首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective was to determine the effect of cider composition on the heat resistance of Escherichia coli O157:H7. The average D52 value in a model Empire apple juice was 18 min with a z value of 4.8 degrees C. Increasing the Brix from 11.8 to 16.5 degrees had no effect on thermal resistance, while increasing L-malic acid from 0.2 to 0.8%, or reducing the pH from 4.4 to 3.6 sensitized the cells to heat. The greatest effect on heat resistance was afforded by the preservatives benzoic and sorbic acids: D50 values in ciders containing 1,000 mg/l were 5.2 min in the presence of sorbic acid and only 0.64 min in the presence of benzoic acid. Commercial apple juice concentrates yielded lower numbers of survivors than single-strength juices even though their higher sugar concentrations of about 46 degrees Brix increased heat resistance.  相似文献   

2.
Exposure of Escherichia coli O157:H7 to chlorine before heat treatment results in increased production of heat shock proteins. Current heating regimens for pasteurizing apple cider do not account for chlorine exposure in the wash water. This research determined the effect of sublethal chlorine treatment on thermal inactivation of E. coli O157:H7. D58-values were calculated for stationary-phase cells exposed to 0.6 mg/liter of total available chlorine and unchlorinated cells in commercial shelf-stable apple juice (pH 3.6). D58-values for unchlorinated and chlorine-exposed cells in buffer were 5.45 and 1.65 min, respectively (P < 0.01). Death curves of chlorine-exposed and unchlorinated cells in apple juice were not completely linear. Unchlorinated cells heated in apple juice exhibit a 3-min delay before onset of linear inactivation. Chlorine treatment eliminated this shoulder, indicating an overall loss of thermotolerance. The linear portion of each curve represented a small fraction of the total population. D58-values calculated from these populations are 0.77 min for unexposed cells and 1.19 min for chlorine-exposed cells (P = 0.05). This indicates that a subpopulation of chorine-treated cells is possibly more resistant to heat because of chlorine treatment. The effect of chlorine treatment, however, is insignificant when compared with the effect of losing the shoulder. This is illustrated by the time required to kill the initial 90% of the cell population. This is observed to be 3.14 min for unchlorinated versus 0.3 min for chlorine-exposed cells (P < 0.001). These observations indicate that current heat treatments need not be adjusted for the effect of chlorine treatment.  相似文献   

3.
It is common practice to dilute food products in 0.1% peptone before microbiological analysis. However, this diluent may not be appropriate for detection of injured organisms present in acidic foods. Shelf-stable unclarified apple juice (pH 3.6) was inoculated with approximately 1 x 10(7) CFU/ml of Escherichia coli O157:H7 and held at 23 +/- 2 degrees C (control) or frozen to -20 +/- 2 degrees C for 24 h to induce injury before sampling. Unfrozen or frozen and thawed juice was diluted 1:1 or 1:10 in 0.1% (wt/vol) peptone (pH 6.1) or 0.1 M phosphate buffer (pH 7.2). Juice samples were plated onto tryptic soy agar with 0.1% (wt/vol) sodium pyruvate (TSAP) to measure survival or onto sorbitol MacConkey agar (SMA) to indicate injury. Counts on TSAP or SMA were the same for control samples held in peptone or phosphate buffer for up to 45 min. However, populations of E. coli in frozen and thawed samples declined rapidly upon dilution in 0.1% peptone. Within 20 min, E. coli underwent a >1-log10 CFU/ml reduction in viability as measured on TSAP and a >2-log10 CFU/ml reduction to below the limit of detection (1.6 or 2.3 log10 CFU/ml) on SMA. In contrast, populations of E. coli in frozen and thawed samples diluted in phosphate buffer did not decrease significantly on TSAP and decreased by <0.6 log CFU/ml on SMA during a 45-min holding period. The acidity of apple juice appears to interfere with the recovery of freeze-thaw-injured E. coli O157:H7 during sampling. Using 0.1 M phosphate buffer (pH 7.2) as a diluent results in superior recovery of these organisms on both selective and nonselective plating media.  相似文献   

4.
The effect of high voltage pulsed electric field (PEF) treatment on Escherichia coli O157:H7 and generic E. coli 8739 in apple juice was investigated. Fresh apple juice samples inoculated with E. coli O157:H7 and E. coli 8739 were treated by PEF with selected parameters including electric field strength, treatment time, and treatment temperature. Samples were exposed to bipolar pulses with electric field strengths of 30, 26, 22, and 18 kV/cm and total treatment times of 172, 144, 115, and 86 micros. A 5-log reduction in both cultures was determined by a standard nonselective medium spread plate laboratory procedure. Treatment temperature was kept below 35 degrees C. Results showed no difference in the sensitivities of E. coli O157:H7 and E. coli 8739 against PEF treatment. PEF is a promising technology for the inactivation of E. coli O157:H7 and E. coli 8739 in apple juice.  相似文献   

5.
The antibacterial activity of lactoferricin B on enterohemorrhagic Escherichia coli O157:H7 in 1% peptone medium and ground beef was studied at 4 and 10 degrees C. In 1% peptone medium, 50 and 100 microg of lactoferricin B per ml reduced E. coli O157:H7 populations by approximately 0.7 and 2.0 log CFU/ml, respectively. Studies comparing the antibacterial effect of lactoferricin B on E. coli O157:H7 in 1% peptone at pH 5.5 and 7.2 did not reveal any significant difference (P > 0.5) at the two pH values. Lactoferricin B (100 microg/g) reduced E. coli O157:H7 population in ground beef by about 0.8 log CFU/g (P < 0.05). No significant difference (P > 0.5) was observed in the total plate count between treatment and control ground beef samples stored at 4 and 10 degrees C. The antibacterial effect of lactoferricin B on E. coli O157:H7 observed in this study is not of sufficient magnitude to merit its use in ground beef for controlling the pathogen.  相似文献   

6.
Unpasteurized apple juice, adjusted to pH 3.6 to 7.0 was inoculated (10(7) CFU/ml) with single strains of E. coli O157:H7 to evaluate the effect of frozen storage on the viability of this organism. Samples were stored under frozen conditions (-20+/-2 degrees C) for up to 16 days. Cell populations were determined at regular intervals by plating onto tryptic soy agar with added pyruvate (TSAP) or onto sorbitol MacConkey agar (SMA). Populations in the neutralized juice remained unchanged during frozen storage. Populations in non-neutralized juice decreased by 1-3 log10 CFU/ml depending on the strain tested and the pH of the juice. The greatest population decrease was observed with the first freeze/thaw cycle of frozen storage (24 h) and a slow decline in survival occurred thereafter. Injury was observed after 2 weeks of storage when juice pH was at or below pH 4.2. When samples were subjected to multiple freeze/thaw cycles, loss of viability and injury increased with each freeze/thaw cycle.  相似文献   

7.
The behavior of Escherichia coli O157:H7 in Granny Smith, Gala, Empire, McIntosh, Red Delicious, and Golden Delicious apple juice with or without supplementation with 5 or 10 mM vanillic acid was examined over a storage period of 7 days at 4 and 15 degrees C. The consequences of supplementation on sensory difference and preference were also determined by triangle testing. Juices made from the six apple cultivars had pH values ranging between pH 3.13 and 3.92. Vanillic acid exerted a concentration, pH, and time-dependent lethal effect toward E. coli O157:H7 in unpasteurized apple juice. Supplementation with 10 mM vanillic acid led to a 5-logarithm reduction in populations after 7 days at both temperatures, but sensory analysis revealed significant differences from and preference for unsupplemented juices. Supplementation with 5 mM vanillic acid accelerated death of E. coli O157:H7, but population reductions ranged from 5 log CFU/ml in low pH juices to none in high pH juices, particularly at 4 degrees C. No sensory difference or preference was detected in two of the six juices at this level of supplementation.  相似文献   

8.
The effects of vanillin on the fates of Listeria monocytogenes and Escherichia coli O157:H7 at pH values between 3.5 and 4.5 were verified in a model apple juice (MAJ) medium and in apple juice incubated at 4 or 15 degrees C. Viable E. coli O157:H7 cells were recovered from MAJ for up to 10 days, but L. monocytogenes did not survive at pH 3.5. Supplementation with 40 mm vanillin exerted a lethal effect that was species, concentration, pH and temperature dependant. E. coli O157:H7 was more sensitive to vanillin than L. monocytogenes, and viable cells could not be recovered after 2 days incubation at either temperature. L. monocytogenes and E. coli O157:H7 were inoculated (10(5) cfu/ml) in pH adjusted (pH 4.00) or unadjusted (pH 3.42) juice from Granny Smith apples that was supplemented with 40 mm vanillin. Neither species were recovered after 3 days incubation at 4 or 15 degrees C. These findings indicate that vanillin could be useful as a preservative for minimally processed apple products.  相似文献   

9.
《Food microbiology》2004,21(5):611-616
Listeria monocytogenes and Escherichia coli O157:H7 are major foodborne pathogens implicated in various outbreaks involving pasteurized or unpasteurized milk, and various dairy products. The objective of this study was to determine the antibacterial effect of caprylic acid (CA, C8:0) and its monoglyceride, monocaprylin (MC) on L. monocytogenes and E. coli O157:H7 in whole milk. A five-strain mixture of E. coli O157:H7 or L. monocytogenes was inoculated in autoclaved milk (106 CFU/ml) containing 0, 25, or 50 mM of CA or MC. At 37°C, all the treatments, excepting 25 mm CA, reduced the population of both pathogens by approximately 5.0 log CFU/ml in 6 h. At 24 h of storage at 8°C, MC at both levels and CA at 50 mM decreased L. monocytogenes and E. coli O157:H7, respectively by >5.0 log CFU/ml. At 48 h of 4°C storage, populations of L. monocytogenes and E. coli O157:H7 were decreased to below detection level (enrichment negative) by 50 mm of MC and CA, respectively. Results indicate that MC could potentially be used to inhibit L. monocytogenes and E. coli O157:H7 in milk and dairy products, but sensory studies need to be conducted before recommending their use.  相似文献   

10.
Inactivation and sublethal injury of Escherichia coli O157:H7 cells induced by heat in citrate phosphate buffer and apple juice (both at pH 3.8) were studied, and the effect of a combined preservation treatment using citral and heat treatments was determined. Heat resistance of E. coli O157:H7 was similar in both treatment media; after 27 min at 54°C, 3 log units of the initial cell population was inactivated in both treatment media. However, under less harsh conditions a protective effect of apple juice was found. Whereas inactivation followed linear kinetics in the citrate phosphate buffer, when cells were treated in apple juice the survival curves were concave downward. Heat treatment caused a great degree of sublethal injury; 4 min at 54°C inactivated less than 0.5 log CFU/ml but sublethally injured more than 3 log CFU/ml. The addition of 18 and 200 ppm of citral to the treatment medium acted synergistically with heat at 54°C to inactivate 3 × 10(4) and 3 × 10(7) CFU/ml, respectively. Addition of citral thus reduced the time needed to inactivate 1 log unit of the initial E. coli O157:H7 population from 8.9 to 1.7 min. These results indicate that a combined process of heat and citral can inactivate E. coli O157:H7 cells and reduce their potential negative effects.  相似文献   

11.
Sandwich enzyme-linked immunosorbent assay, especially when coupled with biosensor technology, is a simple methodology that can rapidly screen juices for Escherichia coli O157:H7 contamination. However, sampling directly from apple juice and ciders has been postulated to reduce immunoassay sensitivity. In fluorescence sandwich enzyme-linked immunosorbent assays using commercially available polyclonal or monoclonal antibodies, sampling pasteurized apple juice spiked with E. coli O157:H7 compared to spiked phosphate-buffered saline shifted the range of detection. The spiked apple juice range of detection was 10(4) to 10(6) CFU/ml, whereas that for spiked phosphate-buffered saline was 10(6) to 10(8) CFU/ml, representing a hundredfold difference in sensitivity. Apple juice also increased background fluorescence intensity (P < 0.001) while reducing the net fluorescence intensity per CFU (P < 0.001). The addition of the polymer polyvinylpyrrolidone to apple juice significantly improved assay performance by increasing sensitivity and net fluorescence intensity per CFU and by reducing background fluorescence. Adjusting pH of apple juice from 3.9 to 7.4 improved assay performance but not to the degree seen with phosphate-buffered saline or polyvinylpyrrolidone-treated apple juice samples. The apple juice polyphenol, epicatechin, reduced net fluorescence intensity in a concentration-dependent manner, a change that was reversed by polyvinylpyrrolidone. Taken all together, these results suggest that polyvinylpyrrolidone can improve detection of O157:H7 in juices by reducing the effect of polyphenols on fluorescence sandwich enzyme-linked immunosorbent assay performance.  相似文献   

12.
MR Choi  Q Liu  SY Lee  JH Jin  S Ryu  DH Kang 《Food microbiology》2012,32(1):191-195
This research was initiated to assess the efficacy of gaseous ozone for inactivation Escherichia coli O157:H7, Salmonella typhimurium and Listeria monocytogenes in apple juice. Juice samples with solids content of 18, 36, and 72 °Brix inoculated with a culture cocktail of three foodborne pathogens were treated with gaseous ozone at a flow rate of 3.0 L/min and an ozone generation rate of 0.10, 0.90, 3.51, and 5.57 g/h for 0.5, 1, 5, and 10 min, respectively. The inactivation kinetics of gaseous ozone on foodborne pathogens conformed to the Weibull model. The time required to achieve a 5 log reduction (t5d) was estimated using the parameters of the Weibull model. The t5d increased with increasing solids content of apple juice. The ozone generation rate did not impart a significant effect (p > 0.05) on t5d. Gaseous ozone is effective at inactivating foodborne pathogens in apple juice but the efficacy is dependent on the solids content of the juice sample.  相似文献   

13.
The effect of high pressure processing in conjunction with the chemical antimicrobials, dimethyl dicarbonate (DMDC), hydrogen peroxide, cinnamic acid, potassium sorbate, and sodium benzoate (NaB) on E. coli O157:H7 strain E009 and Salmonella enterica serovar Agona was investigated in apple juice and orange juice, respectively. Juices were inoculated with approximately 10(6) CFU/ml and subjected to pressures of 550 MPa (E. coli O157:H7 samples) and 400 MPa (Salmonella Agona samples) for 2 min at 6 degrees C (initial temperature). Populations of each pathogen were determined before pressurization, immediately after pressurization, and after samples had been held after treatment for 24 h at 4 degrees C. The most effective treatment for E. coli O157:H7, as determined by plating immediately after pressurization, was 125 ppm of DMDC, which caused a >4.98-log reduction. Other treatments that were significantly different from the sample with no added antimicrobial were 62.5 ppm of DMDC, 300 ppm of hydrogen peroxide, and 500 ppm of NaB, which produced 4.97-, 5.79-, and 3.91-log total reductions, respectively. After 24 h at 4 degrees C, E. coli O157:H7 was undetectable in all treatment groups (and controls). In samples inoculated with Salmonella, the most effective treatment was 62.5 ppm of DMDC, which produced a 5.96-log decrease immediately after pressure treatment. The results for 1,000 ppm of NaB, which produced a 3.26-log decrease, also were significantly different from those for the sample containing no antimicrobials. After 24 h at 4 degrees C, all samples with added antimicrobials had near or more than a 5-log total reduction of Salmonella Agona.  相似文献   

14.
The effect of a high-pressure treatment on the survival of a pressure-resistant strain of Escherichia coli O157:H7 (NCTC 12079) in orange juice during storage at 3 degrees C was investigated over the pH range of 3.4 to 5.0. The pH of shelf-stable orange juice was adjusted to 3.4, 3.6, 3.9, 4.5, and 5.0 and inoculated with 10(8) CFU ml(-1) of E. coli O157:H7. The orange juice was then pressure treated at 400 MPa for 1 min at 10 degrees C or was held at ambient pressure (as a control). Surviving E. coli O157:H7 cells were enumerated at 1-day intervals during a storage period of 25 days at 3 degrees C. Survival of E. coli O157:H7 during storage was dependent on the pH of the orange juice. The application of high pressure prior to storage significantly increased the susceptibility of E. coli O157:H7 to high acidity. For example, after pressure treatment, the time required for a 5-log decrease in cell numbers was reduced from 13 to 3 days at pH 3.4, from 16 to 6 days at pH 3.6, and from >25 to 8 days at pH 3.9. It is evident that the use of high-pressure processing of orange juice in order to increase the juice's shelf-life and to inactivate pathogens has the added advantage that it sensitizes E. coli O157:H7 to the high acid conditions found in orange juice, which results in the survival of significantly fewer E. coli O157:H7 during subsequent refrigerated storage.  相似文献   

15.
We investigated the ability of enterohemorrhagic Escherichia coli O157:H7 to spread in wounded apple tissue by transmission electron microscopy. Red Delicious apples were wounded with an artist knife (7 mm depth) and either inoculated with 10 microl per wound of decimally diluted E. coli O157:H7 or submerged into E. coli O157:H7 suspended in sterile distilled water and then stored at 37 degrees C for 24 h. Transmission electron microscopy showed E. coli O157:H7 formed bacterial aggregates near the apple cell walls, and single cells were in close proximity to the apple cell wall surfaces and to plasma membranes. E. coli O157:H7 presence caused degradation of plasma membranes and release of the cytoplasm contents of the apple cortical cells into the central vacuole. Apple tissue turgor pressure tests showed that the apple cells infected with E. coli O157:H7 isolates were more likely to rupture than the control noninoculated apple cells. E. coli O157:H7 cells grown in apple tissue showed the formation of granules and vesicles within the bacterial cytoplasma and separation of the plasma membranes. Our study shows that E. coli O157:H7 can grow and survive in the apple tissue environment by causing degradation of the apple cellular components.  相似文献   

16.
Pasteurized apple juice with nisin (0, 25, 50, 100, and 200 ppm, wt/vol) and cinnamon (0 and 0.3%, wt/vol) was inoculated with Salmonella Typhimurium and Escherichia coli O157:H7 at 10(4) CFU/ml and stored at 5 and 20 degrees C. Counts on tryptic soy agar (TSA), selective medium (xylose Lysine desoxycholate agar for Salmonella Typhimurium, and MacConkey sorbitol agar for E. coli O157:H7), and thin agar layer (TAL) were determined at 1 h and 1, 3, 7, and 14 days. The TAL method (selective medium overlaid with TSA) was used for recovery of sublethally injured cells. The pathogens were gradually inactivated by the acidic pH of apple juice. Nisin and cinnamon greatly contributed to the inactivation. The killing effect was more marked at 20 degrees C, with counts in all treated samples being undetectable by direct plating in 3 days for Salmonella Typhimurium and 7 days for E. coli O157:H7. Thus, several factors influenced the decrease in counts: low pH, addition of nisin and cinnamon, and storage temperature. The TAL method was as effective as TSA in recovering injured cells of the pathogens. The combination of nisin and cinnamon accelerates death of Salmonella Typhimurium and E. coli O157:H7 in apple juice and so enhances the safety of the product.  相似文献   

17.
Fourier Transform Infrared (FT-IR) spectroscopy (4000-400 cm(-1)) combined with multivariate statistical methods were used to identify and detect Escherichia coli O157:H7 from Alicyclobacillus spp. recovered from apple juice. Four treatments and a control in triplicate experiments (N=3) were studied; the first three treatments of pasteurized apple juice were inoculated with E. coli O157:H7 ATCC 35150, Alicyclobacillus acidoterrestris 1016 and Alicyclobacillus spp. C-Fugi-6 respectively. The fourth treatment was a 1:1 (v:v) mixed culture of both A. acidoterrestris 1016 and Alicyclobacillus spp. C-Fugi-6. The control was uninoculated pasteurized apple juice. The second derivative transformation and loadings plot over the range of 1800-900 cm(-1) highlighted the most distinctive variations among bacterial spectra. Loadings 1 and 2 were distinctively representative of the bacterial spectral data and accounted for 73% of the total variability. Treatments were noticeably segregated with distinct clustering by principal component analysis (PCA). Using soft independent modeling of class analogy (SIMCA) analysis, 88.3% of (E. coli O157:H7 ATCC 35150) spectra, 75.0% of (A. acidoterrestris 1016) spectra, 88.3% of (Alicyclobacillus spp. C-Fuji-6) spectra, and 80.0% of the mixed culture of both Alicyclobacillus strains spectra were correctly classified. Using the spectral features of bacterial cellular constituents such as nucleic acids, proteins, phospholipids, peptidoglycan, and lipopolysaccharides from examined bacterial cells, pure and mixed cultures of Alicyclobacillus spp. cells, and the pathogenic E. coli cells could be detected in apple juice.  相似文献   

18.
Alfalfa and other seed sprouts have been implicated in several Escherichia coli O157:H7 and Salmonella spp. human illness outbreaks in the U.S. Continuing food safety issues with alfalfa seeds necessitate the need for discovery and use of novel and effective antimicrobials. The potential use of caprylic acid (CA) and monocaprylin (MC) for reducing E. coli O157:H7 and Salmonella spp. populations on alfalfa seeds was evaluated. The effectiveness of three concentrations of CA and MC (25, 50, and 75 mM) to reduce E. coli O157:H7 and Salmonella spp. populations in 0.1% peptone water and on alfalfa seeds was evaluated. Surviving populations of E. coli O157:H7 and Salmonella spp. were enumerated by direct plating on tryptic soy agar (TSA). Non-inoculated alfalfa seeds were soaked for up to 120 min to evaluate the effect of CA and MC solutions on seed germination rate. For planktonic cells, the efficacy of the treatments was: 75 MC > 50 MC > 25 MC > 75 CA > 50 CA > 25 CA. Both E. coli O157:H7 and Salmonella spp. were reduced to below the detection limit (0.6 log CFU/ml) within 10 min of exposure to 75 MC from initial populations of 7.65 ± 0.10 log CFU/ml and 7.71 ± 0.11 log CFU/ml, respectively. Maximum reductions of 1.56 ± 0.25 and 2.56 ± 0.17 log CFU/g for E. coli O157:H7 and Salmonella spp., respectively, were achieved on inoculated alfalfa seeds (from initial populations of 4.74 ± 0.62 log CFU/g and 5.27 ± 0.20 log CFU/g, respectively) when treated with 75 MC for 90 min. Germination rates of CA or MC treated seeds ranged from 84% to 99%. The germination rates of CA or MC soaked seeds and water soaked seeds (control) were similar (P > 0.05) for soaking times of ≤ 90 min. Monocaprylin (75 mM) can be used to reduce E. coli O157:H7 and Salmonella spp. on alfalfa seeds without compromising seed viability.  相似文献   

19.
20.
This study examined the efficacy of UV light for reducing Escherichia coli O157:H7 in unpasteurized cider. Cider containing a mixture of acid-resistant E. coli O157:H7 (6.3 log CFU/ml) was treated using a thin-film UV disinfection unit at 254 nm. Dosages ranged from 9,402 to 61,005 microW-s/cm2. Treatment significantly reduced E. coli O157:H7 (P < or = 0.0001). Mean reduction for all treated samples was 3.81 log CFU/ml. Reduction was also affected by the level of background microflora in cider. Results indicate that UV light is effective for reducing this pathogen in cider. However, with the dosages used in this experiment, additional reduction measures are necessary to achieve the required 5-log reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号