首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effects of digestibility of corn silage neutral detergent fiber (NDF) and dietary NDF content on feeding behavior, dry matter intake (DMI), and energy utilization were evaluated with eight multiparous high producing dairy cows in a duplicated 4 x 4 Latin square design with 21-d periods. Experimental diets contained corn silage from a brown midrib (bm3) hybrid or its isogenic normal control at two concentrations of dietary NDF (29 and 38%). Both low NDF diets and bm3 corn silage treatments increased DMI and milk yield. However, an interaction between corn silage treatment and dietary NDF content was observed for meal size and for interval between meals, implying that different mechanisms regulating DMI dominate depending on the fermentation characteristics of diets. The bm3 treatment depressed milk fat concentration when fed in a low NDF diet. The bm3 corn silage increased solids-corrected milk yield, but did not affect daily body weight gain compared with control, whereas low NDF diets increased daily body weight gain, but did not affect solids-corrected milk yield compared to high NDF diets. Both bm3 treatments and low NDF diets reduced ruminal pH, but low NDF treatments increased fluctuation of ruminal pH and bm3 treatments did not. Feeding bm3 corn silage increased the energy utilized for milk production, possibly because of a consistent supply of metabolic fuels from the rumen. The beneficial effects of bm3 corn silage on productivity of lactating cows were greater for the cows fed a high NDF diet.  相似文献   

2.
The objectives of this study were to determine how feeding diets that differed in dietary neutral detergent fiber (NDF) concentration and in vitro NDF digestibility affects dry matter (DM) intake, ruminal fermentation, and milk production in early lactation dairy cows. Twelve rumen-cannulated, multiparous Holstein cows averaging 38 ± 15 d (±standard deviation) in milk, and producing 40 ± 9 kg of milk daily, were used in a replicated 4 × 4 Latin square design with 28-d periods. Treatment diets were arranged in a 2 × 2 factorial with 28 or 32% dietary NDF (DM basis) and 2 levels of straw NDF digestibility: 1) LD, untreated wheat straw (77% NDF, 41% NDF digestibility) or 2) HD, anhydrous NH3-treated wheat straw (76% NDF, 62% NDF digestibility). All 4 diets consisted of wheat straw, alfalfa silage, corn silage, and a concentrate mix of cracked corn grain, corn gluten meal, 48% soybean meal, and vitamins and minerals. Wheat straw comprised 8.5% DM of the 28% NDF diets and 16% DM of the 32% NDF diets. Cows fed 28% NDF and HD diets produced more milk, fat, and protein than those consuming 32% NDF or LD diets. Dry matter intake was greater for cows consuming 28% NDF diets, but intakes of DM and total NDF were not affected by in vitro NDF digestibility. Intake of digestible NDF was greater for cows consuming HD diets. Ruminal fermentation was not affected by feeding diets that differed in NDF digestibility. Ruminal NDF passage rate was slower for cows fed HD than LD. No interactions of dietary NDF concentration and in vitro NDF digestibility were observed for any parameter measured. Regardless of dietary NDF concentration, increased in vitro NDF digestibility improved intake and production in early lactation dairy cows.  相似文献   

3.
The effects of digestibility of corn silage neutral detergent fiber (NDF) and dietary NDF content on ruminal digestion kinetics, site of nutrient digestion, and microbial N production efficiency were evaluated with eight multiparous high producing dairy cows in a duplicated 4 x 4 Latin square design with 21-d periods. Experimental diets contained corn silage from a brown midrib (bm3) hybrid or its isogenic normal control at two concentrations of dietary NDF (29 and 38%). The NDF digestibility estimated by a 30-h in vitro fermentation was higher for bm3 corn silage by 9.4 units (55.9 vs. 46.5%). Neither ruminal nor total tract NDF digestibility was affected by corn silage treatment. The bm3 corn silage diet decreased starch digestibility in the rumen and in the total tract, but increased postruminal starch digestibility compared with control diet. The bm3 corn silage diets increased microbial N flow to the duodenum and tended to decrease ruminal ammonia concentration. Microbial efficiency was greater for cows fed bm3 corn silage in spite of lower ruminal pH. Higher efficiency of microbial nitrogen production might be attributed to faster passage rate of NDF for cows fed bm3 corn silage compared with those fed control corn silage. Higher in vitro NDF digestibility might predict enhanced NDF fragility and ease of NDF hydrolysis in vivo. Enhanced in vitro NDF digestibility does not necessarily result in increased NDF digestibility either in the rumen or in the total tract, but possibly increases rate of passage and DMI, improving efficiency of microbial N production.  相似文献   

4.
Three corn hybrids harvested as whole-plant silage were evaluated in three separate feeding trials with lactating dairy cows. In trial 1, 24 multiparous Holstein cows were used in a replicated 4 x 4 Latin square with 28-d periods. Treatments were conventional (Pioneer 3563) and leafy (Mycogen TMF 106) corn silage hybrids, each planted at low (59,000 plants/ha) and high (79,000 plants/ha) plant populations. There were no milk production differences between treatments. Total-tract digestibility of dietary starch was higher for leafy compared with conventional corn hybrids. In trial 2, 26 multiparous Holstein cows were assigned randomly to diets containing either conventional (48% forage diet) or brown-midrib (60% forage diet) corn silage in a crossover design with 8-wk periods. Milk yield was lower, but milk fat percentage and yield were higher, for the high-forage diet containing brown-midrib corn silage. In trial 3, 24 multiparous Holstein cows were used in a replicated 4 x 4 Latin square with 28-d periods. Treatments were corn silage at two concentrations of neutral detergent fiber (Garst 8751, 39.2% NDF; Cargill 3677, 32.8% NDF) each fed in normal- (53% of dry matter) and high- (61 to 67% of dry matter) forage diets. Milk production was not different between corn hybrids. Increased concentrate supplementation increased DMI and milk production. There were minimal benefits to the feeding of leafy or low-fiber corn silage hybrids. Feeding brown-midrib corn silage in a high-forage diet increased milk fat percentage and yield compared with conventional corn silage fed in a normal-forage diet.  相似文献   

5.
We hypothesized that substituting a corn hybrid with high cell-wall content and high neutral detergent fiber (NDF) digestibility (HCW) for a hybrid with lower cell-wall content and lower NDF digestibility (LCW) would improve feed intake and milk production in lactating Holstein cows. There was a 3.6 percentage unit difference in NDF content and a 4.1 percentage unit difference in 30-h in vitro NDF digestion between the 2 corn hybrids. In trial 1, 40 cows (12 primiparous) ranging in milk production from 24.1 to 44.0 kg/d, following a 2-wk preliminary period, were used in a crossover design with 2-wk periods. Diets consisted of 45% corn silage (HCW or LCW), 10% alfalfa hay, and 45% concentrates. The DMI (25.4 vs. 24.2 kg/d) and 4% FCM yield (34.3 vs. 31.7 kg/d) were higher for cows fed the HCW diet compared with the LCW diet. When HCW was substituted for LCW on a DM basis, there was no relationship between pretrial milk yield (preliminary period) and subsequent response to HCW silage. In trial 2, 40 cows (8 primiparous) ranging in milk production from 20.6 to 49.0 kg/d, following a 2-wk preliminary period, were used in a crossover design with 2-wk periods. Diets consisted of the same LCW diet as trial 1 and a diet containing HCW at a concentration (40% of DM) that resulted in equal NDF content (30.8%) between the 2 diets (HCWN). The DMI (26.8 kg/d) was unaffected by diet, although there was a trend for greater DMI (% of BW) for cows fed the HCWN diet compared with LCW silage (4.24 vs. 4.12). Milk fat (3.91 vs. 3.79%) and 4% FCM yield (34.9 vs. 33.4 kg/d) were greater for cows fed HCWN vs. LCW diet. When HCW was substituted for LCW silage on an NDF basis, cows with greater milk production during the preliminary period had a greater milk response to HCW than lower-producing cows. Results of these trials supported our hypothesis that HCW corn silage results in greater DMI and milk yield than LCW silage, whether substitution occurs on a DM or NDF basis.  相似文献   

6.
The effects of enhanced in vitro neutral detergent fiber (NDF) digestibility of corn silage on dry matter intake (DMI) and milk yield were evaluated using 32 Holstein cows in a crossover design with 28-d periods. At the beginning of the experiment, cows were 89 d in milk and yielded 45.6 kg/d of milk. Experimental diets contained either brown midrib (bm3) corn silage or isogenic normal corn silage (control) at 44.6% of DM. The NDF digestibility estimated by 30-h in vitro fermentation was higher for bm3 corn silage by 9.7 units. Contents of NDF and lignin were lower for bm3 corn silage by 1.8 and 0.8 units, respectively. Diets were formulated to contain 19% crude protein and 31% NDF and to have a forage to concentrate ratio of 56:44. Daily DMI, milk yield (3.5% fat-corrected milk), and solids-corrected milk were 2.1, 2.6, and 2.7 kg higher, respectively, for cows fed bm3 corn silage. The milk protein and lactose contents were greater for bm3 treatment, but milk fat content was not. Individual milk yield responses of the cows to bm3 treatment were positively related to pretrial milk yield, and DMI response tended to be positively related to pretrial milk yield. Enhanced in vitro NDF digestibility was associated with higher energy intake, which resulted in increased milk yield.  相似文献   

7.
Heat stress of lactating cattle results in dramatic reductions in dry matter intake (DMI). As a result, energy input cannot satisfy energy needs and thus accelerates body fat mobilization. Decreasing the level of roughage neutral detergent fiber (NDF) in prepartum diets, and thereby increasing the amount of nonfiber carbohydrates, may provide an adequate supply of energy and glucose precursors to maintain and minimize the decrease in DMI while reducing mobilization of adipose tissue. The effects of 3-wk prepartum diets containing different amounts of roughage NDF on DMI, blood metabolites, and lactation performance of dairy cows were investigated under summer conditions in Thailand. Thirty cross-bred cows (87.5% Holstein × 12.5% Sahiwal) were dried off 60 d before their expected calving date and were assigned immediately to a nonlactating cow diet containing the net energy for lactation recommended by the National Research Council (2001) model. The treatment diets contained 17.4, 19.2, and 21.0% DM as roughage NDF from bana grass (Pennisetum purpureum × Pennisetum glaucum) silage. Levels of concentrate NDF were 39.8, 40.2, and 38.6% of dietary NDF, so the levels of dietary NDF were 28.9, 32.1, and 34.2% of DM. After parturition, all cows received a lactating cow diet containing 12.7% roughage NDF and 23% dietary NDF. During the entire experiment, the minimum and maximum temperature-humidity index averaged 77.7 and 86.8, respectively, indicating conditions appropriate for the induction of extreme heat stress. As parturition approached, DMI decreased steadily, resulting in a 12.9, 25, and 32.8% decrease in DMI from d −21 until calving for nonlactating cows fed prepartum diets containing 17.4, 19.2, and 21% roughage NDF, respectively. During the 3-wk prepartum period, intakes of DM and net energy for lactation and concentrations of plasma glucose and serum insulin were higher for cows fed diets containing less roughage NDF. In cows fed the 3-wk prepartum diets containing less roughage NDF, calf birth weights, milk yield, and 4% fat-corrected milk were higher, whereas periparturient concentrations of serum nonesterified fatty acids and plasma β-hydroxybutyrate were lower. There was a carryover effect of the prepartum diet on serum nonesterified fatty acids and plasma β-hydroxybutyrate during the first 7 d in milk, and therefore on milk production. These results suggest that feeding diets containing decreased amounts of roughage NDF during the 3-wk prepartum period may minimize the decrease in DMI and lipid mobilization as parturition approaches. This strategy may thus minimize the effect of hormonal factors and heat stress on periparturient cows.  相似文献   

8.
A study was conducted to evaluate the effect of including alfalfa preserved either as silage or long-stem or chopped hay on DMI and milk fat production of dairy cows fed corn silage-based diets with supplemental tallow (T). Fifteen Holstein cows that averaged 117 DIM were used in a replicated 5 x 5 Latin square design with 21-d periods. Treatments (DM basis) were: 1) 50% corn silage:50% concentrate without T (CS); 2) 50% corn silage:50% concentrate with 2% T (CST); 3) 25% corn silage:25% short-cut alfalfa hay:50% concentrate with 2% T (SAHT); 4) 25% corn silage:25% long-cut alfalfa hay:50% concentrate with 2% T (LAHT); and 5) 25% corn silage:25% alfalfa silage:50% concentrate with 2% T (AST). Cows were allowed ad libitum consumption of a TMR fed 4 times daily. Diets averaged 16.4% CP and 30.3% NDF. Including 2% T in diets with corn silage as the sole forage source decreased DMI and milk fat percentage and yield. Replacing part of corn silage with alfalfa in diets with 2% T increased milk fat percentage and yield. The milk fat of cows fed CST was higher in trans-10 C18:1 than that of cows fed diets with alfalfa. No effect of alfalfa preservation method or hay particle length was observed on DMI and milk production. The milk fat percentage and yield were lower, and the proportion of trans-10 C18:1 in milk fat was higher for cows fed LAHT than for cows fed SAHT. Alfalfa preservation method had no effect on milk fat yield. Ruminal pH was higher for cows fed alfalfa in the diets, and it was higher for cows fed LAHT than SAHT. Feeding alfalfa silage or chopped hay appears to be more beneficial than long hay in sustaining milk fat production when 2% T is fed with diets high in corn silage. These results support the role of trans fatty acids in milk fat depression.  相似文献   

9.
Two trials were conducted with lactating dairy cows to determine effects on intake, performance, and chewing activity of supplemental fat in early lactation diets that differed in fiber level and particle size. In trial 1, whole raw soybeans were added at 11.6% of ration DM to alfalfa silage-based TMR containing either finely chopped silage or the same silage with 8.1% coarsely chopped alfalfa hay. Each combination of soybeans (0 or 11.6%) and silage (fine or hay added) was fed as an isocaloric, isonitrogenous TMR to eight Holstein cows in early lactation in a replicated Latin square design with 4-wk periods. Addition of soybeans decreased DMI for fine silage. With silage plus hay, soybean addition decreased milk yield and protein content but increased fat test so that FCM was unchanged. Silage plus hay promoted chewing activity with no interaction of forage particle size with fat addition on chewing activity. In trial 2, TMR based on alfalfa and corn silage contained either 25 or 29% NDF and 0 or 11.6% soybeans. Otherwise, trials 1 and 2 were similar. Soybean addition decreased DMI with low NDF diets. Addition of fat from soybeans had no effect on milk yield or composition, but low fiber decreased fat test and chewing activity. When .4 to .5 kg/d of supplemental fat from whole raw soybeans was fed, higher dietary NDF and larger particle size promoted greater intake with no effect on FCM yield.  相似文献   

10.
A dual-purpose hybrid and a hybrid selected for high neutral detergent fiber (NDF) concentration were harvested as corn silage. The dual-purpose silage (DPCS) had 42% NDF and 35.4% in vitro (30 h) NDF digestibility and the high fiber silage (HFCS) had 49% NDF and 40.1% in vitro NDF digestibility. Two diets (dry matter basis) had 45% DPCS or HFCS and 46% corn grain-based concentrate (dietary NDF was 29 and 32%, respectively), a third diet had 33% HFCS and 58% corn-based concentrate (27% dietary NDF), and a fourth diet had 33% DPCS and 58% concentrate that contained soybean hulls (32% dietary NDF). All diets contained 9% alfalfa silage. Diets were fed to eight midlactation Holstein cows in a 4 x 4 Latin square with 28 d periods. No differences among treatments were observed for milk yield (34.1 kg/d), dry matter intake (23.7 kg/d), and yield and concentration of milk protein. Cows fed the diet with 33% HFCS tended to have lower milk fat percentage than cows fed the 45% DPCS diet. Total digestible nutrients (measured using total collection) tended to be lower for the 33% DPCS diet than for the 45% DPCS diet. In vivo digestibility of NDF tended to be lower for the 33% HFCS diet than the 45% DPCS diet, but digestibility of starch in the two diets with HFCS was higher than the 45% DPCS diet. The lack of any substantial differences in responses suggest that the HFCS was equal to the DPCS when fed at 45% of the diet dry matter (53.5% total forage). When HFCS replaced DPCS so that NDF was similar between diets, milk fat percentage was reduced and ruminal propionate was increased. Increasing dietary NDF by adding soybean hulls to a diet based on DPCS reduced digestibility of dry matter, organic matter, and protein, and resulted in lower energy balance than the 45% DPCS diet.  相似文献   

11.
《Journal of dairy science》2023,106(9):6041-6059
This study evaluated the physical effectiveness of whole-plant corn silage (CS) particles stratified with the Penn State Particle Separator, composed of 19- and 8-mm-diameter sieves and a pan, for lactating dairy cows. Eight Holstein cows (27.6 ± 2.8 kg/d of milk, 611 ± 74 kg body weight; 152 ± 83 d in milk) were assigned to two 4 × 4 Latin squares (22-d periods, 16-d adaptation), where one square was formed with rumen-cannulated cows. Three CS particle fractions were manually isolated using the 8- and 19-mm diameter sieves and re-ensiled in 200-L drums. The 4 experimental diets were (% dry matter): (1) CON (control): 17% forage neutral detergent fiber (NDF) from CS (basal roughage), 31.5% starch, and 31.9% NDF; (2) PSPan: 17% forage NDF from CS + 9% NDF from CS particles <8 mm, 25.9% starch, and 37.9% NDF; (3) PS8: 17% forage NDF from CS + 9% NDF from CS particles 8 to 19 mm, 25.5% starch, and 38.3% NDF; and (4) PS19: 17% forage NDF from CS + 9% NDF from CS particles >19 mm, 24.9% starch, and 38.8% NDF. Cows fed PS8 had greater dry matter intake and energy-corrected milk yield (22.4 and 26.9 kg/d, respectively) than cows fed CON (20.8 and 24.7 kg/d) and PS19 (21.2 and 24.8 kg/d), but no difference was detected between PSPan (21.6 and 25.8 kg/d) and other treatments. Milk fat concentration was greater for PS8 than CON, with intermediate values for PSPan and PS19. Milk fat yield was greater for cows fed PS8 than CON and PS19, and cows fed PSPan secreted more fat than CON cows but were not different from cows fed the other 2 diets. Cows fed CON had a lower meal frequency than cows fed PSPan, shorter meal and rumination times than PS8, and greater meal size and lower rates of rumination and chewing than the other 3 diets. Total chewing per unit of NDF was higher for PS8 than PSPan, although neither treatment differed from CON or PS19. Cows fed PS19 had higher refusal of feed particles >19 mm than cows fed CON and PSPan. The refusal of dietary NDF and undigested NDF in favor of starch were all greater for PS19 than on the other treatments. Cows fed PS19 had a greater proportion of the swallowed bolus and rumen digesta with particles >19 mm than the other 3 diets. Cows fed CON had the lowest ruminal pH and greatest lactate concentration relative to the other 3 diets. Plasma lipopolysaccharide was higher for cows fed CON and PSPan than for cows fed PS8 and PS19, and serum d-lactate tended to be lower on PSPan than for CON and PS8. In summary, the inclusion of CS fractions in a low-forage fiber diet (CON) reduced signs of ruminal acidosis. Compared with CS NDF <8 and >19 mm, CS NDF with 8- to 19-mm length promoted better rumen health and performance of dairy cows. These results highlight the importance of adjusting CS harvest and formulating dairy diets based on the proportion of particles retained between the 8- and 19-mm sieves.  相似文献   

12.
The objective of this experiment was to determine whether increasing the dietary neutral detergent fiber (NDF):starch ratio affected NDF digestibility when diets were formulated to have equal in situ NDF digestibility. Six lactating Holstein cows were fed 1 of 3 diets in a replicated 3 x 3 Latin square. All diets had 41.5% of the dry matter (DM) as corn silage but the concentration of corn grain varied from 23.3 to 34.8% and the NDF:starch ratios were 0.74, 0.95, and 1.27. As corn grain increased, the concentration of a mixture of 54% soyhulls and 46% cottonseed hulls decreased. The soyhull:cottonseed hull mixture had the same in situ NDF digestibility as the corn silage. All diets had 18% forage NDF but starch concentration varied from 25.4 to 33.3% and NDF varied from 24.7 to 32.2%. Intake tended to increase as the NDF:starch ratio increased. Total tract digestibility (measured by total collection of feces and urine) of dry matter and energy decreased linearly as the NDF:starch ratio increased, but NDF digestibility was not affected by treatment. Retention of N increased linearly as the NDF:starch ratio increased. As dietary NDF:starch ratio increased, ruminal pH was not affected, but the concentration of total volatile fatty acids (VFA) decreased and the VFA profile was altered by diet. Consistent with the observed changes in ruminal VFA, milk fat percentage increased with increasing dietary NDF:starch. Intake of digestible energy and output of energy in milk and body weight change was not affected by treatment.  相似文献   

13.
Dried distillers grains with solubles (DDGS) has been commonly used as a dietary protein source for lactating dairy cows. However, there is a paucity of data evaluating the use of DDGS as a partial replacement of forage or grain. The objective of this study was to determine the effects of partially replacing barley silage or barley grain with corn/wheat-based DDGS on dry matter intake (DMI), chewing activity, rumen fermentation, and milk production. Six ruminally cannulated lactating Holstein cows were used in a replicated 3 × 3 Latin square design with 21-d periods. Cows were fed the control diet (CON: 45% barley silage, 5% alfalfa hay, and 50% concentrate mix), a low forage (LF) diet or a low grain (LG) diet, in which barley silage or barley grain was replaced by DDGS at 20% of dietary dry matter, respectively. All diets were formulated to contain 18% crude protein and fed as total mixed rations. Compared with CON, cows fed the LF diet had greater DMI (26.0 vs. 22.4 kg/d), yields of milk (36.4 vs. 33.0 kg/d), milk protein (1.18 vs. 1.05 kg/d), and milk lactose (1.63 vs. 1.46 kg/d), but milk fat yield was not affected. The LF diet decreased chewing time compared with the CON diet (29.7 vs. 39.1 min/kg of DMI), but did not affect rumen pH and duration of rumen pH below 5.8. Compared with CON, feeding the LG diet tended to increase minimum and maximum rumen pH, but did not affect DMI, milk yield, and milk composition in this study. These results indicate that a partial replacement of barley silage with DDGS can improve the productivity of lactating dairy cows without negatively affecting rumen fermentation and milk fat production. Barley grain can also be partially replaced by DDGS in diets for lactating dairy cows without causing negative effects on productivity.  相似文献   

14.
A low NDF drought-stressed 1988 alfalfa silage (32.6% NDF) and a higher fiber 1988 alfalfa silage (46.4% NDF) were fed to lactating cows to evaluate effects on feed intake, fat test, and chewing behavior. Two groups of Holstein cows, 16 primiparous housed in tie stalls and 16 multiparous in free stalls, were assigned to diets based on parity and milk yield. The low NDF silage was fed for 6 wk in a TMR with 21.5% NDF and was compared with a TMR with 31.9% NDF. During an additional 4-wk period, one-half of each dietary group was fed a ration in which one-half of each silage was rechopped to reduce particle size. All rations contained a 1:1 ratio of forages to concentrates (DM basis) and were fed for ad libitum intake. Diets with 21.5% NDF and reduced particle size had no influence on milk fat percentage, 4% FCM yield, or plasma glucose. Cows fed these diets had reduced chewing time, due largely to decreased rumination time. Rumination and total chewing times per unit DMI and FCM also were lowest on these diets. Intake of DM on a BW basis was lowest for cows fed the low NDF rechopped silage diet. Cows fed in tie stalls had more eating bouts than those in free stalls, but total eating times were similar. Sufficient amounts of effective fiber appeared to be present in low NDF and rechopped silage diets to prevent the systemic events leading to milk fat depression but not to prevent a reduction in chewing time.  相似文献   

15.
The primary objective of this study was to determine lactation performance by dairy cows fed nutridense (ND), dual-purpose (DP), or brown midrib (BM) corn silage hybrids at the same concentration in the diets. A secondary objective was to determine lactation performance by dairy cows fed NutriDense corn silage at a higher concentration in the diet. One hundred twenty-eight Holstein and Holstein × Jersey cows (105 ± 38 d in milk) were stratified by breed and parity and randomly assigned to 16 pens of 8 cows each. Pens were then randomly assigned to 1 of 4 treatments. Three treatment total mixed rations (TMR; DP40, BM40, and ND40) contained 40% of dry matter (DM) from the respective corn silage hybrid and 20% of DM from alfalfa silage. The fourth treatment TMR had ND corn silage as the sole forage at 65% of DM (ND65). A 2-wk covariate adjustment period preceded the treatment period, with all pens receiving a TMR with equal proportions of DP40, BM40, and ND40. Following the covariate period, cows were fed their assigned treatment diets for 11 wk. nutridense corn silage had greater starch and lower neutral detergent fiber (NDF) content than DP or BM, resulting in ND40 having greater energy content (73.2% of total digestible nutrients, TDN) than DP40 or BM40 (71.9 and 71.4% TDN, respectively). Cows fed BM40 had greater milk yield than DP40, whereas ND40 tended to have greater milk yield and had greater protein and lactose yields compared with DP40. No differences in intake, component-corrected milk yields, or feed efficiency were detected between DP40, BM40, and ND40. Milk yield differences may be due to increased starch intake for ND40 and increased digestible NDF intake for BM40 compared with DP40. Intake and milk yield and composition were similar for ND40 compared with BM40, possibly due to counteracting effects of higher starch intake for ND40 and higher digestible NDF intake for BM40. Feeding ND65 reduced intake, and thus milk and component yields, compared with ND40 due to either increased ruminal starch digestibility or increased rumen fill for ND65. Nutridense corn silage was a viable alternative to both DP and BM at 40% of diet DM; however, lactation performance was reduced when nutridense corn silage was fed at 65% of DM.  相似文献   

16.
《Journal of dairy science》2019,102(12):10903-10915
This study evaluated the effects of feeding diets that were formulated to contain similar proportions of undigested neutral detergent fiber (uNDF) from forage, with wheat straw (WS) substituted for corn silage (CS), alfalfa hay (AH), or both. The diets were fed to lactating dairy cows and intake, digestibility, blood metabolites, and milk production were examined. Thirty-two multiparous Holstein cows (body weight = 642 ± 50 kg; days in milk = 78 ± 11 d; milk production = 56 ± 6 kg/d; mean ± standard deviation) were used in a randomized block design with 6-wk periods after a 10-d covariate period. Each period consisted of 14 d of adaptation followed by 28 d of data collection. The control diet contained CS and AH as forage sources (CSAH) with 17% of dietary dry matter as uNDF after 30 h of incubation (uNDF30). Wheat straw was substituted for AH (WSCS), CS (WSAH), or both (WSCSAH) on an uNDF30 basis, and beet pulp was used to obtain similar concentrations of NDF digestibility after 30 h of incubation (NDFD30 = 44.5% of NDF) across all diets. The 4 diets also contained similar concentrations of net energy for lactation and metabolizable protein. Dry matter intake was greatest for WSCS (27.8 kg/d), followed by CSAH (25.7 kg/d), WSCSAH (25.2 kg/d), and WSAH (24.2 kg/d). However, yields of milk, 3.5% fat-corrected milk (FCM), and energy-corrected milk did not differ, resulting in higher FCM efficiency (kg of FCM yield/kg of dry matter intake) for WSAH (1.83) and WSCSAH (1.79), followed by CSAH (1.69) and WSCS (1.64). Milk protein percentage was greater for CSAH (2.84%) and WSCS (2.83%) than for WSAH (2.78%), and WSCSAH (2.81%) was intermediate. The opposite trend was observed for milk urea nitrogen, which was lower for CSAH (15.8 mg/dL), WSCS (15.8 mg/dL), and WSCSAH (17.0 mg/dL) than for WSAH (20 mg/dL). Total-tract NDF digestibility and ruminal pH were greater for diets containing WS than the diet without WS (CSAH), but digestibility of other nutrients was not affected by dietary treatments. Cows fed WSAH had less body reserves (body weight change = −13.5 kg/period) than the cows fed the other diets, whereas energy balance was greatest for those fed WSCS. The results showed that feeding high-producing dairy cows diets containing different forage sources but formulated to supply similar concentrations of uNDF30 while maintaining NDFD30, net energy for lactation, and metabolizable protein constant did not influence milk production. However, a combination of WS and CS (WSCS diet) compared with a diet with CS and AH improved feed intake, ruminal pH, total-tract NDF digestibility, and energy balance of dairy cows.  相似文献   

17.
Interactions of endosperm type of corn grain and the brown midrib 3 mutation (bm3) in corn silage on feeding behavior, productivity, energy balance, and plasma metabolites of lactating dairy cows were evaluated. Eight ruminally and duodenally cannulated cows (72 +/- 8 d in milk; mean +/- SD) were used in a duplicated 4 x 4 Latin square design experiment with a 2 x 2 factorial arrangement of treatments. Treatments were corn grain endosperm type (floury or vitreous), and corn silage type (bm3 or isogenic control). Diets contained 26% neutral detergent fiber (NDF) and 30% starch. Floury endosperm grain decreased dry matter intake (DMI) 1.9 kg/ d compared with vitreous grain when combined with control corn silage but did not affect DMI when combined with bm3 corn silage. This interaction of treatments occurred because of changes in meal size; floury endosperm grain decreased meal size in control silage diets but increased meal size in bm3 corn silage diets. Ruminal pool sizes reflected DMI differences among diets, suggesting that ruminal fill was not the primary limitation on intake. Brown midrib 3 corn silage reduced rumination time per day and number of rumination bouts per day. Floury endosperm grain decreased 3.5% fat-corrected milk by 1.2 kg/d when combined with control silage but increased 3.5% fat-corrected milk by 2.1 kg/d when combined with bm3 corn silage. Starch and fiber digestibility interact to affect feeding behavior and milk production and production response to bm3 corn silage depends on the grain source that is fed.  相似文献   

18.
Chemical treatment may improve the nutritional value of corn crop residues, commonly referred to as corn stover, and the potential use of this feed resource for ruminants, including lactating dairy cows. The objective of this study was to determine the effect of prestorage chopping, hydration, and treatment of corn stover with Ca(OH)2 on the feeding value for milk production, milk composition, and dry matter intake (DMI). Multiparous mid-lactation Holstein cows (n = 30) were stratified by parity and milk production and randomly assigned to 1 of 3 diets. Corn stover was chopped, hydrated, and treated with 6% Ca(OH)2 (as-fed basis) and stored in horizontal silo bags. Cows received a control (CON) total mixed ration (TMR) or a TMR in which a mixture of treated corn stover and distillers grains replaced either alfalfa haylage (AHsub) or alfalfa haylage and an additional portion of corn silage (AH+CSsub). Treated corn stover was fed in a TMR at 0, 15, and 30% of the diet DM for the CON, AHsub, and AH+CSsub diets, respectively. Cows were individually fed in tiestalls for 10 wk. Milk production was not altered by treatment. Compared with the CON diet, DMI was reduced when the AHsub diet was fed and tended to be reduced when cows were fed the AH+CSsub diet (25.9, 22.7, and 23.1 ± 0.88 kg/d for CON, AHsub, and AH+CSsub diets, respectively). Energy-corrected milk production per unit of DMI (kg/kg) tended to increase with treated corn stover feeding. Milk composition, energy-corrected milk production, and energy-corrected milk per unit of DMI (kg/kg) were not different among treatments for the 10-wk feeding period. Cows fed the AHsub and AH+CSsub diets had consistent DMI over the 10-wk treatment period, whereas DMI for cows fed the CON diet increased slightly over time. Milk production was not affected by the duration of feeding. These data indicate that corn stover processing, prestorage hydration, and treatment with calcium hydroxide can serve as an alternative to traditional haycrop and corn silage in diets fed to mid-lactation dairy cows.  相似文献   

19.
《Journal of dairy science》2023,106(7):4666-4681
Corn silage is one of the most common ingredients fed to dairy cattle. Advancement of corn silage genetics has improved nutrient digestibility and dairy cow lactation performance in the past. A corn silage hybrid with enhanced endogenous α-amylase activity (Enogen, Syngenta Seeds LLC) may improve milk production efficiency and nutrient digestibility when fed to lactating dairy cows. Furthermore, evaluating how Enogen silage interacts with different dietary starch content is important because the ruminal environment is influenced by the amount of rumen fermentable organic matter consumed. To evaluate the effects of Enogen corn silage and dietary starch content, we conducted an 8-wk randomized complete block experiment (2-wk covariate period, 6-wk experimental period) with a 2 × 2 factorial treatment arrangement using 44 cows (n = 11/treatment; 28 multiparous, 16 primiparous; 151 ± 42 d in milk; 668 ± 63.6 kg of body weight). Treatment factors were Enogen corn silage (ENO) or control (CON) corn silage included at 40% of diet dry matter and 25% (LO) or 30% (HI) dietary starch. Corn silage used in CON treatment was a similar hybrid as in ENO but without enhanced α-amylase activity. The experimental period began 41 d after silage harvest. Feed intake and milk yield data were collected daily, plasma metabolites and fecal pH were measured weekly, and digestibility was measured during the first and final weeks of the experimental period. Data were analyzed using a linear mixed model approach with repeated measures for all variables except for body condition score change and body weight change. Corn silage, starch, week, and their interactions were included as fixed effects; baseline covariates and their interactions with corn silage and starch were also tested. Block and cow served as the random effects. Plasma glucose, insulin, haptoglobin, and serum amyloid A concentrations were unaffected by treatment. Fecal pH was greater for cows fed ENO versus CON. Dry matter, crude protein, neutral detergent fiber, and starch digestibility were all greater for ENO than CON during wk 1, but differences were less by wk 6. The HI treatments depressed neutral detergent fiber digestibility compared with LO. Dry matter intake (DMI) was not affected by corn silage but was affected by the interaction of starch and week; in wk 1, DMI was similar but by wk 6, cows fed HI had 1.8 ± 0.93 kg/d less DMI than LO cows. Milk, energy-corrected milk, and milk protein yields were 1.7 ± 0.94 kg/d, 1.3 ± 0.70 kg/d, and 65 ± 27 g/d greater for HI than LO, respectively. In conclusion, ENO increased digestibility but it did not affect milk yield, component yields, or DMI. Increasing dietary starch content improved milk production and feed efficiency without affecting markers of inflammation or metabolism.  相似文献   

20.
Inclusion of hemicellulose extract (HE) in cattle diets have shown potential for improving fiber digestibility and production efficiency. The objective of this research was to evaluate production and digestibility effects of a HE on midlactation cows. Twelve multiparous Holstein cows (142 ± 44 d in milk, 685 ± 19 kg of body weight) including 4 with ruminal fistula were used in a 2 × 2 Latin square design with 21-d periods. Cows were fed a control (CON) diet containing 55% forage [dry matter (DM) basis, 2/3 corn silage and 1/3 alfalfa hay] or a similar diet where 1.0% of the diet DM was replaced with HE (TRT). Dry matter intake averaged 27.1 and 26.9 kg/d, for CON and TRT respectively, and was not affected by addition of extract. The percentage of milk protein (3.40 vs. 3.29%) was greater, whereas the percentage of milk fat (3.91 vs. 3.80%) tended to be greater, for cows fed the CON compared with the TRT diet. Because of numerically greater milk production (38.8 vs. 39.2 kg/d) for cows fed the TRT diet, no differences were observed in component yields other than lactose (1.86 vs. 1.94 kg/d), which tended to be greater for cows fed the TRT ration. Treatment improved neutral detergent fiber (NDF) digestibility (38.6 vs. 48.1%) for the TRT diet compared with the CON diet but did not affect apparent total-tract DM (67.8 vs. 68.5%), crude protein (67.2 vs. 67.9%), acid detergent fiber (ADF; 37.1 vs. 43.3%), or starch (92.8 vs. 92.2%) digestibility. For in situ determinations, Dacron bags containing corn silage, alfalfa hay, and either the CON or TRT ration were incubated in triplicate in the rumens of the cannulated cows at 0, 3, 6, 9, 12, 24, and 48 h on d 18 of each period. Each total mixed ration was incubated only in cows assigned to the corresponding diet. For corn silage, the rate of disappearance of NDF (1.70 vs. 4.27%) and ADF (1.79 vs. 4.66%) increased for cows fed the TRT diet. For alfalfa hay, the disappearance of fraction A of DM, NDF, and ADF decreased and fraction B of DM and NDF increased with treatment. The rate of disappearance for DM (8.03 vs. 11.04%), NDF (6.30 vs. 10.28%), and ADF (5.52 vs. 9.19%) increased for the alfalfa hay in rumens of treated cows. For the total mixed ration, the disappearance of the A fraction of NDF and ADF increased for cows fed the TRT diet. Supplementing diets of lactating dairy cows with an HE has beneficial effects on fiber degradation characteristics and provides opportunities for improving animal performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号