首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The internal oxidation of two phase binary A-B alloys by a single oxidant at high temperatures, under partial pressures sufficient to also form external scales of the less-stable oxide, is examined by means of quantitative models and compared with the corresponding behavior of single-phase alloys. It is shown that, depending on various factors, particularly on the solubility and diffusivity of the most-reactive component B in the most-noble component A, this process may or may not involve a diffusion process of the alloy components, leading to different scale morphologies. It is also concluded that even when the solubility and diffusivity of B in A are sufficiently high, so that the internal oxidation of the common type occurs, the restriction to the diffusion of B in the alloy due to its limited solubility affects the kinetics of internal oxidation, producing an increase of the rate of internal oxidation and of the critical concentration of B in the alloy required for the transition to the external oxidation of B with respect to single-phase alloys under the same values of all the relevant parameters. The lower the solubility of B in A, the larger these effects.  相似文献   

2.
The main possible modes of the high-temperature corrosion of binary two-phase alloys by a single oxidant under gas-phase pressures sufficient to corrode only the most-reactive alloy component are examined to compare their behavior with that of single-phase alloys. In the absence of important diffusion processes of the metal components in the alloy, the scale structures expected are different from those typical of single-phase alloys. Moreover, when diffusion in the alloy becomes important, these systems may develop an outer single-phase layer depleted in the most-reactive component, which may lead to different possible scale structures. The conditions for the transition between the various oxidation modes as well as the effect of the various parameters of kinetic, thermodynamic, and structural nature over the corrosion behavior of two-phase alloys are also examined.  相似文献   

3.
The conditions for the transition from the formation of mixed scales to the exclusive oxidation of the component B, forming the most stable oxide, are examined for both single-phase and two-phase binary A-B alloys by taking into account the displacement of the alloy-scale interface due to the growth of the protective oxide. This procedure eliminates the inconsistencies arising from Wagner's classical treatment for single-phase alloys when the interdiffusion coefficient in the alloy is small with respect to the parabolic rate constant for outer-scale growth; but the same procedure leads to a significantly-improved treatment also for two-phase alloys. For the latter systems, the transition is shown to depend also on the solubility of B in the A-rich phase.Moreover, the exclusive growth of the most-stable oxide is more difficult than for single-phase alloys because it requires higher average concentrations of B in the alloy and may even become impossible if the parabolic rate constant of oxidation is large with respect to the interdiffusion coefficient in the alloy.  相似文献   

4.
The main possible modes of the high-temperature corrosion of binary twophase alloys by a single oxidant under gas-phase pressures sufficient to corrode both alloy components are examined to highlight the differences in their behavior with respect to single-phase alloys. It is shown that in the absence of important diffusion processes of the metal components in the alloy the expected scale structures are significantly different from those typical of single-phase alloys. The effects due to the existence of different degrees of deviation from equilibrium as a result of kinetics hindrances for the formation of the most stable oxide and in the absence of alloy diffusion are then examined. It is also shown that when diffusion in the alloy becomes important the alloy may develop an outer single-phase layer depleted in the most-reactive component, which may lead to various possible scale structures. The conditions for the transition between the various oxidation modes as well as the effect of the various parameters of kinetics, thermodynamic and structural nature over the corrosion behavior of two-phase alloys are also examined.  相似文献   

5.
The conditions for the exclusive oxidation of the most-reactive component during the corrosion of binary, two-phase alloys by a single oxidant are reexamined by using a more correct form of the mass balance for this component. Moreover, the previous treatment is extended to include the case in which the transition falls in the range of alloy compositions corresponding to the stability of the single phase rich in the most-reactive component. The limiting conditions for the transition in the single and two-phase fields are examined and discussed.  相似文献   

6.
The steady-state, high-temperature oxidation kinetics of single phase alloys rich in a most-reactive componentB in binaryA-B systems presenting a limited solubility of the two components (beta phase alloys) have been examined assuming the exclusive formation of the most-stable oxideBO v. Alloys sufficiently rich inB can form externalBO v scales directly in contact with the beta phase, while below a criticalB content the growth ofBO v involves also the appearance of an intermediate layer ofB-depleted solid solution ofB inA (alpha phase). The parabolic rate constants for the oxidation of single-phase beta alloys are lower than those of alloys of identicalB content which are single-phase over the whole range of composition (solid-solution alloys) but higher than for two-phase alpha + beta alloys under the same values of all the relevant parameters. Moreover, the tendency of single-phase beta alloys to form the most-stable oxide simultaneously as an external scale and internally to the alloy is greater than for solid-solution alloys but smaller than for two-phase alloys.  相似文献   

7.
The conditions for the transition from internal to external oxidation of the most-reactive component C of ternary A–B–C alloys are examined, assuming the presence of external scales of the oxide of the component of intermediate reactivity B. For this, approximate expressions for the diffusion coefficient of oxygen and for the concentration of oxygen dissolved in the binary A–B alloy matrix within the zone of internal oxidation as functions of the composition of the metal matrix within the zone of internal oxidation are used. Numerical calculations of the critical content of C needed for this transition are carried out for different combinations of values of the various parameters involved. The results obtained for the ternary alloys are compared with the corresponding data calculated for the binary A–C and B–C alloys under oxygen pressures insufficient to oxidize the most-noble alloy component. This allows to predict the possibility of existence of a third-element effect under intermediate oxidant pressures.  相似文献   

8.
The steady-state kinetics in the high-temperature oxidation of binary A-B alloys containing a mixture of the conjugated solid solutions of B in A (alpha phase) and A in B (beta phase) with exclusive formation of the most-stable oxide BOv have been examined, assuming that the external scale grows on top of a subsurface layer of alpha phase. The results obtained are compared with the corresponding behavior of alloys which are single phase in the whole range of composition. Under identical values of all the parameters involved the concentration of B at the alloy-scale interface is smaller for two-phase than for single-phase alloys under the same concentration of B in the alloy as a result of the restricted flux of B through the alpha-phase layer. As a consequence of this, the two-phase alloys corrode more slowly than single-phase alloys and this difference increases as the solubility of B in the alpha phase decreases. Finally, the simultaneous formation of BOv both externally and as internal oxide is more likely for two-phase than for single-phase materials.  相似文献   

9.
A calculation of the parabolic rate law for internal oxidation in binary alloys expressed in terms of weight gain shows that its dependence on the concentration of the most-reactive component is different from that predicted by the classical Wagner treatment for the rate constant expressed in terms of thickness of the internal oxidation zone. It is shown that the ratio between the two rate constants for a given system is a very sensitive function of the concentration of the reactive element in the alloy.  相似文献   

10.
This paper examines the conditions for the transition from internal to external oxidation of the most-reactive component C of ternary A–B–C alloys by a single oxidant under gas-phase oxidant activities below the stability of the oxide of the two most-reactive components using Wagners criterion. For this, approximate relations between the solubility and diffusivity of oxygen and the composition of the binary A–B alloy matrix in the zone of internal oxidation, already developed previously, are used. The critical C content needed for the transition in ternary alloys is calculated as a function of the many parameters involved. At variance with the behavior of binary alloys, for ternary alloys this critical C content depends also on the ratio between the concentrations of A and B in the bulk alloy. The results calculated for ternary alloys are compared with those obtained for binary A–C and B–C alloys under the same values of all the relevant parameters. Finally, complete oxidation maps for ternary alloys under low oxidant pressures,including the condition for the stability of external scales of the C oxide, are also presented.  相似文献   

11.
Ternary A–B–C alloys, where A is the most-noble and C the most-reactive component, exposed to oxygen pressures above the stability of the least stable oxide AO (high-oxidant pressures) may present two different types of internal oxidation, i.e. either a coupled internal oxidation of both B and C beneath an external AO scale or a single internal oxidation of C beneath an external scale of the oxide of B. This paper examines the conditions required to avoid the coupled internal oxidation of B plus C beneath external AO scales, considering both the case of formation of a single and a double front of internal oxidation. The analysis, based on an extension to ternary alloys of the criterion defined by Wagner for the transition between the internal and external oxidation of the most-reactive component of binary alloys, shows that the addition of B to binary A–C alloys is very effective in reducing the C content needed for this transition in comparison with binary A–C alloys. This results provides a basis for a possible explanation of the third-element effect. However, the actual possibility of its occurrence depends also on the ability to avoid other oxidation modes, not examined here.  相似文献   

12.
The kinetics of internal oxidation of the most-reactive component C of ternary A–B–C alloys in the presence of external scales of the oxide of the component of intermediate reactivity B, BO, are examined using convenient approximations. The precipitation of the most-stable oxide leaves behind a matrix composed of a mixture of the two most-noble components, A and B, whose composition changes with depth due to the consumption of B to form the external scale. For the calculation of the parabolic rate constant use is made of approximate expressions for the concentration of oxygen dissolved in the binary A–B metal matrix within the zone of internal oxidation and for the diffusion coefficient of oxygen as functions of the alloy composition. Numerical calculations of the parabolic rate constant of internal oxidation are carried out for different combinations of values of the various parameters involved. The results obtained for the ternary alloys are compared with the corresponding data calculated for the binary A–C and B–C alloys under the same conditions.  相似文献   

13.
Oxidation of multicomponent two-phase alloys   总被引:1,自引:0,他引:1  
The high-temperature corrosion behavior of two-phase alloys presents a number of differences compared to that of single-phase alloys. These differences are mainly a consequence of the limitations that the presence of two phases impose on the diffusion of the alloy components. In this review, it is shown that the exclusive scale formation of the more stable, slow-growing oxide is more difficult on a two-phase alloy, requiring a higher concentration of the more reactive alloy component than for a corresponding single-phase alloy. The main types of corrosion behavior for binary two-phase alloys are also considered, showing that if diffusion in the alloy is slow the scale structure will closely reflect that of the starting material. When diffusion in the alloy is not negligible, the scale structure becomes similar to what forms on single-phase alloys. The oxidation of two-phase ternary alloys is shown to be even more complex than the two-phase binary alloys. The principal added complexity compared to the binary alloys is that diffusion in the ternary alloys may also occur in the presence of two metal phases, as a result of an extra degree of freedom in the ternary system. The oxidation behavior of two-phase ternary alloys is discussed in the context of a number of recent experimental results.  相似文献   

14.
Oxidation of the relatively simple, two-phase alloy Ni-70 wt.%Cr in oxygen between 1073 and 1473°K results in the formation of a Cr2O3 scale containing less than O.5 wt.% Ni in solid solution. The oxidation kinetics are irreproducible for an initial period, which is brief at 1073 and 1273°K but much more pronounced at 1473°K, both in duration and degree. This behavior is associated with the failure of the protective Cr2O3 scale. However, after longer periods a compact layer of Cr2O3 becomes established under isothermal conditions and results in a change to more reproducible kinetics, especially at 1073 and 1273°K. Oxidation causes chromium depletion and the formation of a single-phase zone which separates the scale and the two-phase bulk alloy. The depth of Cr2O3 internal oxide coincides with this zone. The oxidation behavior is compared with that of more Ni-rich, single-phase Ni-Cr alloys, with particular reference to the effects of the constitution of the underlying alloy and the integrity of the protective oxide.  相似文献   

15.
The kinetics of the simultaneous internal oxidation of the two most-reactive components B and C in ternary A–B–C alloys, where A is the most-noble and C the most-reactive component, in the presence of an external layer of the A oxide, AO, (high oxidant pressures) are examined assuming the existence of either a single or a double front of internal oxidation. For a single front a unique solution is obtained for the parabolic rate constant of internal oxidation under assigned values of all the parameters involved. When the front is double, a finite range of solutions is allowed with an upper limit equal to the single-front solution and a lower limit equal to the rate constant for the growth of external AO scales. In the case of a single front of internal oxidation, an increase of the rate constant for the growth of the external scales produces an increase of the rate constant for the internal oxidation but a decrease of the degrees of enrichment of the components being oxidized internally within the region of internal oxidation. The behavior in the case of a double front is more complex because it depends also on the actual value of the ratio between the rate constants of internal oxidation for the two fronts.  相似文献   

16.
The conditions for the transition between the coupled internal oxidation of two most-reactive components and the formation of external scales in the scaling of ternary alloys under oxidant pressures below the stability of the oxide of the most-noble component, denoted as a situation of intermediate oxidant pressures, are examined under a number of simplifying conditions which allow to develop an approximate analytical treatment. If the precipitation of the two oxides occurs at the same front of internal oxidation, the kinetics of internal oxidation as well as the critical B and C contents needed for the transition have a single solution under fixed conditions of all the parameters involved. On the contrary, in the presence of two different fronts, when the most-stable oxide forms at the innermost front, a whole range of possible solutions is predicted. In both cases, the critical-C content needed to avoid the simultaneous internal oxidation of B plus C is progressively reduced by the addition of B. This behavior provides the basis for a possible interpretation of the “third-element effect”. However, the existence and the magnitude of this effect are complicated by the occurrence of other modes of oxidation for these systems. Thus, a general treatment of the third-element effect under intermediate oxidant pressures requires an exhaustive analysis of all the oxidation modes permitted for ternary alloys under these conditions.  相似文献   

17.
Gesmundo  F.  Niu  Y. 《Oxidation of Metals》2003,60(5-6):347-370
The internal oxidation of the most-reactive component C of ternary A–B–C alloys by a single oxidant is examined assuming a gas-phase oxidant pressure below the stability of the oxides of the other two components. The precipitation of the most-stable oxide leaves behind a matrix composed of a binary alloy of the two less-reactive components, whose composition affects the solubility and diffusivity of the oxidant within the region of internal oxidation, with an effect on the reaction kinetics. Approximate relations between these properties are proposed and used to predict the kinetics of internal oxidation of C under the assumption of parabolic rate law. The results obtained for the ternary alloys are compared with the behavior of binary A–C and B–C alloys with the same C content. A new important factor in establishing the difference between the internal oxidation in ternary A–B–C alloys and in binary A–C and B–C alloys under a fixed gas-phase oxygen pressure and C content is the ratio between the concentrations of A and B in the bulk ternary alloy.  相似文献   

18.
Further aspects of the oxidation of binary two-phase alloys   总被引:2,自引:0,他引:2  
The corrosion behavior of binary, two-phase alloys is considered in which the matrix contains mostly the less-noble metal that forms a fast-growing oxide, while the second phase is rich in a component that forms a more stable but slowly-growing oxide. It is assumed that the second phase exists as a dispersion of isolated, rod-like particles. It is further assumed that both phases form external films with no internal oxidation. It is shown that the oxidation behavior of this type of alloy depends on both the oxidation time and the size of the second-phase particles. In particular, for short oxidation times and large second-phase particles the matrix will oxidize faster than the dispersed phase, so that the dispersed particles will be only partly corroded or even incorporated into the matrix-oxide scale as unoxidized islands, forming an irregular alloy-scale interface. On the contrary, for long times and small particle sizes the two phases will tend to oxidize at approximately the same rate, leading to the formation of regular alloy-scale interfaces. The time for the transition between the two corrosion regimes depends not only on the ratio between the rate constants for the growth of the two oxides but also on the size of the dispersed-phase particles, smaller sizes producing shorter transition times. Eventually, under favorable conditions the formation of the fast-growing oxide may even stop, leading to the formation of a protective layer of the most-stable oxide.  相似文献   

19.
Niu  Y.  Gesmundo  F. 《Oxidation of Metals》2003,60(5-6):371-391
The kinetics of the coupled internal oxidation of the two most-reactive components in the scaling of ternary alloys under oxidant pressures below the stability of the oxide of the most noble component are examined using a number of simplifying conditions which allow to develop an approximate analytical treatment. The precipitation of the two oxides may occur either at a single front or at two different fronts of internal oxidation. The former case corresponds to a unique solution for all the parameters involved in the process. On the contrary, the existence of two fronts of internal oxidation yields a finite range of possible solutions for the oxidation kinetics as well as for all the other relevant parameters. Even though the present treatment does not allow to predict which solution will be adopted by a real system, it is possible to set limits to the values of the parameters yielding physically-acceptable solutions. After considering a general case, the treatment is applied to a real system already examined experimentally.  相似文献   

20.
The initial transient stage in the oxidation of binary alloys forming scales exclusively composed of the most stable oxide is examined by means of a simplified approach which avoids the numerical integration of the diffusion equation for the transport of the metal components in the alloy. At variance with previous solutions to this problem obtained by means of numerical methods, this treatment takes into account also the effect of the gas-scale reaction at the outer surface of the oxide. The concentration of the most-reactive component at the alloy surface changes gradually with time from the initial bulk value towards the corresponding steady-state value without involving any minimum, while the overall rate of the reaction presents a gradual transition from an initial nearly linear towards final parabolic behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号