首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
新型Sn-Ag-Bi-Cu-In系无铅钎料合金研究   总被引:2,自引:0,他引:2  
通过正交试验设计形成Sn-Ag-Bi-Cu-In系无铅钎料合金,并对钎料合金的熔化温度、可焊性、密度及剪切强度等进行研究.研究发现,Sn-Ag-Bi-Cu-In系钎料合金熔化温度接近传统的熔化温度,固-液温度差小;钎料密度约为传统Sn63Pb37的87%;试样铺展面积为72.02mm2,与Sn63Pb37焊锡的铺展面积76.85 mm2非常接近;钎料的剪切强度远大于传统Sn63Pb37钎料的剪切强度,其断裂形貌为沿晶脆断.  相似文献   

2.
TN60 2004030494铜锢钊硫对Sn一Ag基无铅焊料性能的影响/林培豪,刘心宇,成钧(桂林电子工业学院)11电子元件与材料‘一2 003,22(10).一33-34研究了Cu、In、Bi、S元素对Sn一Ag基无铅焊料熔点和铺展性的影响.结果表明:Sn一A片Cu三元合金成分为9 5.5%Sn3.5%Agl%Cu时具有较低熔点(215℃)和好的铺展性;加入适量的In可降低Sn一Ag合金的熔点和改善铺展性能;随二(B劝的增加Sn-Ag一Bi三元合金熔点降低、铺展性变好;Sn一Ag合金熔点随、(S)的增加而升高,加入少量S能改善Sn一Ag合金的铺展性.图8参5(刚)影响,发现随着硫酸浓度增加,温度对隧道…  相似文献   

3.
Sn—Ag—Cu无铅焊料性能研究   总被引:2,自引:0,他引:2  
环保和微电子器件高度集成化的发展驱动了高性能无铅焊料的研究和开发,Sn—Ag-Cu系无铅焊料由于具有良好的焊接性能和使用性能,已逐渐成为一种通用电子无铅焊料。文章通过实验的方法,研究了8种不同配比的Sn—Ag—Cu焊料中银、铜含量对合金性能(包括熔点、润湿性和剪切强度)的影响,并对焊料的显微组织进行对比与分析,得出低银焊料的可靠性比高银焊料好,同时Sn-2.9Ag—1.2Cu的合金具有较低的熔点且铺展性好,为确定综合性能最佳的该系焊料合金提供了依据。  相似文献   

4.
在BiSbCu钎料中添加Sn,分析Sn对BiSbCu钎料合金钎焊工艺性能的主要指标——钎料熔点和铺展面积的影响。结果表明:在Bi5Sb2Cu钎料合金中加入Sn可以显著降低钎料的熔点和显著增强钎料合金的铺展性能。当Sn的质量分数为10%时,Bi5Sb2Cu钎料的铺展面积为26.22 mm2,钎焊工艺性能最好。  相似文献   

5.
铜铟铋硫对Sn-Ag基无铅焊料性能的影响   总被引:6,自引:1,他引:5  
研究了Cu、In、Bi、S元素对Sn-Ag基无铅焊料熔点和铺展性的影响。结果表明:Sn-Ag-Cu三元合金成分为95.5%Sn3.5%Ag1%Cu时具有较低熔点(215℃)和好的铺展性;加入适量的In可降低Sn-Ag合金的熔点和改善铺展性能;随w(Bi)的增加Sn-Ag-Bi三元合金的熔点降低、铺展性变好;Sn-Ag合金的熔点随w(S)的增加而升高,加入少量S能改善Sn-Ag合金的铺展性。  相似文献   

6.
在BiSbCu钎料中添加Sn,分析Sn对BiSbCu钎料合金钎焊工艺性能的主要指标——钎料熔点和铺展面积的影响.结果表明:在Bi5Sb2Cu钎料合金中加入Sn可以显著降低钎料的熔点和显著增强钎料合金的铺展性能.当Sn的质量分数为10%时,Bi5Sb2Cu钎料的铺展面积为26.22 mm2,钎焊工艺性能最好.  相似文献   

7.
利用高精度X射线检测设备分别对用Sn37Pb焊膏和Sn3.0Ag0.5Cu焊膏组装的高密度LED灯板进行焊后和老化后的微空洞检测,观察了焊点的微空洞缺陷,并计算微空洞尺寸。结果表明:老化前微空洞面积与焊点面积比在10%~25%的,Sn3.0Ag0.5Cu焊点中约含25.5%,略大于Sn37Pb焊点的23.5%,且明显小于Sn3.0Ag0.5Cu焊点老化后的31.4%。两种焊点老化前后微空洞所占面积比都在<25%的合格范围内,但Sn3.0Ag0.5Cu焊点更易形成微空洞。  相似文献   

8.
讨论了Sn-Ag-Cu焊料与Cu焊盘间在回流焊过程中形成的金属间化合物(IMC)的种类、形态,Ag含量和Cu含量对IMC的影响,IMC在老化过程中的生长演变及其对焊接性能的影响。结果表明:Sn-Ag-Cu焊料与Cu焊盘之间的金属间化合物主要是Cu6Sn5和长针状的Ag3Sn,Ag和Cu的添加对组织有明显细化作用,但过量添加会影响IMC的性能。IMC的演变主要是与老化温度、老化时间有关,较厚的IMC不利于焊接性能的提高。  相似文献   

9.
面对无铅焊锡时代,ApolloSeiko自动焊锡设备能为产业界提供什么创新技术?在已出土的古希腊文物中可以得知。焊锡技术历史久远。更令人吃惊的是。那时尚未成熟的;台金技术就已经把锡(Sn)与铅(Pb)的合金成份定在接近63:37的最佳比例。这个比例的锡铅合金熔点最低、  相似文献   

10.
利用扫描电子显微镜(SEM)和透射电子显微镜(TEM)研究了Sn3.8Ag0.7Cu(Sn37Pb)/Cu焊点在时效过程中的界面金属间化合物(IMC)形貌和成份。结果表明:150℃高温时效50、100、200、500h后,Sn3.8Ag0.7Cu(Sn37Pb)/Cu焊点界面IMC尺寸和厚度增加明显,IMC颗粒间的沟槽越来越小。50h时效后界面出现双层IMC结构,靠近焊料的上层为Cu6Sn5,邻近基板的下层为Cu3Sn。之后利用透射电镜观察了Sn37Pb/Ni和Sn3.8Ag0.7Cu/Ni样品焊点界面,结果显示,焊点界面清晰,IMC晶粒明显。  相似文献   

11.
The effect of surface roughness of copper substrate on the reactive wetting of Sn-Ag-Cu solder alloys and morphology of intermetallic compounds (IMCs) was investigated. The spreading behavior of solder alloys on smooth and rough Cu substrates was categorized into capillary, diffusion/reaction, and contact angle stabilization zones. The increase in substrate surface roughness improved the wetting of solder alloys, being attributed to the presence of thick Cu3Sn IMC at the interface. The morphology of IMCs transformed from long needle shaped to short protruded type with an increase in the substrate surface roughness for the Sn-0.3Ag-0.7Cu and Sn-3Ag-0.5Cu solder alloys. However, for the Sn-2.5Ag-0.5Cu solder alloy the needle-shaped IMCs transformed to the completely scallop type with increase in the substrate surface roughness. The effect of Ag content on wetting behavior was not significant.  相似文献   

12.
The growth kinetics of intermetallic compound layers formed between four hot-dipped solder coatings and copper by solid state, thermal aging were examined. The solders were l00Sn, 50In-50Sn, 100In, and 63Sn-37Pb (wt.%); the substrate material was oxygen-free, high conductivity Cu. The total intermetallic layer of the 100Sn/Cu system exhibited a combination of parabolic growth at lower aging temperatures and t0.42 growth at the higher temperatures. The combined apparent activation energy was 66 kJ/mol. These results are compared to the total layer growth observed with the 63Sn-37Pb/Cu system which showed parabolic kinetics at similar temperatures and an apparent activation energy of 45 kJ/mol. Both 100Sn and 63Sn-37Pb diffusion couples showed a composite intermetallic layer comprised of Cu3Sn and Cu6Sn5. The intermetallic compound layer formed between In and Cu changed from a CuIn2 stoichiometry at short annealing times to a Cu57In43 composition at longer periods. The growth kinetics were parabolic with an apparent activation energy of 20 kJ/mol. The intermetallic layer growth of the 50In-50Sn/Cu system exhibited extreme variations in the layer thicknesses which prohibited a quantitative assessment of the growth kinetics. The layer was comprised of two compounds: Cu26Sn13In8 which was the dominant phase and a thin layer of Cu17Sn9In24 adjacent to the solder.  相似文献   

13.
Use of 90Pb10Sn solder as a noncollapsible sphere material with 95.5Sn 4Ag0.5Cu and SnInAgCu lead-free solders is investigated. Practical reflow conditions led to strong Pb dissolution into liquid solder, resulting in >20 at.% Pb content in the original lead-free solders. The failure mechanism of the test joints is solder cracking due to thermal fatigue, but the characteristic lifetime of 90Pb10Sn/SnInAgCu joints is almost double that of 90Pb10Sn/95.5Sn4Ag0.5Cu in a thermal cycling test (TCT) over the temperature range from −40°C to 125°C. It is predicted that this is mainly a consequence of the better fatigue resistance of the SnPbInAgCu alloy compared with the SnPbAgCu alloy. Indium accelerates the growth of the intermetallic compound (IMC) layer at the low temperature co-fired ceramic (LTCC) metallization/solder interface and causes coarsening of IMC particles during the TCT, but these phenomena do not have a major effect on the creep/fatigue endurance of the test joints.  相似文献   

14.
For development of a lead-free composite solder for advance electrical components, lead-free Sn3.5Ag0.5Cu solder was produced by mechanically mixing 0.5 wt.% TiO2 nanopowder with Sn3.5Ag0.5Cu solder. The morphology and growth kinetics of the intermetallic compounds that formed during the soldering reactions between Sn3.5Ag0.5Cu solder with intermixed TiO2 nanopowder and Cu substrates at various temperatures ranging from 250 to 325 °C were investigated. A scanning electron microscope (SEM) was used to quantify the interfacial microstructure at each processing condition. The thickness of interfacial intermetallic layers was quantitatively evaluated from SEM micrographs using imaging software. Experimental results show that a discontinuous layer of scallop-shaped Cu-Sn intermetallic compounds formed during the soldering. Kinetics analysis shows that the growth of such interfacial Cu-Sn intermetallic compounds is diffusion controlled with an activation energy of 67.72 kJ/mol.  相似文献   

15.
Ag–copper dual-layer substrate design is presented. The Ag cladding on the copper substrate is a buffer to deal with the large mismatch in coefficient of thermal expansion (CTE) between semiconductors such as Si (3 ppm/$^{circ}$C) and Cu (17 ppm/$^{circ}$ C). Ag is chosen because of its low yield strength, only one-tenth of that of Cu and one-third of the popular Sn3.5Ag solder. Other advantages are high electrical conductivity and high thermal conductivity. To bond Si chips to the Ag layer on copper substrates, Sn-rich solder is used. A fluxless bonding process is designed and developed. The bonding media are Ni/Sn/Au multilayer solder structure plated over Ag. In this design, Ni is a diffusion barrier between Sn and Ag. The thin (100 nm) outer Au layer prevents inner Sn from oxidation. The Si chip is deposited with Cr/Au under bump metallurgy (UBM). The bonding process is performed in 50-mtorr vacuum atmosphere without any flux. Comparing to bonding in air, the oxygen content is reduced by a factor of 15 200. The resulting joints consist of three distinct layers, i.e., Sn-rich layer, Ni$_{3}$ Sn$_{4}$ intermetallic compound, and Ni. Scanning acoustic microscopy (SAM) is used to verify the quality of the joint. Microstructure and composition of the joints are studied using scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX). This technique presents an initial success in overcoming the very large mismatch in thermal expansion between silicon and copper. It can be applied to mounting numerous high-power silicon devices to Cu substrate for various applications such as hybrid automotive and high-voltage power networks.   相似文献   

16.
Ball-grid array (BGA) samples were aged at 155°C up to 45 days. The formation and the growth of the intermetallic phases at the solder joints were investigated. The alloy compositions of solder balls included Sn-3.5Ag-0.7Cu, Sn-1.0Ag-0.7Cu, and 63Sn-37Pb. The solder-ball pads were a copper substrate with an Au/Ni surface finish. Microstructural analysis was carried out by electron microprobe. The results show that a ternary phase, (Au,Ni)Sn4, formed with Ni3Sn4 in the 63Sn-37Pb solder alloy and that a quaternary intermetallic phase, (Au,Ni)2Cu3Sn5, formed in the Sn-Ag-Cu solder alloys. The formation mechanism of intermetallic phases was associated with the driving force for Au and Cu atoms to migrate toward the interface during aging.  相似文献   

17.
Sn-Ag-Cu composite solders reinforced with nano-sized, nonreacting, noncoarsening 1 wt% TiO2 particles were prepared by mechanically dispersing TiO2 nano-particles into Sn-Ag-Cu solder powder and the interfacial morphology of the solder and flexible BGA substrates were characterized metallographically. At their interfaces, different types of scallop-shaped intermetallic compound layers such as Cu6Sn5 for a Ag metallized Cu pad and Sn-Cu-Ni for a Au/Ni and Ni metallized Cu pad, were found in plain Sn-Ag-Cu solder joints and solder joints containing 1 wt% TiO2 nano-particles. In addition, the intermetallic compound layer thicknesses increased substantially with the number of reflow cycles. In the solder ball region, Ag3Sn, Cu6Sn5 and AuSn4 IMC particles were found to be uniformly distributed in the β-Sn matrix. However, after the addition of TiO2 nano-particles, Ag3Sn, AuSn4 and Cu6Sn5 IMC particles appeared with a fine microstructure and retarded the growth rate of IMC layers at their interfaces. The Sn-Ag-Cu solder joints containing 1 wt% TiO2 nano-particles consistently displayed a higher hardness than that of the plain Sn-Ag-Cu solder joints as a function of the number of reflow cycles due to the well-controlled fine microstructure and homogeneous distribution of TiO2 nano-particles which gave a second phase dispersion strengthening mechanism.  相似文献   

18.
In the current research, trace rare earth (RE) element Y was incorporated into a promising lead-free solder, Sn3.8Ag0.7Cu, in an effort to improve the comprehensive properties of Sn3.8Ag0.7Cu solder. The range of Y content in Sn3.8Ag0.7Cu solder alloys varied from 0 wt.% to 1.0 wt.%. As an illustration of the advantage of Y doping, the melting temperature, wettability, mechanical properties, and microstructures of Sn3.8Ag0.7CuY solder were studied. Trace Y additions had little influence on the melting behavior, but the solder showed better wettability and mechanical properties, as well as finer microstructures, than found in Y-free Sn3.8Ag0.7Cu solder. The Sn3.8Ag0.7Cu0.15Y solder alloy exhibited the best comprehensive properties compared to other solders with different Y content. Furthermore, interfacial and microstructural studies were conducted on Sn3.8Ag0.7Cu0.15Y solder alloys, and notable changes in microstructure were found compared to the Y-free alloy. The thickness of an intermetallic compound layer (IML) was decreased during soldering, and the growth of the IML was suppressed during aging. At the same time, the growth of intermetallic compounds (IMCs) inside the solder was reduced. In particular, some bigger IMC plates were replaced by fine, granular IMCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号