首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
朱相荣  王磊  杨雅婷  董瑞  张俊 《计算机应用》2020,40(7):1891-1895
现有的基于循环神经网络、卷积神经网络和Transformer的自回归翻译模型,虽然都具有良好的翻译性能,但由于解码并行性较低导致了翻译速度慢的问题,针对这个问题提出一种基于非自回归模型的优化学习率策略的方法。在基于迭代优化的非自回归序列模型的基础上,改变学习率调节方法,即把warm up替换为liner annealing方法。首先评估出liner annealing优于warm up方法,然后将liner annealing应用于非自回归序列模型以得到翻译质量和解码速度的最优平衡,最后将该方法与自回归模型的方法作对比。实验结果表明该方法相较于自回归模型Transformer,当解码速度提升1.74倍时,翻译质量的双语评估替换(BLEU)分数值为41.31,可达到Transformer的95.34%。由此可见,采用liner annealing的非自回归序列模型,在降低少许翻译质量的条件下,能够有效地提升解码速度,适用于对翻译速度需求迫切的平台。  相似文献   

2.
3.
Ye  Junjie  Guo  Junjun 《Applied Intelligence》2022,52(12):14194-14203
Applied Intelligence - Multi-modal neural machine translation (MNMT), which mainly focuses on the use of image information to guide text translation. Recent MNMT approaches have been shown that...  相似文献   

4.
This paper reports the results of a qualitative study which investigated localisation activities performed by translators working in two Language Service Providers. It argues that maintaining the appropriate quality level in this setting is a collaborative task which involves several translators. This perspective entails taking a broader view of the translation process than usually found in the Machine Translation (MT) literature and detailing the various knowledge sources which are deployed in this collaborative effort. The impact of collaboration on trust is examined, and a comparison is made between the relatively seamless flow of work between translators and the more strained relationships with remote contributors. In support of this view, the paper contrasts the flexibility of the analysed work practices with the rigid ways which tend to be followed when introducing MT into this setting. We identify the need to support collaboration and communication more actively as a broader issue in translation settings. While current strategies for introducing MT tend to further isolate translators from remote contributors, we propose that MT can serve as the catalyst for establishing a more dynamic and collaborative relationship between them.  相似文献   

5.
神经机器翻译领域中多层神经网络结构能够显著提升翻译效果,但是多层神经网络结构存在信息传递的退化问题。为了缓解这一问题,提出了层间和子层间信息融合传递增强的方法,增强多层神经网络的层与层之间信息传递的能力。通过引入“保留门”机制来控制融合信息的传递权重,将融合信息与当前层的输出信息连接共同作为下一层的输入,使得信息传递更加充分。在目前最先进的多层神经网络Transformer上进行相关的实验,在中英和德英翻译任务上的实验结果表明,该信息传递增强方法相比于基线系统,BLEU得分分别提高了0.66和0.42。  相似文献   

6.
Haque  Rejwanul  Liu  Chao-Hong  Way  Andy 《Machine Translation》2021,35(4):451-474

In recent years, neural network-based machine translation (MT) approaches have steadily superseded the statistical MT (SMT) methods, and represents the current state-of-the-art in MT research. Neural MT (NMT) is a data-driven end-to-end learning protocol whose training routine usually requires a large amount of parallel data in order to build a reasonable-quality MT system. This is particularly problematic for those language pairs that do not have enough parallel text for training. In order to counter the data sparsity problem of the NMT training, MT researchers have proposed various strategies, e.g. augmenting training data, exploiting training data from other languages, alternative learning strategies that use only monolingual data. This paper presents a survey on recent advances of NMT research from the perspective of low-resource scenarios.

  相似文献   

7.
依赖于大规模的平行语料库,神经机器翻译在某些语言对上已经取得了巨大的成功。无监督神经机器翻译UNMT又在一定程度上解决了高质量平行语料库难以获取的问题。最近的研究表明,跨语言模型预训练能够显著提高UNMT的翻译性能,其使用大规模的单语语料库在跨语言场景中对深层次上下文信息进行建模,获得了显著的效果。进一步探究基于跨语言预训练的UNMT,提出了几种改进模型训练的方法,针对在预训练之后UNMT模型参数初始化质量不平衡的问题,提出二次预训练语言模型和利用预训练模型的自注意力机制层优化UNMT模型的上下文注意力机制层2种方法。同时,针对UNMT中反向翻译方法缺乏指导的问题,尝试将Teacher-Student框架融入到UNMT的任务中。实验结果表明,在不同语言对上与基准系统相比,本文的方法最高取得了0.8~2.08个百分点的双语互译评估(BLEU)值的提升。  相似文献   

8.
Peng  Ru  Hao  Tianyong  Fang  Yi 《Neural computing & applications》2021,33(23):16609-16625
Neural Computing and Applications - There are various ways to incorporate syntax knowledge into neural machine translation (NMT). However, quantifying the dependency syntactic intimacy (DSI)...  相似文献   

9.
低资源型的汉越神经机器翻译中,数据稀疏问题是影响翻译性能的主要原因,目前缓解该问题的途径之一是通过语料扩充方法生成伪平行数据,并用于机器翻译模型的训练,伪平行数据生成方法主要有基于词的替换、单语数据回译和枢轴翻译3种.目前的研究集中于3种方法的单独使用,缺少方法间融合利用方面的研究工作,针对此问题,提出了融入双语词典的正反向枢轴方法,利用英语作为枢轴语言,在汉到英到越正向枢轴的基础上,融入利用稀有词构建的汉-英和英-越双语词典,将汉语单语数据通过模型翻译成英语数据,再利用英-越模型将其翻译成越南语数据,其次进行越到英到汉反向枢轴翻译将越南语单语数据翻译为汉语,以此在2个方向上生成汉越伪平行数据,并利用语言模型对生成的伪平行数据进行筛选.汉-越翻译任务上的实验结果表明,提出的融入双语词典的正反向枢轴方法,能够产生更优的伪平行语料,进而显著提升汉越神经机器翻译任务的性能.  相似文献   

10.
Neural Computing and Applications - Languages help to unite the world socially, culturally and technologically. Different natives communicate in different languages; there is a tremendous...  相似文献   

11.
Advances in hardware have made available micro-coded LISP and PROLOG workstations, supported by text editing and formatting software. Some of these have been augmented with linguistic technology including large bilingual dictionaries, parsers, generators, and translators to make them powerful tools for research and development of automated translation. Some techniques of linguistic engineering for accomplishing translation are described, and it is suggested that the present barely satisfactory approach involving sentence-by-sentence translation will eventually be improved by incorporating the results of research on analyzing discourse.  相似文献   

12.
Fuzzy matching techniques are the presently used methods in translating the words. Neural machine translation and statistical machine translation are the methods used in MT. In machine translator tool, the strategy employed for translation needs to handle large amount of datasets and therefore the performance in retrieving correct matching output can be affected. In order to improve the matching score of MT, the advanced techniques can be presented by modifying the existing fuzzy based translator and neural machine translator. The conventional process of modifying architectures and encoding schemes are tedious process. Similarly, the preprocessing of datasets also involves more time consumption and memory utilization. In this article, a new spider web based searching enhanced translation is presented to be employed with the neural machine translator. The proposed scheme enables deep searching of available dataset to detect the accurate matching result. In addition, the quality of translation is improved by presenting an optimal selection scheme for using the sentence matches in source augmentation. The matches retrieved using various matching scores are applied to an optimization algorithm. The source augmentation using optimal retrieved matches increases the translation quality. Further, the selection of optimal match combination helps to reduce time requirement, since it is not necessary to test all retrieved matches in finding target sentence. The performance of translation is validated by measuring the quality of translation using BLEU and METEOR scores. These two scores can be achieved for the TA-EN language pairs in different configurations of about 92% and 86%, correspondingly. The results are evaluated and compared with other available NMT methods to validate the work.  相似文献   

13.
基于短语统计翻译的汉维机器翻译系统   总被引:1,自引:0,他引:1  
杨攀  李淼  张建 《计算机应用》2009,29(7):2022-2025
描述了一种基于短语统计翻译的汉维机器翻译系统。首先使用汉维语料进行训练,得到语言模型和翻译模型;再利用训练好的模型对源语句进行解码,以得到最佳的翻译语句。解码的核心算法是柱搜索(beam search)算法。其中维文语料使用的是拉丁维文。实验结果表明,基于短语的统计机器翻译方法可以快速有效地构建一个汉维机器翻译平台。  相似文献   

14.
15.
汉越平行语料库的资源稀缺,很大程度上影响了汉越机器翻译效果.数据增强是提升汉越机器翻译的有效途径,基于双语词典的词汇替换数据增强是当前较为流行的方法.由于汉语-越南语属于低资源语言对,双语词典难以获得,而通过单语词向量获取低频词的同义词较为容易.因此,提出一种基于低频词的同义词替换的数据增强方法.该方法利用小规模的平行...  相似文献   

16.
Machine Translation - Neural machine translation (NMT) has emerged as a preferred alternative to the previous mainstream statistical machine translation (SMT) approaches largely due to its ability...  相似文献   

17.
在自然语言处理领域,递归神经网络在机器翻译中的应用越来越广泛;除了其他语言外,汉语中还包含大量的词汇,提高英译汉的机器翻译质量是对汉语处理的一个重要贡献;设计了一个英汉机器翻译系统的模型,该系统使用基于知识的上下文向量来映射英语和汉语单词,采用编解码递归神经网络实现;对基于激活函数模型的性能进行了测试,测试结果表明,编码器层的线性激活函数和解码器层的双曲正切激活函数性能最好;从GRU和LSTM层的执行情况来看,GRU的性能优于LSTM;注意层采用softmax和sigmoid激活函数进行设置,该模型的方法在交叉熵损失度量方面优于现有的系统.  相似文献   

18.
19.
神经机器翻译(NMT)在多个领域应用中已取得显著成效,在大规模语料库上已充分论证其优越性。然而,在语料库资源不足的情形下,仍存在较大的改进空间。由于汉语-马来语(汉-马)平行语料的匮乏,直接导致了汉-马机器翻译的翻译效果不佳。为解决汉-马低资源机器翻译不理想的问题,提出了一种基于深度编码注意力和渐进式解冻的低资源神经机器翻译方法。首先,利用XLNet预训练模型重构编码器,在编码器中使用了XLNet动态聚合模块替代了传统编码层的输出方式,有效弥补了低资源汉-马语料匮乏的瓶颈;其次,在解码器中使用并行交叉注意力模块对传统编码-解码注意力进行了改进,提升了源词和目标词的潜在关系的捕获能力;最后,对提出模型采用渐进式解冻训练策略,最大化释放了模型的性能。实验结果表明,提出方法在小规模的汉-马数据集上得到了显著的性能提升,验证了方法的有效性,对比其他的低资源NMT方法,所提方法结构更为精简,并改进了编码器和解码器,翻译效果提升更加显著,为应对低资源机器翻译提供了有效的策略与启示。  相似文献   

20.
This paper provides an overview of the KBMT-89 project at Carmegie Mellon University's Center for Machine Translation, as well therefore of the special number of this journal, which reports on the project. The knowledge-based approach to machine translation is presented and defended in a historical context. Various components of the system, key parts of which are described in subsequent papers of the issue, are introduced and paired with their computational motivations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号