首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 131 毫秒
1.
This paper presents an efficient method for predicting the free and transient vibrations of multilayered composite structures with parallelepiped shapes including beams, plates and solids. The exact three-dimensional elasticity theory combined with a multilevel partitioning hierarchy, viz., multilayered parallelepiped, individual layer and layer segment, is employed in the analysis. The continuity constraints on common interfaces of adjacent layer segments are imposed by a modified variational principle, and the displacement components of each layer segment are assumed in the form of orthogonal polynomials and/or trigonometric functions. Numerical studies are given for free vibrations of composite laminated and sandwich beams, plates, and solids. Some in-plane shear vibration modes missed in previous elasticity solutions for multilayered plates are examined. The natural frequencies derived from Reddy’s high-order shear deformation theory and layerwise theory for soft-core sandwich plates show significant deviation from elasticity solutions. Transient displacement and stress responses for angle-ply laminated and sandwich plates under four types of impulsive loads (including rectangular, triangular, half-sine and exponential pulses) are obtained by the Newmark integration procedure. The present solutions may serve as benchmark data for assessing the accuracy of advanced structural theories and new developments in numerical methods.  相似文献   

2.
This paper presents a generalized layerwise higher-order shear deformation theory for laminated composite and sandwich plates. We exploit a higher-order shear deformation theory in each layer such that the continuity of the displacement and transverse shear stresses at the layer interfaces is ensured. Thanks for enforcing the continuity of the displacement and transverse shear stresses at an inner-laminar layer, the minimum number of variables is retained from the present theory in comparison with other layerwise theories. The method requires only five variables, the same as what obtained from the first- and higher-order shear deformation theories. In comparison with the shear deformation theories based on the equivalent single layer, the present theory is capable of producing a higher accuracy for inner-laminar layer shear stresses. The free boundary conditions of transverse shear stresses at the top and bottom surfaces of the plate are fulfilled without any shear correction factors. The discrete system equations are derived from the Galerkin weak form, and the solution is obtained by isogeometric analysis (IGA). The discrete form requires the C1 continuity of the transverse displacement, and hence NURBS basis functions in IGA naturally ensure this condition. The laminated composite and sandwich plates with various geometries, aspect ratios, stiffness ratios and boundary conditions are studied. The obtained results are compared with the 3D elasticity solution, the analytical as well as numerical solutions based on various plate theories.  相似文献   

3.
In the present study, a sinusoidal shear and normal deformation theory taking into account effects of transverse shear as well as transverse normal is used to develop the analytical solution for the bidirectional bending analysis of isotropic, transversely isotropic, laminated composite and sandwich rectangular plates. The theory accounts for adequate distribution of the transverse shear strains through the plate thickness and traction free boundary conditions on the plate boundary surface, thus a shear correction factor is not required. The displacement field uses sinusoidal function in terms of thickness coordinate to include the effect of transverse shear and the cosine function in terms of thickness coordinate is used in transverse displacement to include the effect of transverse normal. The kinematics of the present theory is much richer than those of the other higher order shear deformation theories, because if the trigonometric term is expanded in power series, the kinematics of higher order theories are implicitly taken into account to good deal of extent. Governing equations and boundary conditions of the theory are obtained using the principle of virtual work. The Navier solution for simply supported laminated composite plates has been developed. Results obtained for displacements and stresses of simply supported rectangular plates are compared with those of other refined theories and exact elasticity solution wherever applicable.  相似文献   

4.
Antisymmetric bending analysis of symmetric laminated plates is presented here. The transverse shear and normal strain and stress effects on bending of such laminates are considered. The displacement fields and the transverse shear and normal stress fields are assumed to preserve the displacement and traction continuity conditions at the interface between layers. A set of twelfth-order governing equations and consistent boundary conditions are given from a mixed variational theorem. Solutions for simply-supported cross-ply plates and a strip are discussed. The numerical results are compared with elasticity solutions and results given from other theories. The present theory is found to agree closely with three-dimensional elasticity solutions.  相似文献   

5.
A simple refined discrete-layer theory of anisotropic laminated composite plates is substantiated. The theory is based on the assumption of a piecewise linear variation of the in-plane displacement components and of the constancy of the transverse displacement throughout the thickness of the laminate. This plate model incorporates transverse shear deformation, dynamic and thermal effects as well as the geometrical non-linearities and fulfills the continuity conditions for the displacement components and transverse shear stresses at the interfaces between laminae. As it is shown in the paper, the refinement implying the fulfillment of continuity conditions is not accompanied by an increase of the number of independent unknown functions, as implied in the standard first order transverse shear deformation theory. It is also shown that the within the framework of the linearized static counterpart of the theory, several theorems analogous to the ones in the 3-D elasticity theory could be established. These concern the energetic theorems, Betti's reciprocity theorem, the uniqueness theorem for the solutions of boundary-value problems of elastic composite plates, etc. Finally, comparative remarks on the present and standard first order transverse shear deformation theories are made and pertinent conclusions about its usefulness and further developments are outlined.  相似文献   

6.
This paper describes how the derivatives of lateral displacement are eliminated in the general displacement field of the global–local higher-order theory for stability analysis of laminated composite and sandwich plates with general lamination configurations. In contrast to previous models, the present model is applicable not only to the cross-ply but also to the angle-ply laminated composite and sandwich plates. Based on known traction forces on the surface boundaries, the derivatives of transverse displacement have been taken out from the general displacement field, so that C0 interpolation functions are only required for the finite element implementation. To verify the proposed theory, the classical quadratic six-node C0 triangular element is employed for the interpolation of all the displacement parameters defined at each nodal point on the composite plate. Numerical results show that following the proposed theory simple C0 finite elements could accurately predict the critical loads of sandwich plate with soft core, which has long been a difficult case for the other global higher-order theories.  相似文献   

7.
In this paper, a C0-type higher-order theory is developed for bending analysis of laminated composite and sandwich plates subjected to thermal/mechanical loads. The total number of unknowns in the present theory is independent of number of layers. The continuity conditions of transverse shear stresses at interfaces are a priori enforced. Moreover, the conditions of zero transverse shear stresses on the upper and lower surfaces are also considered. Based on the developed higher order theory, the typical solutions are presented for comparison. It is very important that the first derivatives of transverse displacement w have been taken out from the in-plane displacement fields of the proposed model, so that its finite element counterparts may avoid using the C1 interpolation functions. To assess the developed theory, the C1-type higher-order theory is chosen for comparison. Numerical results show that the present model can accurately predict the thermal/mechanical response of laminated composite and sandwich plates. Moreover, the present model is able to accurately calculated transverse shear stresses directly from constitutive equations without any postprocessing methods.  相似文献   

8.
Nonlinear dynamic thermo-mechanical buckling and postbuckling analyses of imperfect viscoelastic composite laminated/sandwich plates are performed by a proposed theory that takes into account all the interlaminar kinematic and transverse stress continuity conditions, for the first time. Even the dynamic buckling analysis of the multi-layered/sandwich plates employing the hierarchical constitutive model has not been performed before. The proposed theory is a double-superposition high-order global–local theory that is calibrated based on the nonlinear strain–displacement expressions for the thermoelastic loadings taking into account the structural damping. The buckling loads are determined based on a criterion previously published by the author. Various complex sensitivity analyses evaluating effects of the relaxation parameters, rate of the loading, sudden heating, and pre-stress on thermo-mechanical buckling of the viscoelatic multi-layered/sandwich plates are performed. Results show that the viscoelastic behavior may decrease the buckling load. Sudden dynamic buckling loads are higher due to the reflected stress waves.  相似文献   

9.
The natural frequencies of isotropic and composite laminates are presented. The forced vibration analysis of laminated composite plates and shells subjected to arbitrary loading is investigated. In order to overcome membrane and shear locking phenomena, the assumed natural strain method is used. To develop a laminated shell element for free and forced vibration analysis, the equivalent constitutive equation that makes the computation of composite structures efficient was applied. The Mindlin-Reissner theory which allows the shear deformation and rotary inertia effect to be considered is adopted for development of nine-node assumed strain shell element. The present shell element offers significant advantages since it consistently uses the natural co-ordinate system. Results of the present theory show good agreement with the 3-D elasticity and analytical solutions. In addition the effect of damping is investigated on the forced vibration analysis of laminated composite plates and shells.  相似文献   

10.
A C0 continuous displacement based finite element formulation of a higher order theory for linear and geometrically non-linear analysis which accounts for large displacements in the sense of von Karman of symmetrically laminated composite and sandwich shells under transverse loads is presented. The displacement model accounts for non-linear and constant variation of tangential and transverse displacement components, respectively, through the shell thickness. The assumed displacement model climinates the use of shear correction coefficients. The discrete element chosen is a nine-node quadrilateral element with nine degress of freedom per node. The accuracy of the present formulation is then established by comparing the present results with the available analytical. closed-form two-dimensional solutions, three-dimensional elasticity solutions and other finite element solutions. Some new results are generated for future comparisons to and evaluations of sandwich shells.  相似文献   

11.
The stress and displacement analysis of the thick sandwich plate is presented here by using an interlaminar stress mixed finite element based on local high-order deformable theory. The displacements of a sandwich plate are assumed to be high order polynomial functions layer-by-layer through the plate thickness. Since the interlaminar stresses at the interface between layers in this finite element scheme are regarded as primary variables, they can then be accurately determined. The accuracy of this finite element scheme is checked by comparing the present results with 3-D elasticity solutions of a simply supported sandwich plate. The response of a thick angle-ply, fiber-reinforced plastic (FRP) faced sandwich with fully simple supports, subjected to a sinusoidal distribution of transverse load is evaluated. The present finite element results are compared with results obtained from other finite element schemes.  相似文献   

12.
A higher-order shear deformation theory is used to analyse laminated anisotropic composite plates for deflections, stresses, natural frequencies and buckling loads. The theory accounts for parabolic distribution of the transverse shear stresses, and requires no shear correction coefficients. A displacement finite element model of the theory is developed, and applications of the element to bending, Vibration and stability of laminated plates are discussed. The present solutions are compared with those obtained using the classical plate theory and the three-dimensional elasticity theory.  相似文献   

13.
In this paper, linear and non-linear 3-D solutions are presented for hybrid composite laminates subjected to uniform transverse loadings. The perturbation method and a variational principle are used to obtain solutions which satisfy the linear and non-linear 3-D differential equations of equilibrium, the strain/displacement relations, the stress/strain relations, the boundary conditions and the continuity conditions at layer interfaces. The distributions of displacements and stresses in the plates are shown. The effect of different non-linearities on laminated plates is considered, and the importance of transverse shear stresses and transverse normal stress is analysed.  相似文献   

14.
A new higher order shear deformation theory for elastic composite/sandwich plates and shells is developed. The new displacement field depends on a parameter “m”, whose value is determined so as to give results closest to the 3D elasticity bending solutions. The present theory accounts for an approximately parabolic distribution of the transverse shear strains through the shell thickness and tangential stress-free boundary conditions on the shell boundary surface. The governing equations and boundary conditions are derived by employing the principle of virtual work. These equations are solved using Navier-type, closed form solutions. Static and dynamic results are presented for cylindrical and spherical shells and plates for simply supported boundary conditions. Shells and plates are subjected to bi-sinusoidal, distributed and point loads. Results are provided for thick to thin as well as shallow and deep shells. The accuracy of the present code is verified by comparing it with various available results in the literature.  相似文献   

15.
《Composite Structures》2012,94(1):37-49
A new higher order shear deformation theory for elastic composite/sandwich plates and shells is developed. The new displacement field depends on a parameter “m”, whose value is determined so as to give results closest to the 3D elasticity bending solutions. The present theory accounts for an approximately parabolic distribution of the transverse shear strains through the shell thickness and tangential stress-free boundary conditions on the shell boundary surface. The governing equations and boundary conditions are derived by employing the principle of virtual work. These equations are solved using Navier-type, closed form solutions. Static and dynamic results are presented for cylindrical and spherical shells and plates for simply supported boundary conditions. Shells and plates are subjected to bi-sinusoidal, distributed and point loads. Results are provided for thick to thin as well as shallow and deep shells. The accuracy of the present code is verified by comparing it with various available results in the literature.  相似文献   

16.
The new improved discrete Kirchhoff quadrilateral element based on the third-order zigzag theory developed earlier by the present authors for the static analysis of composite and sandwich plates is extended for dynamics and assessed for its performance for the free vibration response. The element is free from the shear locking. The finite element formulation is validated by comparing the results for simply supported plates with the analytical Navier solution of the zigzag theory. Comparison of the present results for the natural frequencies with those of a recently developed triangular element based on the zigzag theory, for composite and sandwich plates, establishes the superiority of the present element in respect of simplicity, accuracy and computational efficiency. The accuracy of the zigzag theory is assessed for composite and sandwich plates with various boundary conditions and aspect ratio by comparing the finite element results with the 3D elasticity analytical and finite element solutions.  相似文献   

17.
Buckling response of angle-ply laminated composite and sandwich plates are analyzed using the global-local higher order theory with combination of geometric stiffness matrix in this paper. This global-local theory completely fulfills the free surface conditions and the displacement and stress continuity conditions at interfaces. Moreover, the number of unknowns in this theory is independent of the number of layers in the laminate. Based on this global-local theory, a three-noded triangular element satisfying C1 continuity conditions has also been proposed. The bending part of this element is constructed from the concept of DKT element. In order to improve the accuracy of the analysis, a method of modified geometric stiffness matrix has been introduced. Numerical results show that the present theory not only computes accurately the buckling response of general laminated composite plates but also predicts the critical buckling loads of soft-core sandwiches. However, the global higher-order theories as well as first order theories might encounter some difficulties and overestimate the critical buckling loads for soft-core sandwich plates.  相似文献   

18.
In this article, a new five-variable refined plate theory for the free vibration analysis of functionally graded sandwich plates is developed. By dividing the transverse displacement into bending, shear, and thickness stretching parts, the number of unknowns and governing equations of the present theory is reduced, and hence, makes it simple to use. Indeed, the number of unknown functions involved in the present theory is only five, as opposed to six or more in the case of other shear and normal deformation theories. The theory accounts for hyperbolic distribution of the transverse shear strains, and satisfies the zero traction boundary conditions on the surfaces of the plate without using a shear correction factor. Two common types of functionally graded material (FGM) sandwich plates, namely, the sandwich with FGM facesheet and homogeneous core and the sandwich with homogeneous facesheet and FGM core, are considered. The equations of motion are obtained using Hamilton's principle. Numerical results of the present theory are compared with three-dimensional elasticity solutions and other higher-order theories reported in the literature. It can be concluded that the proposed theory is accurate and efficient in predicting the free-vibration response of functionally graded sandwich plates.  相似文献   

19.
A new shear deformation theory for sandwich and composite plates is developed. The proposed displacement field, which is “m” parameter dependent, is assessed by performing several computations of the plate governing equations. Therefore, the present theory, which gives accurate results, is relatively close to 3D elasticity bending solutions. The theory accounts for adequate distribution of the transverse shear strains through the plate thickness and tangential stress-free boundary conditions on the plate boundary surface, thus a shear correction factor is not required. Plate governing equations and boundary conditions are derived by employing the principle of virtual work. The Navier-type exact solutions for static bending analysis are presented for sinusoidally and uniformly distributed loads. The accuracy of the present theory is ascertained by comparing it with various available results in the literature.  相似文献   

20.
M. K. Rao  Y. M. Desai   《Composite Structures》2004,63(3-4):361-373
A semi-analytical method has been presented in this paper to evaluate the natural frequencies as well as displacement and stress eigenvectors for simply supported, cross-ply laminated and sandwich plates by using higher order mixed theory. Models based on equivalent single layer as well as layerwise (LW) theories have been formulated. By assuming a non-linear variation of axial displacements through the plate thickness, the warping of the transverse cross-section has been considered. Hamilton’s principle has been employed to derive the equilibrium equations. The proposed LW model fulfills a priori the continuity of displacements as well as the transverse and the normal stress components at each interface between two adjacent layers. Results obtained by present higher order mixed theory have been found in good agreement with those obtained by three-dimensional elasticity solutions. After establishing the accuracy of present results for orthotropic plates, new results for thin and thick sandwich plates have been presented which can serve as benchmark solutions for future investigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号