首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The polypeptide corresponding to the signal sequence of the M13 coat protein and the five N-terminal residues of the mature protein was prepared by solid-phase peptide synthesis with a 15N isotopic label at the alanine-12 position. Multidimensional solution NMR spectroscopy and molecular modeling calculations indicate that this polypeptide assumes helical conformations between residues 5 and 20, in the presence of sodium dodecylsulfate micelles. This is in good agreement with circular dichroism spectroscopic measurement, which shows an alpha-helix content of approximately 42%. The alpha-helix comprises an uninterrupted hydrophobic stretch of < or = 12 amino acids, which is generally believed to be too short for a stable transmembrane alignment in a biological bilayer. The monoexponential proton-deuterium exchange kinetics of this hydrophobic helical region is characterized by half-lives of 15-75 minutes (pH 4.2, 323 K). When the polypeptide is reconstituted into phospholipid bilayers, the broad anisotropy of the proton-decoupled 15N solid-state NMR spectroscopy indicates that the hydrophobic helix is immobilized close to the lipid bilayer surface at the time scale of 15N solid-state NMR spectroscopy (10(-4) seconds). By contrast, short correlation times, immediate hydrogen-deuterium exchange as well as nuclear Overhauser effect crosspeak analysis suggest that the N and C termini of this polypeptide exhibit a mobile random coil structure. The implications of these structural findings for possible mechanisms of membrane insertion and translocation as well as for membrane protein structure prediction algorithms are discussed.  相似文献   

2.
The HIV-1 specific Vpu is a class I oligomeric membrane phosphoprotein of unknown structure and mechanism. The first experimental evidence for the position of secondary structural elements present in the hydrophilic C-terminal region of Vpu under various solution regimes is reported. CD data for nine overlapping 15 amino-acid fragments and 3 longer fragments indicate the presence of only transitory amounts of stable structure in aqueous solution alone, while with increasing trifluoroethanol content limiting structures were found indicating two helical segments in the hydrophilic region of Vpu. These limiting structures were more precisely defined from a detailed study of Vpu41-58, Vpu52-74 and Vpu63-81, by a combination of 2D 1H NMR spectroscopy, distance geometry, and restrained molecular dynamics and energy minimization calculations. Sets of low-energy conformations compatible with the quantitative NOE data indicate that Vpu41-58 has an alpha-helix from residues 42 to 50 while a second helix is found for Vpu52-74 from residues 57 to 69. Vpu63-81 shows only the presence of a single reverse turn at residues 74 to 77, without any evidence of helix, under the same conditions. From CD measurements the first helix extends back to residue 30 and is connected to the N-terminal anchor of Vpu. Thus the hydrophilic region of Vpu consists of two alpha-helices joined by a flexible region of 6 or 7 residues, which contains the phosphoacceptor sites of Vpu at positions 52 and 56. The second helix is followed by a single reverse turn and a flexible C-terminus.  相似文献   

3.
OBJECTIVE: The calcium (Ca) pump of cardiac sarcoplasmic reticulum (SR) membranes is vulnerable to oxidation and hence likely to be damaged by chlorinated compounds, specifically hypochlorite (NaOCl) and monochloramine (NH2Cl), the most potent oxidants produced upon neutrophil activation. This could occur during prolonged ischemia or myocardial infarction when tissue levels of catecholamines are high. Phospholamban (PLN), the phosphorylatable regulator of the Ca pump, plays a central role in the effects of beta-adrenergic agonists on the heart. The purpose of this study was to investigate a possible role of PLN in determining the pump's sensitivity to NaOCl and NH2Cl. METHODS: Ca-uptake and Ca(2+)-ATPase activities in purified phosphorylated and control canine cardiac microsomes, incubated at increasing concentrations of NaOCl or NH2Cl, were related to the extent of PLN phosphorylation by protein kinase A, which was quantitated by PhosphorImager analysis. RESULTS AND CONCLUSIONS: Our data indicate that microsomal phosphorylation protects the Ca pump fully against 10 microM NaOCl or NH2Cl, which inhibit Ca-uptake by 21-41% when assayed at 25 or 37 degrees C and saturating Ca2+ in unphosphorylated microsomes, and protects partially at higher oxidant concentrations. The protective effect of protein kinase A on Ca-uptake is proportional to the amount of phosphorylated PLN. No comparable protection against similar oxidative damage of the Ca pump is observed when light fast skeletal muscle microsomes, which lack PLN, are incubated under conditions favorable for phosphorylation nor when PLN's inhibition of the cardiac Ca pump is relieved by proteolytic cleavage of its cytoplasmic domain. Our findings contribute toward an understanding of possible endogenous protective mechanisms that may promote calcium homeostasis in myocardial cells in inflammatory states associated with neutrophil activation and may suggest an approach toward development of protective strategies against oxidative damage in the heart.  相似文献   

4.
Two isozymes of ribonuclease (RNase) T1 exist in nature, i.e. Gln25 RNase T1 and Lys25 RNase T1. Gln25 RNase T1 is less stable than Lys25 RNase T1, although the enzymatic activity is not distinguishable between these two isozymes. To elucidate the effects of the replacement of Lys25 with Gln on the conformation and microenvironments of RNase T1 in detail, two-dimensional NMR spectra were measured, sequence-specific 1H NMR resonance assignments of Gln25 RNase T1 were performed, and then the determined parameters and microenvironments of Gln25 RNase T1 were compared with those of Lys25 isozyme [Hoffmann, E. and Rüterjans, H. (1988) Eur. J. Biochem. 177, 539-560]. The main chain protons were assigned for 101 out of the total of 104 amino acid residues. Secondary structure elements were identified from analysis of characteristic NOE patterns, interstrand NOE connectivities, and hydrogen-deuterium exchange rates of main chain amide protons. The results indicated that Gln25 RNase T1 contains a single alpha-helix and seven beta-strands. The secondary structure of Gln25 RNase T1 is, thus, essentially the same as that of Lys25 RNase T1. On the other hand, comparison of the conformation-dependent shifts of Gln25 RNase T1 with these of Lys25 RNase T1 showed that the replacement of Lys25 with Gln has significant effects on the C-terminal part of the alpha-helix region and the base-binding site. These results may indicate that the base-binding site is relatively flexible in the RNase T1 molecule. Among the residues of the C-terminal part of the alpha-helix region, the protons of Asp29 were most affected in terms of their chemical shifts, which may indicate that the side chain carboxylate anion of Asp29 is the counterpart of the electrostatic interaction of Lys25 in Lys25 RNase T1. The Gln25 of Gln25 RNase T1 may have little or no interaction with Asp29, and this may be the reason why Gln25 RNase T1 is less stable than the Lys25 isozyme.  相似文献   

5.
Magainin 2 is a 23-residue peptide that forms an amphipathic alpha-helix in membrane environments. It functions as an antibiotic and is known to disrupt the electrochemical gradients across the cell membranes of many bacteria, fungi, and some tumor cells, although it does not lyse red blood cells. One- and two-dimensional solid-state 15N NMR spectra of specifically 15N-labeled magainin 2 in oriented bilayer samples show that the secondary structure of essentially the entire peptide is alpha-helix, immobilized by its interactions with the phospholipids, and oriented parallel to the membrane surface.  相似文献   

6.
The first three-dimensional structure of a type IIa bacteriocin from lactic acid bacteria is reported. Complete 1H resonance assignments of leucocin A, a 37 amino acid antimicrobial peptide isolated from the lactic acid bacterium Leuconostoc gelidum UAL187, were determined in 90% trifluoroethanol (TFE)-water and in aqueous dodecylphosphocholine (DPC) micelles (1:40 ratio of leucocin A:DPC) using two-dimensional NMR techniques (e.g., DQF-COSY, TOCSY, NOESY). Circular dichroism spectra, NMR chemical shift indices, amide hydrogen exchange rates, and long-range nuclear Overhauser effects indicate that leucocin A adopts a reasonably well defined structure in both TFE and DPC micelle environments but exists as a random coil in water or aqueous DMSO. Distance geometry and simulated annealing calculations were employed to generate structures for leucocin A in both lipophilic media. While some differences were noted between the structures calculated for the two different solvent systems, in both, the region encompassing residues 17-31 assumes an essentially identical amphiphilic alpha-helix conformation. A three-strand antiparallel beta-sheet domain (residues 2-16), anchored by the disulfide bridge, is also observed in both media. In TFE, these two regions have a more defined relationship relative to each other, while, in DPC micelles, the C-terminus is folded back onto the alpha-helix. The implications of these structural features with regard to the antimicrobial mechanism of action and target recognition are discussed.  相似文献   

7.
Drosomycin is the first antifungal protein characterized recently among the broad family of inducible peptides and proteins produced by insects to respond to bacterial or septic injuries. It is a small protein of 44 amino acid residues extracted from Drosophila melanogaster that exhibits a potent activity against filamentous fungi. Its three-dimensional structure in aqueous solution was determined using 1H 2D NMR. This structure, involving an alpha-helix and a twisted three-stranded beta-sheet, is stabilized by three disulfide bridges. The corresponding Cysteine Stabilized alpha beta (CS alpha beta) motif, which was found in other defense proteins such as the antibacterial insect defensin A, short- and long-chain scorpion toxins, as well as in plant thionins and potent antifungal plant defensins, appears as remarkably persistent along evolution.  相似文献   

8.
Application of 1H 2D NMR methods to solubilized membrane proteins and peptides has up to now required the use of selectively deuterated detergents. The unavailability of any of the common biochemical detergents in deuterated form has therefore limited to some extent the scope of this approach. Here a 1H NMR method is described which allows structure determination of membrane peptides and small membrane proteins by 1H 2D NMR in any type of non-deuterated detergent. The approach is based on regioselective excitation of protein resonances with DANTE-Z or spin-pinging pulse trains. It is shown that regioselective excitation of the amide-aromatic region of solubilized membrane proteins and peptides leads to an almost complete suppression of the two orders of magnitude higher contribution of the protonated detergent to the 1H NMR spectrum. Consistently TOCSY, COSY and NOESY sequences incorporating such regioselective excitation in the F2 dimension yield protein 1H 2D NMR spectra of quality comparable to those obtained in deuterated detergents. Regioselective TOCSY and NOESY spectra display all through-bond and through-space correlations within amide-aromatic protons and between these protons and aliphatic and alpha-protons. Regioselective COSY spectra provide scalar coupling constants between amide and alpha-protons. Application of the method to the membrane-active peptide mastoparan X, solubilized in n-octylglucoside, yields complete sequence-specific assignments and extensive secondary structure-related spatial proximities and coupling constants.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
We are examining possible roles of native and non-native interactions in early events in protein folding by a systematic analysis of the structures of fragments of proteins whose folding pathways are well characterised. Seven fragments of the 110-residue protein barnase, corresponding to the progressive elongation from its N terminus, have been characterised by a battery of biophysical and spectroscopic methods. Barnase is a multi-modular protein that folds via an intermediate in which the C-terminal region of its major alpha-helix (alpha-helix1, residues Thr6-His18) is substantially formed as is also its anti-parallel beta-sheet, centred around a beta-hairpin (residues Ser92-Leu95). Fragments up to, and including, residues 1-95 (fragment B95), appeared to be mainly disordered, although a small amount of helical secondary structure in each was inferred from far-UV CD experiments, and fluorescence studies indicated some native-like tertiary interactions in B95. The largest fragment (residues 1-105, B105) is compactly folded. The secondary structure in alpha-helix1 in the seven fragments was found by NMR to increase with increasing chain length faster than the build-up of tertiary interactions, indicating that alpha-helix1 is being stabilised by non-native interactions. This behaviour contrasts with that in fragments of the 64-residue chymotrypsin inhibitor 2 (CI2), in which tertiary and secondary structures build up in parallel with increasing length. CI2 consists of a single module of structure that folds without a detectable intermediate. The largest fragment of barnase, B105, has interactions that resemble its folding intermediate, whereas one of the largest fragments of CI2 (residues 1-60) resembles the folding transition state. The folding pathways of both proteins are consistent with a scheme in which there are low levels of native-like secondary structure in the denatured state that become stabilised by long-range interactions as folding proceeds. Neither protein forms a stable fold when lacking the last ten residues at the C terminus. Since at least 20 amino acid residues are bound to the ribosome during protein biosynthesis, these small proteins do not fold until they have left the ribosome, and so the studies of the folding of such proteins in vitro may be relevant to their folding in vivo, especially as the molecular chaperone GroEL binds only weakly to denatured CI2 and does not discernibly alter the folding mechanism of barnase.  相似文献   

10.
Conformational studies on an isolated integral membrane protein are reported. Lipoprotein of Escherichia coli outer membrane was released from murein by treatment with either lysozyme or trypsin. The isolated lysozyme-released lipoprotein (lipoprotein I) contained 2 or 3 muropeptides covalently linked at the C-terminal end, while the trypsin-released lipoprotein (lipoprotein II) was free of muropeptides and lacked the C-terminal peptide Tyr-Arg-Lys. Circular dichroism spectra of the two preparations were essentially identical, and they show an alpha-helix content of about 80%. According to calculations based on the Chou-Fasman rules for proteins of known sequence, lipoprotein is 64% alpha-helix and 15% beta-structure. Infrared spectroscopy qualitatively supports these values. The conformation was stable in the pH range of 5 - 12. Danaturation of lipoprotein by heat, 8 M urea, or sodium dodecylsulphate was a fully reversible, cooperative process. The thermal denaturation of lipoprotein occurs in two steps with transition points at 79.4 degrees C for lipoprotein I and at 85.1 degrees C for lipoprotein II. Lioprotein markedly changes conformation at dodecylsulphate concentrations where micelle formation sets in. The unusual behaviour of the lipoprotein convormation in sodium dodecylsulphate is discussed in relation to the lipoprotein conformation and aggregation within the membrane.  相似文献   

11.
HIV-1 transmembrane envelope glycoprotein (gp41) has an unusually long cytoplasmic domain that has secondary associations with the inner leaflet of the membrane. Two highly amphiphatic alpha-helices in the cytoplasmic domain of gp41 have previously been shown to interact with lipid bilayers. We have detected a highly conserved leucine zipper-like sequence between the two alpha-helices. A peptide corresponding to this segment (residues 789-815, LLP-3) aggregates in aqueous solution, but spontaneously inserts into phospholipid membranes and dissociates into alpha-helical monomers. The peptide perturbs the bilayer structure resulting in the formation of micelles and other non-bilayer structures. Tryptophan fluorescence quenching experiments using brominated phospholipids revealed that the peptide penetrates deeply into the hydrophobic milieu of the membrane bilayer. The peptide interacts equally with zwitterionic and negatively-charged phospholipid membranes and is protected from proteolytic digestion in its membrane-bound state. Polarized attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy showed that the LLP-3 alpha-helix axis is about 70 degrees from the normal to the membrane plane. The ATR-FTIR CH2-stretching dichroic ratio increases when the peptide is incorporated into pure phospholipid membranes, further indicating that the peptide can deeply penetrate and perturb the bilayer structure. Integrating these data with what is already known about the membrane-associating features of adjacent segments, we propose a revised structural model in which a large portion of the cytoplasmic tail of the HIV-1 envelope glycoprotein is associated with the membrane.  相似文献   

12.
Structural changes in staphylococcal protein A (SpA) upon its binding to the constant region (Fc) of immunoglobulin G (IgG) have been studied by nuclear magnetic resonance and circular dichroism (CD) spectroscopy. The NMR solution structure of the engineered IgG-binding domain of SpA, the Z domain (an analogue of the B domain of SpA), has been determined by simulated annealing with molecular dynamics, using 599 distance and dihedral angle constraints. Domain Z contains three alpha-helices in the polypeptide segments Lys7 to His18 (helix 1), Glu25 to Asp36 (helix 2), and Ser41 to Ala54 (helix 3). The overall chain fold is an antiparallel three-helical bundle. This is in contrast to the previously determined X-ray structure of the similar SpA domain B in complex with Fc, where helix 3 is not observed in the electron density map [Deisenhofer, J. (1981) Biochemistry 20, 2361-2370], but similar to the solution NMR structure of domain B, which is also a three-helical bundle structure [Gouda, H., et al. (1992) Biochemistry 31, 9665-9672]. In order to characterize possible secondary structural changes associated with IgG binding, far-UV CD spectra were collected for the Z domain, an engineered repeat of this molecule (ZZ), recombinant Fc from IgG subclass 1 (Fc1), recombinant Fc from IgG subclass 3 (Fc3), and mixtures of Z/Fc1, Z/Fc3, ZZ/Fc1, and ZZ/Fc3. Fc3 was included as a control for possible changes of the CD spectrum in the mixture of noncomplexed molecules, since SpA is known not to bind Fc3. From these CD spectra, it was concluded that the third alpha-helix in Z is not disrupted in its complexes with Fc1. Similar results were obtained for the ZZ molecule. However, in both Z and ZZ there are some perturbations in CD spectra at high energy wavelengths (i.e., lambda < 215 nm) accompanying complex formation. On the basis of the combined CD and NMR results, as well as previously described binding studies of Z mutant proteins to Fc1, we conclude that the Z domain maintains its three-helical bundle structure in the Z-Fc complex, though there may be a small structural change involved in the binding mechanism.  相似文献   

13.
In a previous study, we demonstrated the existence of a 3.2 +/- 0.2 ppm peak in the 1H NMR spectrum at 60 MHz from human pancreatic adenocarcinomas (Capan-1 cell) heterotransplanted into nude mice. This peak, which is not present in normal human pancreas, was attributed to enhanced membrane fluidity and/or or an increase in phospholipid turnover. The present study was designed to identify this signal by comparing the 1H NMR spectra recorded in vivo at 100 MHz from Capan-1 tumors, after suppression of the tissular water proton peak, to those recorded from normal pancreatic tissue, and to those recorded at 300 MHz from lipid extracts. The 1H NMR spectra at 100 MHz of the Capan-1 tumors in vivo exhibited three main peaks in the 3.2 +/- 0.2 ppm region: 1. A peak at 2.8 +/- 0.1 ppm from CH2 protons of the acyl chains of unsaturated phospholipids; 2. A peak at 3.2 +/- 0.1 ppm from the protons of the N(CH3)3 group of choline; and 3 A peak at 3.5 +/- 0.1 ppm attributed to GPC. The NMR 1H 300 MHz spectrum of phospholipid extracts of Capan-1 tumors displayed 12 principal resonances, of which only the N(CH3)3 peak of PC had a similar chemical shift to that observed at low resolution (3.2 +/- 0.2 ppm). This peak had a higher intensity in the xenografts than in normal human pancreatic tissue. HPLC analysis of the same lipid extracts from Capan-1 cells in culture, of tumors derived from these cells and from normal pancreas showed: 1. Identical concentrations of the different phospholipids from cancerous human pancreatic cells in vivo and in culture; and 2. A significantly higher level of PC in the extracts of normal human pancreatic tissue. The increase in intensity of the N(CH3)3 peak of PC in the Capan-1 tumors was not thought to be caused by an increase in PC concentration, but to a difference in conformation or mobility of the PC protons in the xenografts. The increase in relaxation time in cancerous tissue (from 60 to 125 ms) was also taken to be evidence in favor of a high mobility of protons.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Phospholamban (PLN) was expressed in Escherichia coli as a protein fusion with glutathione S-transferase (GST). GST-PLN was mostly present in the insoluble protein fraction and accounted for approximately 50% of total insoluble protein. Attempts to suppress inclusion body formation or to use GST as an affinity-purification tag failed. A successful purification method is based on preparative SDS/PAGE and electrodialysis. From 1 g cells we typically purified 13.5 mg fusion protein with a PLN content of 2.8 mg. We genetically inserted an enterokinase (EK) protease site just in front of the PLN sequence and demonstrated the proteolytical liberation of PLN from the carrier protein. The approach described represents a substantial advancement in PLN expression and purification.  相似文献   

15.
PURPOSE: The major component of human lens membranes was thought to be sphingomyelin until 1991, when a study by phosphorus-31 (31P) nuclear magnetic resonance (NMR) spectroscopy revealed the presence of an unknown phospholipid that constituted approximately half the human lens phospholipids. The objective of this work was to isolate this phospholipid and to elucidate its identity. METHODS: The separation of sphingomyelin from the unknown was accomplished using high-performance liquid chromatography (HPLC) and an amino-bound column. Sphingomyelin standard and the membranes from human lenses were chromatographed. Chromatographic fractions were collected and spectrally characterized by proton (1H) NMR and 31P NMR spectroscopy. RESULTS: The chromatographic method did not affect the integrity of the sphingomyelin. Besides the bands corresponding to the unknown components, the chromatogram of the human lens membranes showed three large peaks, the central one with a shoulder, with elution times similar to that for sphingomyelin. The 1H NMR spectra for the fractions collected during the elution of these peaks showed differences. The study by 31P NMR indicated that the first peak contained the unknown phospholipid. The subsequent fractions showed the presence, in different relative levels, of both the unknown and sphingomyelin. By comparison and interpretation of the two-dimensional 1H NMR spectra for sphingomyelin and for the fraction containing the unknown, the unknown phospholipid is proposed to be 4,5 dihydrosphingomyelin, in which the site of unsaturation present in the sphingosine moiety is no longer present. CONCLUSIONS: The ability to separate the unknown from sphingomyelin and the power of 1H NMR spectroscopy allowed the proposition of the identity of the major component of human lens membranes as 4,5-dihydrosphingomyelin. Although the synthetic compound is known to be involved in the formation of extended hydrogen-bonding networks, its biologic and physicochemical properties need further study.  相似文献   

16.
Raphanus sativus Antifungal Protein 1 (Rs-AFP1) is a 51 amino acid residue plant defensin isolated from radish (Raphanus sativus L.) seeds. The three-dimensional structure in aqueous solution has been determined from two-dimensional 1H NMR data recorded at 500 MHz using the DIANA/REDAC calculation protocols. Experimental constraints consisted of 787 interproton distances extracted from NOE cross-peaks, 89 torsional constraints from 106 vicinal interproton coupling constants and 32 stereospecific assignments of prochiral protons. Further refinement by simulated annealing resulted in a set of 20 structures having pairwise root-mean-square differences of 1.35(+/- 0.35) A over the backbone heavy atoms and 2.11(+/- 0.46) A over all heavy atoms. The molecule adopts a compact globular fold comprising an alpha-helix from Asn18 till Leu28 and a triple-stranded beta-sheet (beta 1 = Lys2-Arg6, beta 2 = His33-Tyr38 and beta 3 = His43-Pro50). The central strand of this beta-sheet is connected by two disulfide bridges (Cys21-Cys45 and Cys25-Cys47) to the alpha-helix. The connection between beta-strand 2 and 3 is formed by a type VIa beta-turn. Even the loop (Pro7 to Asn17) between beta-strand 1 and the alpha-helix is relatively well defined. The structure of Raphanus sativus Antifungal Protein 1 features all the characteristics of the "cysteine stabilized alpha beta motif". A comparison of the complete structure and of the regions important for interaction with the fungal receptor according to a mutational study, is made with the structure of gamma-thionin, a plant defensin that has no antifungal activity. It is concluded that this interaction is both electrostatic and specific, and some possible scenarios for the mode of action are given.  相似文献   

17.
The venom of the North African scorpion Androctonus mauretanicus mauretanicus possesses numerous highly active neurotoxins that specifically bind to various ion channels. One of these, P05, has been found to bind specifically to calcium-activated potassium channels and also to compete with apamin, a toxin extracted from bee venom. Besides the highly potent ones, several of these peptides (including that of P01) have been purified and been found to possess only a very weak, although significant, activity in competition with apamin. The amino acid sequence of P01 shows that it is shorter than P05 by two residues. This deletion occurs within an alpha-helix stretch (residues 5-12). This alpha-helix has been shown to be involved in the interaction of P05 with its receptor via two arginine residues. These two arginines are absent in the P01 sequence. Furthermore, a proline residue in position 7 of the P01 sequence may act as an alpha-helix breaker. We have determined the solution structure of P01 by conventional two-dimensional 1H nuclear magnetic resonance and show that 1) the proline residue does not disturb the alpha-helix running from residues 5 to 12; 2) the two arginines are topologically replaced by two acidic residues, which explains the drop in activity; 3) the residual binding activity may be due to the histidine residue in position 9; and 4) the overall secondary structure is conserved, i.e., an alpha-helix running from residues 5 to 12, two antiparallel stretches of beta-sheet (residues 15-20 and 23-27) connected by a type I' beta-turn, and three disulfide bridges connecting the alpha-helix to the beta-sheet.  相似文献   

18.
High-speed (14 kHz) solid-state magic angle spinning (MAS) 1H NMR has been applied to several membrane peptides incorporated into nondeuterated dilauroyl or dimyristoylphosphatidylcholine membranes suspended in H2O. It is shown that solvent suppression methods derived from solution NMR, such as presaturation or jump-return, can be used to reduce water resonance, even at relatively high water content. In addition, regioselective excitation of 1H peptide resonances promotes an efficient suppression of lipid resonances, even in cases where these are initially two orders of magnitude more intense. As a consequence, 1H MAS spectra of the peptide low-field region are obtained without interference from water and lipid signals. These display resonances from amide and other exchangeable 1H as well as from aromatic nonexchangeable 1H. The spectral resolution depends on the specific types of resonance and membrane peptide. For small amphiphilic or hydrophobic oligopeptides, resolution of most individual amide resonance is achieved, whereas for the transmembrane peptide gramicidin A, an unresolved amide spectrum is obtained. Partial resolution of aromatic 1H occurs in all cases. Multidimensional 1H-MAS spectra of membrane peptides can also be obtained by using water suppression and regioselective excitation. For gramicidin A, F2-regioselective 2D nuclear Overhauser effect spectroscopy (NOESY) spectra are dominated by intermolecular through-space connectivities between peptide aromatic or formyl 1H and lipid 1H. These appear to be compatible with the known structure and topography of the gramicidin pore. On the other hand, for the amphiphilic peptide leucine-enkephalin, F2-regioselective NOESY spectra mostly display cross-peaks originating from though-space proximities of amide or aromatic 1H with themselves and with aliphatic 1H. F3-regioselective 3D NOESY-NOESY spectra can be used to obtain through-space correlations within aliphatic 1H. Such intrapeptide proximities should allow determination of the conformation of the peptide in membranes. It is suggested that high-speed MAS multidimensional 1H NMR of peptides in nondeuterated membranes and in H2O can be used for studies of both peptide structure and lipid-peptide interactions.  相似文献   

19.
A rigid dinitrile ligand was synthesized from two xanthene units condensed to a naphthalene-1,4,5,8-diimide spacer. The rigidity and C shape of the ligand gave exclusively trans complexes with Pd(II), Ag(I), and Au(I). Evidence for complexation, coordination geometry, and stoichiometry was provided by a combination of 1H NMR, 19F NMR, and IR spectroscopy. The AuBF4 and PdCl2 complexes were shown to have a 1:1 (metal-to-ligand) stoichiometry and the AgBF4 complex was shown to have a 1:2 stoichiometry in solution. The preorganization of the dinitrile ligand resulted in complexes much more stable than their monodentate counterparts.  相似文献   

20.
Evidence is presented for species heterogeneity of the gly-11 analog of gramicidin A incorporated into sodium dodecyl sulfate (SDS) micelles. The evidence for species heterogeneity has been obtained using one-dimensional (1D) 1H NMR spectroscopy. The 1D spectra of the indole NH moiety of tryptophans 9, 13, and 15 show the presence of more than one species. It has been found that the heterogeneity is dependent upon the gly-11/SDS molar ratio. At high SDS concentration (i.e., gly-11/SDS of 3 mM/700 mM) the heterogeneity almost completely disappears. The temperature dependence of these 1H NMR signals suggests that the two species do not interconvert. The results of nuclear Overhauser effect spectroscopy NMR experiments indicate that one species is embedded within the micelle, while the other is nearer the aqueous interface. The importance of side chain interactions with the membrane environment in producing stable, solubilized species of small peptides in SDS micelles is illustrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号