首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
自适应蚁群算法在流水车间调度的应用   总被引:2,自引:0,他引:2  
以求解旅行商问题(TSP)来介绍基本蚁群算法模型.针对其存在的易陷入局部最优和易出现停滞等缺点,将自适应调节策略与蚁群算法结合,提出应用改进的蚁群算法求解流水车间调度问题,并通过仿真实验验证了该改进算法的有效性和优化性.  相似文献   

2.
陈晓亮  马亨冰 《福建电脑》2010,26(8):109-110,99
针对蚁群算法搜索时间长、易陷于局部最优解的缺点,提出一种自适应的调整信息素挥发因子的改进策略。通过解决旅行商问题,证明该改进算法具有优良的寻优能力,提高了算法的全局性。  相似文献   

3.
二次蚁群算法在运输调度问题中的应用   总被引:2,自引:0,他引:2  
蚁群算法在解决车辆路径问题VRP(Vehicle Routing Problem)上表现了很大优势,但也存在全局搜索能力较低、易出现停滞等缺陷.提出的二次蚁群算法是指先用改进的自适应蚁群算法对VRP求得一个可行解,再用求解旅行商问题TSP(Traveling Salesman Problem)的蚁群算法对所得到的解进一步优化,从而得到最优解.从两个实验仿真结果的数据上看,该算法具有很强的搜索能力,克服了基本蚁群算法的某些弊端,能够有效地求解车辆路径问题.  相似文献   

4.
蚁群算法在K-TSP问题中的应用   总被引:7,自引:0,他引:7  
黄席樾  胡小兵 《计算机仿真》2004,21(12):162-164
针对K-TSP(K—person Traveling Salesman Problem)问题,该文提出了一种利用蚁群算法求解该问题的新思路。该算法采用k只蚂蚁共同构造问题的一个解,并通过多组(每组k只)蚂蚁相互协作最终达到搜索最优解的目的。实验结果显示,该算法行之有效,是一种求解K-TSP问题的有效算法。  相似文献   

5.
卢宇凡  张莉 《微型机与应用》2012,31(17):78-79,83
围绕蚁群优化算法的理论及应用,针对蚁群算法在TSP规划中求解能力不足的难题,运用了一种基于自适应的蚂蚁算法,并对TSP规划进行了设计。为了提高路径规划的效率,将自适应与传统的蚂蚁算法相结合形成了自适应蚁群算法。仿真实验结果表明,改进后算法能够在较短时间内找到全局最优路径,相对于基本的蚁群算法在收敛速度、搜索质量和局部寻优方面都有了明显的提高。  相似文献   

6.
蚁群算法是通过模拟蚂蚁觅食而发展出的一种新的启发算法,能够有效的解决组合优化问题。本文在介绍了蚁群算法的基本原理和解决旅行商(TSP)问题的模型的基础上。对蚁群算法做了相应的改进:通过应用新的选择策略和引入扰动以避免陷入局部优化,使得算法可以在减少计算量的同时。取得更好的搜索结果。  相似文献   

7.
提出了一种求解置换流水车间调度的蚁群优化算法。该算法的要点是结合了NEH启发式算法和蚁群优化方法。理论论证和对置换流水车间调度问题的基准测试表明了该算法的有效性。  相似文献   

8.
基于自适应蚁群算法的作业车间模糊调度研究   总被引:3,自引:0,他引:3  
在研究不确定生产调度问题的基础上,针对具有模糊加工时间和模糊交货期的调度问题给出了作业车间模糊调度模型,用三角模糊数表示模糊加工时间,梯形模糊数表示模糊交货期,以交货期平均满意度最大作为调度目标.针对模糊调度问题对基本蚁群算法作了改进,并给出了新的状态转移规则,同时采用自适应信息素更新策略使算法能快速跳出局部收敛,进行仿真结果验证了自适应蚁群算法求解作业车间模糊调度的有效性.  相似文献   

9.
薛莉  戴居丰  魏志成 《计算机仿真》2007,24(8):167-170,181
提出了一种新的蚁群算法,通过在算法中引入双信息素,很好地改进了算法在解决TSP(旅行商)问题时的收敛性和最优解的全局性.一方面通过提高全局信息素对城市路径选择的影响度,很大程度上缩短了算法寻优时间,使算法收敛性得到很大的改善;另一方面通过对接近最优解的一定范围内次优解进行局部更新,避免了算法容易收敛于局部最优解的缺点,极大地改进了最优解的全局特性.在MATLAB中构建了基于蚁群算法的TSP问题模型,仿真结果表明,独立的全局信息素使蚁群很快集中于各个次优解区域搜索,局部更新策略又使蚁群跳出局部级值寻找最优,仿真结果证明算法的改进十分有效.  相似文献   

10.
温蕴  孙亚 《计算机应用与软件》2009,26(6):187-188,194
车间作业调度问题是一个典型的NP-hard问题,也是一个前沿性的研究课题,已受到学术界和工业界的广泛关注。提出了一种基于启发式规则和蚁群算法的车间作业调度方法。该方法首先采用蚁群算法得到车间作业调度问题的一组可行解,然后采用一些启发式规则进一步优化这些可行解。通过将启发式规则有效地融入到蚁群算法中,使得该混合方法的优化效率得到极大的改进。仿真实例表明,方法是可行的、正确的和有效的。  相似文献   

11.
蚂蚁算法在车间作业调度问题中的应用   总被引:13,自引:0,他引:13  
蚂蚁算法是近年来新出现的一种随机型搜索寻优算法,自从在TSP等著名问题中得到富有成效的应用之后,已引起越来越多的关注和重视。论文进一步将这种新型的生物优化思想进行扩展,提出了一种解决车间作业调度问题(JSSP:JobShopSchedulingProblem)的蚂蚁优化算法,给出了求解的一般步骤和流程。通过计算实例的结果,说明了该算法优于传统算法。  相似文献   

12.
基于蚁群优化算法的服务网格的作业调度   总被引:9,自引:0,他引:9  
提出了利用蚁群算法来优化服务网格的作业调度系统的方法和一个两层的作业调度模型,该模型可以在网格的动态和异构环境下实现对作业执行时间的预测,然后根据作业的预测执行时间并利用蚁群优化算法使适应函数取得最小值,从而得到最优化的作业调度。基于开发的校园网格实验床,通过实验显示该方法可以优化服务网格的性能,减少作业的平均执行时问,提高系统的吞吐率。  相似文献   

13.
夏欣 《计算机科学》2013,40(5):247-250
为了求解工件具有不同尺寸的批处理机调度问题,将蚁群算法调整为工件直接成批的调度算法,并提出了一个新的局部优化算法对蚁群算法进行改进。最后通过仿真实验将本算法与其它算法对本问题的求解进行了比较,表明该算法在求解批调度问题上有较好的性能。  相似文献   

14.
牛群  顾幸生 《控制与决策》2005,20(10):1157-1160
针对遗传算法解决车间作业调度问题时存在早熟收敛的缺点,采用一种新型进化算法——DNA进化算法解决车间作业调度问题.将算法从连续优化问题拓展用于解决离散优化问题,并将其成功地应用于Job shop生产调度.采用了著名的M u th和T hom pson标准问题FT 10进行了验证.仿真结果表明,与遗传算法相比,该算法简单有效,不仅具有很好的求解性能,而且具有更快的收敛速度和全局搜索能力.  相似文献   

15.
本文基于对制造资源调度和发现过程的分析研究,建立实用的制造资源调度器模型和调度策略,然后采用蚂蚁算法对制造资源的调度快表做出优化,并做出有关的实验和数据分析。该方法能够有效地实现制造资源的作业的合理调度和实现分布式系统的负载平衡,提高了制造资源搜索的成功率。  相似文献   

16.
肖力 《计算机仿真》2008,25(3):192-195
为了高效地解决Flow Shop问题,提出了一种利用免疫算法求解Flow Shop调度问题的方法.该算法是根据人或者其它高等动物的免疫系统机理设计的,将调度目标和约束条件作为抗原,将问题的解作为抗体,对抗体采用按工件加工顺序进行自然数编码,并把最大流程时间的倒数作为适应度函数,通过引入隔离小生境等技术提高了免疫算法的适应能力,保证了种群的多样性,克服了早熟收敛,提高了收敛速度.通过对Flow Shop问题的基准测试表明,该算法不仅在求解问题的规模上具有很好的可伸缩性,而且在运算时间上也低于禁忌搜索算法和模拟退火算法,从而验证了该算法的有效性.  相似文献   

17.
宋晓宇  王丹 《计算机工程》2007,33(4):218-219
为了解决单一算法求解Job Shop调度问题存在的不足,该文提出了一种混合算法,将蚁群算法用于全局搜索。针对蚁群算法易于陷入局部最优的情况,提出了一种基于关键工序的邻域搜索方法,将使用此邻域搜索方法的TS算法作为局部搜索策略。利用TS算法较强的局部搜索能力,提高了蚁群算法的优化能力,达到改善Job Shop调度问题解的质量。实验结果表明,混合算法在较短的时间内,找到了FT10、LA24、LA36等典型benchmarks问题的最优解,得到的makespan的平均值较并行遗传算法(PGA)和TSAB算法均有所提高。  相似文献   

18.
在全球贸易经济聚焦在中国的同时,港口的吞吐能力成为目前港口业的主要矛盾。提高泊位这个环节的运作能力,减少船舶在港时间,增加港口的吞吐能力成为主要研究对象。本文采取仿真模型与优化算法相结合的研究方法,把泊位调度问题转化为旅行商问题,建立了一个泊位岸桥协调调度,通过蚁群算法建立数学模型,使船舶在港时间最短为目标建立函数,求得最佳调度方案。用ProModel建立船舶到港停泊及离港仿真模型。验证泊位调度优化的有效性,以便指导港口实际的泊位调度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号