nucleus (PVN). In early postnatally overfed rats overweight and hyperinsulinemia were observed, accompanied by an increased number of galanin-positive neurons in the PVN at weaning. Our results might indicate malformation of hypothalamic galaninergic neurons due to neonatal overfeeding and hyperinsulinism, respectively, in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号