首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Maria Dermiki 《LWT》2008,41(2):284-294
The present work evaluated the effect of modified atmosphere packaging (MAP) on quality characteristics and shelf-life extension of the whey cheese “Myzithra Kalathaki” using microbiological, chemical and sensory analyses. Myzithra cheese was packaged in four different atmospheres: vacuum, 20% CO2/80% N2 (M1), 40% CO2/60% N2 (M2) and 60% CO2/40% N2 (M3); identical cheese samples were packaged in air, taken as controls. All cheese samples were kept under refrigeration (4±0.5 °C) for 45 days. Of the four atmospheres, the M2 and M3 gas mixtures were the most effective for inhibiting growth of aerobic microflora and psychrotrophs in cheese samples until days 40 and 33 of refrigerated storage, respectively. Lactic acid bacteria (LAB) were part of the cheese microflora becoming dominant toward the end of the storage period regardless of packaging conditions. Enterobacteriaeceae were also part of the cheese microflora being effectively inhibited after day 35 of storage. Molds and yeasts were also totally inhibited by MAP (M2 and M3) gas mixtures throughout the entire storage period. Of the chemical quality indices determined, lipid oxidation varied below 0.005 absorbance at 532 nm for all treatments, except control samples for which absorbance values of 0.02 were recorded after 35 days of storage. Lipolysis did not vary significantly with type of packaging treatment while proteolysis values showed and increasing trend up to day 25 of storage and then decreased toward the end of the storage period. Sensory evaluation (odour and taste) showed that Myzithra cheese packaged under MAP (M2 and M3) retained good sensory characteristics for 30 days of storage while control samples were sensorily unacceptable after 10-12 days of storage.  相似文献   

2.
“Anthotryros” cheese was packaged under vacuum (VP) or modified atmosphere (MAP) and stored at 4 or 12 °C. MAP mixtures were 30%/70% CO2/N2 (M1) or 70%/30% CO2/N2 (M2), while VP was taken as the control sample. Microbiological results showed that M1 and M2 delayed microbial growth compared with VP samples. Of the two modified atmospheres, gas mixture M1 was the most effective for inhibition of growth of mesophilic bacteria. Based primarily on sensory evaluation, the use of both MAP conditions extended the shelf-life of fresh Anthotyros cheese stored at 4 °C by ca. 10 days (M1) or 20 days (M2) compared with VP, and by ca. 2 days (M1) and 4 days (M2) at 12 °C, with cheese maintaining good sensory characteristics.  相似文献   

3.
Effects of modified atmosphere packaging (MAP) on storage stability and quality of precut fresh and aged white cheese were investigated. Fresh or aged white cheese was cut into small cubes and packaged in five different atmospheres [0% O2 + 0% CO+ 100% N2 (MAP1), 10% O+ 0% CO+ 90% N2 (MAP2), 0% O+ 75% CO+ 25% N2 (MAP3), 10% O+ 75% CO+ 15% N2 (MAP4) and aerobic (air)]. Control samples were packaged in brine and vacuum for fresh and aged white cheese, respectively. Changes in gas composition, total plate count, lactococci, lactobacilli, yeast and mould counts, proteolysis, lipolysis, pH, colour, texture and sensory properties were investigated during refrigerated storage. The best packaging treatment for the fresh cheese was MAP3, as it inhibited mould growth and protected the hardness. MAP2 can be recommended for the packaging of the aged cheese, as it decreased lipolysis.  相似文献   

4.
In this work, the effect of active coating on the shelf life of low-moisture Mozzarella cheese packaged in air and modified atmosphere (MAP) was studied. The active coating was based on sodium alginate (2%, wt/vol) and potassium sorbate (1%, wt/vol). The MAP was made up of 75% CO2 and 25% N2 (MAP1), 25% CO2 and 75% N2 (MAP2), or 50% CO2 and 50% N2 (MAP3). The product quality decay was assessed by monitoring microbiological and sensory changes during storage at 4, 8, and 14°C. Results showed that the combination of active coating and MAP was able to improve the preservation of low-moisture Mozzarella cheese. Specifically, the shelf life increased up to 160 d for samples stored at 4°C, and 40 and 11 d for those at 8 and 14°C, respectively. A faster quality decay for untreated samples packaged in air was observed. In particular, the Pseudomonas spp. growth and the appearance of molds were responsible for product unacceptability. The combination of active coating and MAP represents a strategic solution to prolong the shelf life of low-moisture Mozzarella cheese and to ensure the safety of the product under thermal abuse conditions.  相似文献   

5.
This study evaluated the effect of modified atmosphere packaging (MAP) in extending the shelf life of a fresh ewe’s cheese stored at 4 °C for 21 days. Three batches were prepared with 20, 30 or 50% CO2 with N2 as filler gas. MAP controlled well the microbial growth, and the best result was obtained with 50% CO2. Pathogens were not detected in any sample. Softening of cheese was best reduced by 30% or 50% CO2. The sensory characteristics of the cheeses markedly decreased during storage. Only the sample stored with 50% CO2 obtained an overall score above the acceptability at 14 days.  相似文献   

6.
Modified atmosphere packaging (MAP) is an efficient method to increase shelf-life of fishery products by inhibiting bacterial growth and oxidative reactions. Beside the traditional gases used for MAP, novel gases such as argon (Ar) and nitrous oxide (N2O) were approved for food use in the European Union. The present research investigates the effect of MAP with unconventional gas mixtures, that previously positively affected microbial shelf-life, on colour, lipid oxidation and sensorial characteristics of sardine fillets during storage. Four atmosphere conditions were tested: Air (20.8% O2/79.2% N2), N2 (30% CO2/70% N2), N2O (30% CO2/70% N2O) and Ar (30% CO2/70% Ar). Samples were stored for 12 days at 3 °C. Results showed that the removal of oxygen significantly inhibited the oxidation process; however, most of the investigated parameters related to fat oxidation did not show any improvement, except for a slight decrease in lipid hydrolysis and improvement in sensory properties in the packaging containing Ar.  相似文献   

7.
Queso Fresco has a limited shelf life and has been shown to support the rapid growth of Listeria monocytogenes during refrigerated storage. In addition to improving quality and extending shelf life, modified atmosphere packaging (MAP) has been used to control the growth of pathogenic microorganisms in foods. The objectives of this study were to determine the effects of MAP conditions on the survival and growth of spoilage microorganisms and L. monocytogenes during storage of Queso Fresco manufactured without starter cultures. For L. monocytogenes experiments, cheeses were surface inoculated at ~4 log10 cfu/g before packaging. Inoculated and uninoculated (shelf life experiments) cheeses were placed in 75-µm high-barrier pouches, packaged under 1 of 7 conditions including air, vacuum, or combinations of N2 and CO2 [100% N2 (MAP1), 30% CO2:70% N2 (MAP2), 50% CO2:50% N2 (MAP3), or 70% CO2:30% N2 (MAP4), 100% CO2 (MAP5)], and stored at 7°C. Samples were removed weekly through 35 d of storage. Listeria monocytogenes counts were determined for inoculated samples. Uninoculated samples were assayed for mesophilic and psychrotolerant counts, lactic acid bacteria, coliforms, and yeast and mold. In general, cheeses packaged under conditions consisting of higher contents of CO2 had lower pH levels during storage compared with those stored in conditions with lower levels or no CO2 at all. Similarly, the antimicrobial efficacy of MAP in controlling spoilage microorganisms increased with increasing CO2 content, whereas conditions consisting of 100% N2, vacuum, or air were less effective. Mean L. monocytogenes counts remained near inoculation levels for all treatments at d 1 but increased ~2 log10 cfu/g on cheeses packaged in air, vacuum, and 100% N2 (MAP1) conditions at d 7 and an additional ~1.5 log10 cfu/g at d 14 where they remained through 35 d. In contrast, treatments consisting of 70% CO2 (MAP4) and 100% CO2 (MAP5) limited increases in mean L. monocytogenes counts to <1 log10 cfu/g through 14 d and ~1.5 log10 cfu/g by d 21. Mean L. monocytogenes counts increased to levels significantly higher than inoculation (d 0) on cheeses stored in MAP2 and MAP3 on d 21, on d 28 for MAP4, and on d 35 for cheeses stored under MAP5 conditions. Overall, significant treatment × time interactions were observed between air, vacuum, and MAP1 when each was compared with MAP2, MAP3, MAP4, and MAP5. These data demonstrate that packaging fresh cheese under modified atmospheres containing CO2 may be a promising approach to extend shelf life while limiting L. monocytogenes growth during cold storage.  相似文献   

8.
In the present study the combined effect of gamma irradiation (2 and 4 kGy) and modified atmosphere packaging (MAP) (30% CO2/70% N2 and 70% CO2/30% N2) on shelf life extension of fresh chicken meat stored under refrigeration was investigated. The study was based on microbiological (TVC, Pseudomonas spp., Lactic Acid Bacteria, Yeasts, Brochothrix thermosphacta, Enterobacteriaceae), physicochemical (pH, TBA, color) and sensory (odor, taste) changes occurring in chicken samples. Microbial populations were reduced by 1–5 log cfu/g for a given sampling day depending on the specific treatment. The effect was more pronounced in the case of the combination of MAP (70% CO2/30% N2) and the higher irradiation dose of 4 kGy. Of the chemical indicators of spoilage, TBA values for all treatments remained lower than 1 mg malondialdehyde (MDA)/kg meat throughout the 25 day storage period. pH values varied between 6.4 (day 0) and 5.9 (day 25). The values of the color parameters L*, a* and b* were not considerably affected by MAP. Irradiation resulted in a small increase of the parameter a*. Irradiation had a greater effect in extending the shelf life of chicken as compared to MAP. Sensory evaluation showed that the combination of irradiation at 4 kGy and MAP (70% CO2/30% N2) resulted in the highest shelf-life extension by 12 days compared to the air packaged samples.  相似文献   

9.
New ground beef packaging systems have warranted investigation of their spoilage and quality characteristics. Furthermore, analysis of ground beef spoilage in modified atmosphere packaging (MAP) and stored at abusive temperature is lacking. This research aimed to determine the effect of packaging systems and temperature abuse on the sensory and shelf-life characteristics of ground beef. Ground beef patties were packaged using polyvinyl chloride overwrap (OW), HI-OX MAP (80% O2, 20% CO2), LO-OX MAP (30% CO2, 70% N2), CO-MAP (0.4% CO, 30% CO2, 69.6% N2), or vacuum (VAC) prior to color, odor, biochemical, and microbial analyses over display. CO-MAP exhibited more desirable color and consumer acceptability throughout display. Lean discoloration and odor scores were lower for anaerobic packaging than aerobic packaging. Microbial results mirrored sensory preferences for anaerobic packaging. These results indicate anaerobic packaging extends shelf-life properties and desirable sensory attributes throughout display and temperature abuse.  相似文献   

10.
Wild mussels (Mytilus galloprovincialis), were packaged aerobically under vaccum packaging(VP) and modified atmosphere packaging (MAP (50%/50% CO2/N2: M1, 80%/20% CO2/N2: M2, 65%/35% CO2/N2: M3), and stored at 2 ± 1 °C. Quality evaluation was carried out using microbiological, chemical and sensory analyses. Microbiological results revealed that M2 and M3 delayed microbial growth compared to M1. Of the chemical indices determined, the TVB-N and TMA-N values of M2 remained lower than the proposed acceptability limits of 35 mg N/100 g and 8 mg N/100 g, respectively, up to 8 days of storage. All of the MAP and VP mussel samples exceeded these limits after 12 days of storage. All samples retained desirable sensory characteristics during the first 8 days of storage. Based on microbiological and chemical analyses along with sensory evaluation, M2 and M3 gave a longer shelf-life compared with VP and M1. M2 gas mixture was the most effective for mussel preservation.  相似文献   

11.
The aim of this work was to evaluate the shelf-life of portioned Provolone cheese packaged in protective atmosphere using four different CO2/N2 gas mixtures (10/90, 20/80, 30/70 and 100/0 v/v) and at 4 and 8 °C, in order to simulate, respectively, the most common domestic and retail storage conditions. Control samples were vacuum-packaged. Furthermore, the acquired data were utilized to predict the commercial shelf-life of the cheese. The gas mixture made up of 30% CO2 and 70% N2 guaranteed portioned Provolone cheese the best preservability, since it was able to slow the proteolytic and lipolytic phenomena typical of cheese ripening more than all other gas mixtures. Furthermore, this mixture lengthened Provolone cheese shelf-life by 50% in comparison with vacuum-packaging, bringing it to 280 days.  相似文献   

12.
The objective of this study was to determine the percentage oxygen consumption of fresh, respiring ready‐to‐eat (RTE) mixed leaf salad products (Iceberg salad leaf, Caesar salad leaf, and Italian salad leaf). These were held under different modified atmosphere packaging (MAP) conditions (5% O2, 5% CO2, 90% N2 (MAPC—commercial control), 21% O2, 5% CO2, 74% N2 (MAP 1), 45% O2, 5% CO2, 50% N2 (MAP 2), and 60% O2, 5% CO2, 35% N2 (MAP 3)) and 4 °C for up to 10 d. The quality and shelf‐life stability of all packaged salad products were evaluated using sensory, physiochemical, and microbial assessment. Oxygen levels in all MAP packs were measured on each day of analysis using optical oxygen sensors allowing for nondestructive assessment of packs. Analysis showed that with the exception of control packs, oxygen levels for all MAP treatments decreased by approximately 10% after 7 d of storage. Oxygen levels in control packs were depleted after 7 d of storage. This appears to have had no detrimental effect on either the sensory quality or shelf‐life stability of any of the salad products investigated. Additionally, the presence of higher levels of oxygen in modified atmosphere packs did not significantly improve product quality or shelf‐life stability; however, these additional levels of oxygen were freely available to fresh respiring produce if required. This study shows that the application of optical sensors in MAP packs was successful in nondestructively monitoring oxygen level, or changes in oxygen level, during refrigerated storage of RTE salad products.  相似文献   

13.
以粉红熟番茄、丝瓜为试验材料,研究不同超声波时间对番茄、丝瓜硬度的影响。探究O 2体积分数(3%、6%)和CO 2体积分数(2%、4%、6%)交叉复配后不同气体组分对番茄、丝瓜混合贮藏硬度和感官的影响。在优化了超声处理时间和气体组成的基础上,对比冷藏、气调处理、超声波处理以及超声波-气调联合处理4种保鲜方式对番茄、丝瓜混藏品质的影响。结果表明:超声时间5 min对番茄、丝瓜硬度的保持最为有效;番茄、丝瓜在气体组分(体积分数)6%O 2、4%CO 2、90%N2下贮藏至21 d时,硬度最大,感官评分最高;超声波-气调联合保鲜组番茄和丝瓜失重率的增加、丙二醛(MDA)的积累以及呼吸的变化均较其他方式缓慢,番茄滋味与新鲜番茄最接近,丝瓜气味与冷藏相比差异明显。因此超声波-气调联合处理有利于番茄、丝瓜混藏品质的保持。  相似文献   

14.
Our objective was to compare the effects of controlled atmosphere (CA) and modified atmosphere packaging (MAP) on fruit quality, chilling injury (CI) and pro‐ and antioxidative systems in ‘Blackamber’ Japanese plums. Matured fruit were stored for 5 and 8 weeks at 0–1 °C in normal air, CA‐1 (1% O2 + 3% CO2), CA‐2 (2.5% O2 + 3% CO2) and MAP (~10% O2 and 3.8% CO2). CA was more effective than MAP in retention of flesh firmness and titratable acidity during cold storage. Fruit stored in CA‐1 showed reduced CI and membrane lipid peroxidation after 5 and 8 weeks of cold storage. Low O2 atmospheres appeared to limit the generation of reactive oxygen species (ROS) and their efficient scavenging through the concerted action of superoxide dismutase and peroxidase. The role of ascorbate–glutathione (AsA–GSH) cycle in the regulation of oxidative stress was also studied during and after storage in different atmospheres. In conclusion, optimum CA conditions delayed fruit ripening and CI through augmentation of antioxidative metabolism and suppression of oxidative processes.  相似文献   

15.
The effect of modified atmosphere packaging (MAP 1: 70% CO2/30% N2 and MAP 2: 50% CO2/30% N2/20% O2) and vacuum packaging (VP), on the shelf-life of chub mackerel (Scomber japonicus) fillets stored under refrigeration was studied. Quality assessment was based on sensory analysis and biochemical indices determination. Increase in total volatile basic nitrogen (TVBN) and trimethylamine nitrogen (TMAN) followed the order: MAP 1 < MAP 2 < VP < air (control samples). The presence of oxygen into the fish package (air or MAP) resulted in an increase in the 2-thiobarbituric acid (TBA) values in comparison with samples packaged in the absence of oxygen. The most effective MAP used was MAP 1 which contributed to a considerably slower rate of fish spoilage. Based primarily on odour scores it was observed that raw chub mackerel fillets stored in the presence of air remained acceptable up to ca. 11 days, VP and MAP 2 samples up to ca. 15–16 days, while MAP 1 samples up to ca. 20–21 days of storage. On the other hand, flesh texture and flesh colour of all packaged samples received scores above or equal than the acceptability limit up to ca. 13–14 days of storage.  相似文献   

16.
Modified atmosphere packaging (MAP) has been extensively used to increase the shelf-life of horticultural, meat and dairy products. Its design methods assume rigorous temperature control; however temperature fluctuations are very common in the distribution chain of food products. MAP designed for a specific temperature could produce an excessive depletion of O2 and accumulation of CO2 at higher temperatures, which could lead to metabolic disorders and shortening of shelf-life. Packages containing mould surface-ripened cheese designed for 12 °C with 2% O2 and 19% CO2 were exposed to variable temperature conditions. The original commercial packaging system was used as a control under the same temperature profile. The temperature profile used consisted of alternate cycles of 12 °C for 48 h and 20 °C for 24 h during storage of 14 days. Gas composition inside the packages was monitored during the storage period and quality parameters such as colour, texture, pH and moisture content were evaluated after 0, 7 and 14 days of storage, together with a sensory evaluation. The results on gas composition showed that very low levels of O2 (>0.27%) were reached after 24 h at 20 °C. From the results of the quality parameters it was concluded that the cheeses with MAP were however better preserved than the control ones after 14 days of storage under fluctuating temperature conditions.  相似文献   

17.
Direct-set cottage cheese packaged in barrier containers was flushed with 100% CO2 75% CO2:25% N2, 100% N2, or air, and stored at 4°C for 28 days. Quality was assessed by sensory, microbiological, and chemical tests. No change was observed in headspace gas composition during storage. Psychrotrophic and lactic acid bacteria counts increased for air-treated samples, but counts for cottage cheese packaged under modified atmospheres remained unchanged. Product discoloration was not observed. Acidity increased over storage life, but lactic acid did not contribute towards increased acidity. Sensory characteristics of cottage cheese packaged under modified atmospheres remained satisfactory after 28 days, with 100% CO2 best.  相似文献   

18.
In this study, we compared the effect of basil essential oil (EO) and various packaging conditions on “Anthotyros,” a Greek whey cheese. This cheese was stored at 4 °C under aerobic (A), vacuum (V), and modified atmosphere (M, 40%/60%; CO2/N2,) conditions, without or with (AB, VB, and VM) basil EO added to the cheese samples to a final concentration of 0.4% (v/w). The quality characteristics and the shelf life of both untreated and basil EO-treated cheese were assessed using microbiological, physicochemical, and sensory parameters. Microbiological results revealed that either modified atmosphere/vacuum packaging (MAP/VP) singly or in combination with basil EO delayed microbial growth as compared to the control (A) samples. The sensory and microbiological data showed that the combined use of MAP and VP with added basil EO extended the shelf life of fresh Anthotyros (4 °C) by approximately 10–12 days (treatment MB) and 6 days (treatment VB) as compared to aerobic packaging (A). Under these treatments, whey cheese samples maintained good sensory characteristics. This study has shown that the combined use of either VP or MAP, and basil EO, can extend the shelf life of whey cheese and maintain the freshness and the sensorial characteristics of the product.  相似文献   

19.
Shelf-life of hake slices (Merluccius merluccius) stored in the ice state (2±1°C) under modified atmosphere packaging (MAP) conditions was determined by measurements of pH, total volatile bases (TVB) and trimethylamine (TMA) content, mesophilic and psychrophilic bacterial counts, malonaldehyde content, exudation, protein functionality and sensorial analyses (colour and odour). The effect of different gas mixtures were evaluated: (1) 40% CO2, 50% N2, 10% O2; (2) 60% CO2, 30% N2, 10% O2; (3) 40% CO2, 30% N2, 30% O2; (4) 60% CO2, 10% N2, 30% O2 and (5) air (control). Important differences were found between MAP-stored and air-stored hake slices. Shelf-life of hake stored under MAP conditions was two-fold extended. Bacterial growth wasinhibited, increases of pH, TMA and TVB were reduced, and alterations inprotein functionality were delayed, and off-odours were not noted in MAP-stored hake slices after 21 days storage. Significant correlations were found between TMA content and total viable count (TVC), as well as between apparent viscosity and exudation. Hake slices could be stored in the ice state under MAP conditions for about three weeks without an important loss of quality. Fish freshness, handling practices and initial bacterial load have an important influence of shelf-life of hake.  相似文献   

20.
In the present study, packaging of a surface mould ripened cheese under 2 atm: MAP-A (0% O2, 27 ± 6% CO2) and MAP-B (2 ± 1% O2, 19 ± 2% CO2) was studied at 12 °C and the results were compared with the existing commercial packaging system (wrapped with waxed paper and inserted in cardboard box). Quality parameters such as colour, texture, pH and moisture content were evaluated after 0, 7 and 14 days of storage, together with a sensory evaluation. Tuckey test and principal components analysis showed that after 14 days of storage, the best conditions for the preservation of the cheeses corresponded to MAP-B. The predicted shelf-life was found to be 14, 6 and 17 days for control, MAP-A and MAP-B respectively. It was concluded that modified atmosphere packaging of surface mould ripened cheese with low levels of O2 (1-3%) and relatively high levels of CO2 (17-21%) can be used to extend the shelf-life of soft cheese; however the package has to be suitably designed, as total loss of O2 (as in MAP-A) would shorten the shelf-life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号