首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 151 毫秒
1.
常温生长类金刚石薄膜的实验研究   总被引:2,自引:0,他引:2  
蔺增  巴德纯  刘铁林  程翔 《真空》2004,41(4):84-87
利用射频等离子体增强化学气相沉积(RFPECVD)工艺在常温下实现在不锈钢、硅片、玻璃等基底上大面积沉积类金刚石(DLC)膜.薄膜表面光滑致密,与衬底的结合力较高.用Raman,FTIR,SEM,EDX研究了薄膜的形貌、结构与组分.用栓-盘摩擦磨损试验机测试了薄膜的摩擦系数.通过优化沉积参数,所沉积的DLC膜在与100Cr6钢球对磨时摩擦系数低于0.01.在摩擦过程中DLC膜的磨损机制借助SEM进行了研究.  相似文献   

2.
利用阳极离子束技术在SKD11型不锈钢和YG6硬质合金上沉积类金刚石(DLC)薄膜,采用扫描电子显微镜、原子力显微镜、Raman光谱分析薄膜微观结构和表面形貌;采用WS-2005型附着力划痕仪和洛氏压力机测试膜基结合强度;采用球磨仪测试膜层耐磨性能。结果表明:利用该技术所制DLC膜是一种非晶结构、表面平整的薄膜,粗糙度R a值仅为5.21nm。DLC/Cr/SKD11膜系Raman光谱I D/I G值(0.69)高于DLC/Cr/YG6膜系(1.54),说明SKD11高于YG6所制膜层的sp3C键含量;DLC/Cr/SKD11膜系结合强度(17.8 N)低于DLC/Cr/YG6膜系(39.2 N),且DLC/Cr/YG6膜系的洛氏压痕周围仅有放射状微细裂纹,而DLC/Cr/SKD11膜系的压痕周围存在膜层脱落现象;沉积在SKD11与YG6基体上DLC膜的单位磨损率分别为1.40E-4和8.81E-5,说明YG6基体上DLC膜层的耐磨性要优于SKD11基体上的DLC膜层。由此看出,不同基体上制备的DLC膜层微观结构不同,导致结合性能及耐磨性能不同。  相似文献   

3.
七种金属基底上类金刚石膜的过渡层制备研究   总被引:2,自引:0,他引:2  
为了解决类金刚石(DLC)膜在金属基底上附着力低的困难,本研究分别利用了两种厚度不同的Ti/TiCx/DLC过渡层和一种Ti/TiNy/TiNyCx/DLC过渡层在7种金属基底上(W18Cr4V、Cr12、GCr15、TC4、40Cr、9Cr18、1Cr18Ni9Ti)制备了DLC薄膜。利用Si(100)基底镀膜前后的形变,计算的薄膜应力高达3.9 GPa,这种应力在过渡层中部分释放而制备了较厚(0.9μm)DLC膜。薄膜的附着力通过拉拔试验发现,选择合适的过渡层,薄膜的附着力有很大的提高,拉拔中只有胶被拉开。纳米硬度计测试结果表明,薄膜的硬度都在5000 Hv左右,不随基底材料改变。往复式摩擦试验结果显示,稳定后的摩擦系数在0.1附近。通过Raman谱发现,所有基底上薄膜的谱图一致,这说明薄膜的结构不受基底影响。  相似文献   

4.
《真空》2015,(4)
采用阴极电弧离子镀和等离子体增强化学气相沉积(PECVD)相结合的技术方法,在304不锈钢基体上分别沉积制备了Ti/DLC和Ti/Ti N/Ti Al N/DLC复合涂层。选用原子力显微镜、拉曼光谱对涂层的形貌和结构进行表征测试。同时,利用显微硬度计、划痕测试仪系统地分析了涂层的显微硬度和界面结合性能,并研究了其摩擦磨损行为。研究结果表明:Ti/Ti N/Ti Al N/DLC复合涂层体系具有较高硬度(~2130HV)的同时结合性能最优(结合力~53.7 N),抗磨损能力最强。在相同试验条件下,无涂层的基体摩擦系数为0.45,单层DLC、Ti/DLC和Ti/Ti N/Ti Al N/DLC涂层的摩擦系数则分别为0.15、0.12和0.07。Ti/Ti N/Ti Al N/DLC复合涂层可有效提高304不锈钢的耐磨损性能,降低摩擦系数。  相似文献   

5.
为了提高不锈钢、铝、铜合金的使用寿命及应用范围,采用等离子体增强化学气相沉积技术在3种不同基底上沉积超厚类金刚石(DLC)薄膜(28.3μm)。利用扫描电子显微镜、原子力显微镜、纳米压痕仪、划痕仪、球-盘摩擦试验机等表征方法对沉积在不锈钢、铝、铜合金表面上的超厚DLC薄膜进行性能测试分析。结果表明:铜合金基底上的超厚DLC薄膜由于其内应力过大出现部分剥落,不锈钢、铝合金基底上所制备的超厚DLC薄膜结构致密、膜基结合界面良好;不锈钢、铝、铜合金与碳的晶格不匹配性依次变大导致超厚DLC薄膜硬度与结合力依次变差。摩擦学性能测试表明,2 N载荷下摩擦系数可低至0.15,磨损率在(5.641~6.575)×10-7mm3/(N·m)范围内小幅度变化; 10 N载荷下铜合金基底上的超厚DLC薄膜因其内应力较大并且分布不均匀造成摩擦系数的急剧升高,薄膜被磨穿。铝合金上的超厚DLC薄膜磨损率最低,为3.204×10-7mm3/(N·m)。  相似文献   

6.
脉冲真空电弧离子镀在不锈钢上沉积类金刚石薄膜的研究   总被引:2,自引:1,他引:2  
周顺  严一心 《真空》2005,42(4):15-18
利用脉冲真空电弧离子镀技术在3Cr13不锈钢上制备了类金刚石(DLC)薄膜,通过Raman光谱分析了膜的结构特征,采用摩擦磨损试验机测试了薄膜在不同载荷下的摩擦系数,运用划痕仪研究了膜基的结合强度.结果表明:所镀制的薄膜具有典型类金刚石结构特征,膜中ID/IG为1.33;摩擦系数随着载荷的增大而减小,载荷为5 N,转速120 r/min时的摩擦系数为0.12;Ti过渡层的引入显著地提高了膜基结合力.  相似文献   

7.
脉冲真空弧源沉积类金刚石薄膜耐磨特性研究   总被引:1,自引:1,他引:1  
本文利用脉冲真空弧源沉积技术在Cr17Ni14Cu4不锈钢和Si(100)基体上制备了类金刚石(DLC)薄膜,研究在不同基体偏压下,DLC薄膜的结构与性能.采用拉曼光谱和X射线光电子能谱(XPS)研究DLC薄膜的原子结合状态,利用CSEM销盘摩擦磨损试验机研究其耐磨性,利用HXD1000B显微硬度仪测试其显微硬度,并采用压痕法评价其结合力.研究结果表明:DLC薄膜与基体结合牢固.随着基体偏压的提高,DLC薄膜内sp3键含量增大,薄膜硬度提高.Cr17Ni14Cu4不锈钢表面沉积DLC薄膜后,耐磨性大幅度提高,本文探讨了DLC薄膜的耐磨机理.  相似文献   

8.
本文采用非平衡磁控溅射及等离子体源离子混合注入方法在奥氏体不锈钢 1Cr18N9Ti基体上制备N TiN Ti(N ,C) DLC梯度涂层。采用原子力显微镜 (AFM)及喇曼光谱等手段观察分析梯度膜的显微组织与相组成 ,同时采用了纳米压入技术评定膜层的力学性能。实验结果表明 ,采用此方法制备的金刚石膜组织致密 ,性能良好  相似文献   

9.
刘聪  张钧  张热寒  李宁 《材料保护》2021,54(3):131-136
总结了(Ti,Al,Cr)N膜系的沉积方法并讨论了化学成分、N2流量以及基底偏压等工艺参数对薄膜产生的影响,针对(Ti,Al,Cr)N膜系的相组成与膜层成分、抗氧化性、耐腐蚀性、显微硬度、抗摩擦磨损性能以及膜基结合力等方面进行了详细阐述.在此基础上,对(Ti,Al,Cr)N膜系的未来发展进行了展望,以期为多组元氮化物硬质膜的研究提供参考.  相似文献   

10.
采用非平衡磁控溅射及等离子体源离子混合注入方法在奥氏体不锈钢1Cr18Ni9Ti基体上制备N/TiNi/Ti(N,C)/DLC梯度涂层,采用原子力显微镜等手段观察分析梯度膜的显微组织与相组成,同时采用纳米压入技术评定膜层的力学性能。实验结果表明,采用此方法制备的金刚石膜组织致密,性能良好。  相似文献   

11.
Diamond-like carbon coatings have been used as solid lubricating coatings in vacuum technology for their good physical and chemical properties. In this paper, the hybrid technique of unbalanced magnetron sputtering and plasma immersion ion implantation (Pill) was adopted to fabricate diamond-like carbon-based functionally gradient film, N/TiN/Ti(N,C)/DLC, on the 304 stainless steel substrate. The film was characterized by using Raman spectroscopy and glancing X-ray diffraction (GXRD), and the topography and surface roughness of the film was observed using AFM. The mechanical properties of the film were evaluated by nano-indentation. The results showed that the surface roughness of the film was approximately 0.732 nm. The hardness and elastic modulus, fracture toughness and interfacial fracture toughness of N/TiN/Ti(N,C)/DLC functionally gradient film were about 19.84 GPa, 190.03 GPa, 3.75 MRa.m1/2 and 5.68 MPa-m1/2, respectively. Compared with that of DLC monolayer and C/TiC/DLC multilayer, this DLC grad  相似文献   

12.
钛离子注入类金刚石碳膜的结构与性能的研究   总被引:7,自引:0,他引:7  
柳翠  苟伟  牟宗信  李国卿 《功能材料》2005,36(2):301-303
使用金属离子注入的方法制备了 Ti掺杂的DLC膜。采用原子力显微镜观察了薄膜的表面形貌,Ti掺杂后 DLC 膜的表面粗糙度明显减小,表面光洁度增加,颗粒细化。拉曼光谱分析表明实验获得的薄膜是典型的DLC膜,掺杂Ti后的 DLC膜的拉曼光谱存在明显的肩峰,DLC膜化学结构中的sp2 组分增加,sp3 组分减少。透射电子显微镜分析表明Ti注入后有TiC纳米晶形成。掺入Ti的 DLC膜的硬度从 14GPa增加到 20GPa。Ti 掺杂后的 DLC 膜的摩擦系数(0.15)明显低于未掺杂的DLC膜的摩擦系数(0.21),Ti离子注入有助于提高薄膜的抗磨损性。  相似文献   

13.
In order to improve the friction and wear behaviours and rolling contact fatigue (RCF) life of bearing steel materials, Ti/TiN/DLC (diamond-like carbon) multilayer hard films were fabricated onto AISI52100 bearing steel surface by plasma immersion ion implantation and deposition (PIIID) technique. The micro-Raman spectroscopy analysis confirms that the surface film layer possess the characteristic of diamond-like carbon, and it is composed of a mixture of amorphous and crystalline phases, with a variable ratio of sp2/sp3 carbon bonds. Atomic force microscope (AFM) reveals that the multilayer films have extremely smooth area, excellent adhesion, high uniformity and efficiency of space filling over large areas. The nanohardness (H) and elastic modulus (E) measurement indicates that the H and E of DLC multilayer films is about 32 GPa and 410 GPa, increases by 190.9% and 86.4%. The friction and wear behaviours and RCF life of DLC multilayer films specimen have also been investigated by ball-on-disc and three-ball-rod fatigue testers. Results show that the friction coefficient against AISI52100 steel ball decreases from 0.92 to 0.25, the longest wear life increases nearly by 22 times. In addition, wear tracks of the PIIID samples as well as wear tracks of the sliding steel ball were analyzed with the help of optical microscopy and scanning electron microscopy (SEM). The L10, L50, La and mean RCF life L of treated bearing samples, in 90% confidence level, increases by 10.1, 4.2, 3.5 and 3.4 times, respectively. Compared with the bearing steel substrate, the RCF life scatter extent of Ti/TiN/DLC multilayer films sample is improved obviously.  相似文献   

14.
Diamond-like carbon (DLC) films with various titanium contents were investigated using a hybrid ion beam system comprising an anode-layer linear ion beam source and a DC magnetron sputtering unit. The film composition and microstructure were characterized carefully by X-ray photoelectron spectroscopy, transmission electron microscopy and Raman spectroscopy, revealing that the doped Ti atoms had high solubility in the DLC films. The maximum solubility was found to lie between about 7 and 13 at.%. When the Ti content was lower than this solubility, the doped Ti atoms dissolved in the DLC matrix and the films exhibited the typical features of the amorphous DLC structure and displayed low compressive stresses, friction coefficients and wear rates. However, as the doped content exceeded the solubility, Ti atoms bonded with C atoms, resulting in the formation of carbide nano-particles embedded in the DLC matrix. Although the emergence of the carbide nano-particles promoted graphitizing due to a catalysis effect, the film hardness was enhanced to a great extent. On the other hand, the hard carbides particles caused abrasive wear behavior, inducing a high friction coefficient and wear rate.  相似文献   

15.
Amorphous carbon film, bdalso known as DLC film, bdis a promising material for tribological application. It is noted that properties relevant to tribological application change significantly depending on the method of preparation of these films. These properties are also altered by the composition of the films. In view of this, bdthe objective of the present work is to compare the nanoindentation and atomic force microscopy (AFM) study of diamond like carbon (DLC) film obtained by plasma enhanced chemical vapour deposition (bdPECVD with the Ti containing amorphous carbon (Ti/a- C : H) film obtained by unbalanced magnetron sputter deposition (UMSD). Towards that purpose, DLC and Ti/a- C : H films are deposited on silicon substrate by PECVD and UMSD processes, respectively. The microstructural features and the mechanical properties of these films are evaluated by scanning electron microscopy (SEM), bdtransmission electron microscopy (TEM), nanoindentation and by AFM. The results show that the PECVD DLC film has a higher elastic modulus, hardness and roughness than the UMSD Ti/a- C : H film. It also has a lower pull off force than Ti containing amorphous carbon film.  相似文献   

16.
采用阳极层流离子源与非平衡磁控溅射结合的沉积方法在H13钢基体表面沉积出类金刚石膜(DLC),并对H13钢经不同表面预处理对后沉积的DLC膜的摩擦学性能进行了对比研究.结果表明:DLC膜结构致密,且DLC膜与梯度过渡层及基体三者之间结合牢固;H13钢经离子氮化后,梯度过渡层与氮化层间结合紧密,提高了膜与基体的承载能力;在保持相同摩擦速率的条件下,摩擦系数随着载荷的增加先增大后减小;H13钢离子渗氮处理后沉积的DLC膜其摩擦系数远小于未采用离子渗氮处理沉积的DLC薄膜.  相似文献   

17.
真空弧源沉积类金刚石薄膜及其性能研究   总被引:2,自引:0,他引:2  
采用真空弧源沉积技术在钛合金及Si(100)表面合成DLC薄膜.通入不同的氩气.控制DLC薄膜中的SP3/SP2比值。研究表明,薄膜硬度可达96GPa.随着氩气流量的增加,薄膜的硬度先增加.后有明显降低。随着氩气流量的增加,类金刚石薄膜中.SP2键增加,SP3键减少,而血液相容性明显提高。DLC薄膜具有优异的耐磨性,摩擦系数低,与钛合金基体结合牢固。  相似文献   

18.
Depositions of titanium-containing diamond-like carbon (Ti-DLC) films were conducted by mixing C+ and Ti+ plasma streams originated from cathodic arc plasma sources in argon (Ar). The deposition was processed at Ti target current ranging from 20 Amp to 70 Amp. Film characteristics were investigated using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS). Film microstructures were evaluated using field emission scanning electron microscopy (FEGSEM), an atomic force microscope (AFM), X-ray diffractometry (XRD) and high-resolution transmission electron microscopy (HRTEM). Mechanical properties were investigated by using a nanoindentation tester and ball on disc wear test. Results shows that surface roughness (Ra) of the films ranged between 2.4 and 7.2 nm and roughness increased relative to the increase in Ti target current. The FESEM studies showed that the surface micrographs of Ti-DLC films revealed a cauliflower-like microstructure and the cross-sectional micrograph revealed a snake-skin like structure. HRTEM studies showed that the Ti-DLC films consisted of nano scale TiC particles which were comparable with low angle XRD and XPS results. XPS analysis established that the Ti2p spectrum is present when the Ti target current reaches 30 Amp or higher. Ti concentration increased as the Ti target current was increased. An extremely thin TiO2 layer exists on the top of the Ti-DLC films which was comparable with the AES results. The film thickness which could be deposited for Ti-DLC is much higher than that of conventional DLC films. Nanoindentation tests show that the nanohardness of the films ranging 15-22 GPa, with Er values ranging from 145 to 175 GPa. The wear test demonstrates the friction coefficient of the 420SS substrate, DLC and Ti-DLC films were about 0.8, 0.3 and 0.2, respectively. Obviously, the friction coefficients of the Ti-DLC films were lower than that of the DLC films.  相似文献   

19.
Diamond-like carbon (DLC) films have proven quite advantageous in many tribological applications due to their low friction coefficient, their extreme hardness, and more recently their high adherence on different substrate materials. However, for many applications, DLC films as thick as 2 μm are required, which cause high residual stress. In order to overcome this problem, this study observed the behavior of different thicknesses of silicon interlayer between DLC films and Ti6Al4V substrates. The study also analyzed the relation of growth parameters to the mechanical properties of DLC films. Silicon and DLC films were grown by using a rf-PECVD at 13.56 MHz with silane and methane atmospheres, respectively. The contribution of an interlayer thickness to the adhesion between the DLC films and Ti6Al4V substrate was evaluated by using a micro-scratch technique. The hardness and friction coefficient were evaluated by using microindentation and lateral force microscopy (LFM), respectively. Raman scattering spectroscopy was used to characterize the film quality. A correlation was found between the intrinsic stress and adhesion of DLC film and the parameters of the silicon interlayer growth. The addition of a silicon interlayer successfully reduced intrinsic stress of the films, even as measured by using a perfilometry technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号