首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Claw lesions are the third most important health issue in dairy cattle, after mastitis and reproductive disorders, and genomic selection is a key component for long-term improvement of claw health. The objectives of this study were to assess the feasibility of a genomic evaluation for claw health in French Holstein cows, explore possibilities to increase evaluation accuracy, and gain a better understanding of the genetic determinism of claw health traits. The data set consisted of 48,685 trimmed Holstein cows, including 9,646 that were genotyped; 478 genotyped sires were also used. Seven claw lesion traits were evaluated using BLUP, genomic BLUP, BayesC, and single-step genomic BLUP, and the accuracies obtained using these approaches were measured through a validation study. The BayesC approach was used to detect quantitative trait locus (QTL) regions associated with the 7 individual traits (digital dermatitis, heel horn erosion, interdigital hyperplasia, sole hemorrhage circumscribed, sole hemorrhage diffused, sole ulcer, and white line fissure) based on their Bayes factor. Annotated genes on these regions were reported. Genomic evaluation approaches generally did not allow for greater accuracies than BLUP, except for single-step genomic BLUP. Accuracies were moderate, but best and worst validation animals were correctly discriminated and showed significant differences in lesion frequencies. A total of 192 QTL regions were identified, including 13 with major evidence or involved for 2 of the traits. A high number of genes were present on these regions, and several had functions associated with the immune system. In particular, the EPYC gene is located close to a major evidence QTL for resistance to digital dermatitis that is also a QTL for interdigital hyperplasia (on chromosome 5, around 20.9 MB) and has been associated with Ehlers-Danlos syndrome in cattle. Genomic selection can be used to improve resistance to individual claw lesions, and several possibilities exist to improve accuracies of genomic evaluations.  相似文献   

2.
Genomic evaluation of French dairy goats is routinely conducted using the single-step genomic BLUP (ssGBLUP) method. This method has the advantage of simultaneously using all phenotypes, pedigrees, and genotypes. However, ssGBLUP assumes that all SNP explain the same amount of genetic variance, which is unlikely in the case of traits whose major genes or QTL are segregating. In this study, we investigated the effect of weighted ssGBLUP and its alternatives, which give more weight to SNP associated with the trait, on the accuracy of genomic evaluation of milk production, udder type traits, and somatic cell scores. The data set included 2,955 genotyped animals and 2,543,680 pedigree animals. The number of phenotypes varied with the trait. The accuracy of genomic evaluation was assessed on 205 genotyped Alpine and 146 genotyped Saanen goats born between 2009 and 2012. For traits with unknown QTL, weighted ssGBLUP was less accurate than, or as accurate as, ssGBLUP. For traits with identified QTL (i.e., QTL only present in the Saanen breed), weighted ssGBLUP outperformed ssGBLUP by between 2 and 14%.  相似文献   

3.
The aim of this study was to evaluate different-density genotyping panels for genotype imputation and genomic prediction. Genotypes from customized Golden Gate Bovine3K BeadChip [LD3K; low-density (LD) 3,000-marker (3K); Illumina Inc., San Diego, CA] and BovineLD BeadChip [LD6K; 6,000-marker (6K); Illumina Inc.] panels were imputed to the BovineSNP50v2 BeadChip [50K; 50,000-marker; Illumina Inc.]. In addition, LD3K, LD6K, and 50K genotypes were imputed to a BovineHD BeadChip [HD; high-density 800,000-marker (800K) panel], and with predictive ability evaluated and compared subsequently. Comparisons of prediction accuracy were carried out using Random boosting and genomic BLUP. Four traits under selection in the Spanish Holstein population were used: milk yield, fat percentage (FP), somatic cell count, and days open (DO). Training sets at 50K density for imputation and prediction included 1,632 genotypes. Testing sets for imputation from LD to 50K contained 834 genotypes and testing sets for genomic evaluation included 383 bulls. The reference population genotyped at HD included 192 bulls. Imputation using BEAGLE software (http://faculty.washington.edu/browning/beagle/beagle.html) was effective for reconstruction of dense 50K and HD genotypes, even when a small reference population was used, with 98.3% of SNP correctly imputed. Random boosting outperformed genomic BLUP in terms of prediction reliability, mean squared error, and selection effectiveness of top animals in the case of FP. For other traits, however, no clear differences existed between methods. No differences were found between imputed LD and 50K genotypes, whereas evaluation of genotypes imputed to HD was on average across data set, method, and trait, 4% more accurate than 50K prediction, and showed smaller (2%) mean squared error of predictions. Similar bias in regression coefficients was found across data sets but regressions were 0.32 units closer to unity for DO when genotypes were imputed to HD density. Imputation to HD genotypes might produce higher stability in the genomic proofs of young candidates. Regarding selection effectiveness of top animals, more (2%) top bulls were classified correctly with imputed LD6K genotypes than with LD3K. When the original 50K genotypes were used, correct classification of top bulls increased by 1%, and when those genotypes were imputed to HD, 3% more top bulls were detected. Selection effectiveness could be slightly enhanced for certain traits such as FP, somatic cell count, or DO when genotypes are imputed to HD. Genetic evaluation units may consider a trait-dependent strategy in terms of method and genotype density for use in the genome-enhanced evaluations.  相似文献   

4.
The success and sustainability of a breeding program incorporating genomic information is largely dependent on the accuracy of predictions. For low heritability traits, large training populations are required to achieve high accuracies of genomic estimated breeding values (GEBV). By including genotyped and nongenotyped animals simultaneously in the evaluation, the single-step genomic BLUP (ssGBLUP) approach has the potential to deliver more accurate and less biased genomic evaluations. The aim of this study was to compare the accuracy and bias of genomic predictions for various traits in Canadian Holstein cattle using ssGBLUP and multi-step genomic BLUP (msGBLUP) under different strategies, such as (1) adding genomic information of cows in the analysis, (2) testing different adjustments of the genomic relationship matrix, and (3) using a blending approach to obtain GEBV from msGBLUP. The following genomic predictions were evaluated regarding accuracy and bias: (1) GEBV estimated by ssGBLUP; (2) direct genomic value estimated by msGBLUP with polygenic effects of 5 and 20%; and (3) GEBV calculated by a blending approach of direct genomic value with estimated breeding values using polygenic effects of 5 and 20%. The effect of adding genomic information of cows in the evaluation was also assessed for each approach. When genomic information was included in the analyses, the average improvement in observed reliability of predictions was observed to be 7 and 13 percentage points for reproductive and workability traits, respectively, compared with traditional BLUP. Absolute deviation from 1 of the regression coefficient of the linear regression of de-regressed estimated breeding values on genomic predictions went from 0.19 when using traditional BLUP to 0.22 when using the msGBLUP method, and to 0.14 when using the ssGBLUP method. The use of polygenic weight of 20% in the msGBLUP slightly improved the reliability of predictions, while reducing the bias. A similar trend was observed when a blending approach was used. Adding genomic information of cows increased reliabilities, while decreasing bias of genomic predictions when using the ssGBLUP method. Differences between using a training population with cows and bulls or with only bulls for the msGBLUP method were small, likely due to the small number of cows included in the analysis. Predictions for lowly heritable traits benefit greatly from genomic information, especially when all phenotypes, pedigrees, and genotypes are used in a single-step approach.  相似文献   

5.
The objective of this study was to evaluate the improvement of the accuracy of estimated breeding values for ability to recycle after calving by using information of genomic markers and phenotypic information of correlated traits. The traits in this study were the interval from calving to first insemination (CFI), based on artificial insemination data, and the interval from calving to first high activity (CFHA), recorded from activity tags, which could better measure ability to recycle after caving. The phenotypic data set included 1,472,313 records from 820,218 cows for CFI, and 36,504 records from 25,733 cows for CFHA. The genomic information was available for 3,159 progeny-tested sires, which were genotyped using Illumina Bovine SNP50 BeadChip (Illumina, San Diego, CA). Heritability estimates were 0.06 for the interval from calving to first insemination and 0.14 for the interval from calving to first high activity, and the genetic correlation between both traits was strong (0.87). Breeding values were obtained using 4 models: conventional single-trait BLUP; conventional multitrait BLUP with pedigree-based relationship matrix; single-trait single-step genomic BLUP; and multitrait single-step genomic BLUP model with joint relationship matrix combining pedigree and genomic information. The results showed that reliabilities of estimated breeding values (EBV) from single-step genomic BLUP models were about 40% higher than those from conventional BLUP models for both traits. Furthermore, using a multitrait model doubled the reliability of breeding values for CFHA, whereas no gain was observed for CFI. The best model was the multitrait single-step genomic BLUP, which resulted in a reliability of EBV 0.19 for CFHA and 0.14 for CFI. The results indicate that even though a relatively small number of records for CFHA were available, with genomic information and using multitrait model, the reliability of EBV for CFHA is acceptable. Thus, it is feasible to include CFHA in Nordic Holstein breeding evaluations to improve fertility performance.  相似文献   

6.
The accuracy of genomic prediction determines response to selection. It has been hypothesized that accuracy of genomic breeding values can be increased by a higher density of variants. We used imputed whole-genome sequence data and various single nucleotide polymorphism (SNP) selection criteria to estimate genomic breeding values in Brown Swiss cattle. The extreme scenarios were 50K SNP chip data and whole-genome sequence data with intermediate scenarios using linkage disequilibrium-pruned whole-genome sequence variants, only variants predicted to be missense, or the top 50K variants from genome-wide association studies. We estimated genomic breeding values for 3 traits (somatic cell score, nonreturn rate in heifers, and stature) and found differences in accuracy levels between traits. However, among different SNP sets, accuracy was very similar. In our analyses, sequence data led to a marginal increase in accuracy for 1 trait and was lower than 50K for the other traits. We concluded that the inclusion of imputed whole-genome sequence data does not lead to increased accuracy of genomic prediction with the methods.  相似文献   

7.
With the availability of single nucleotide polymorphism (SNP) marker chips, such as the Illumina BovineSNP50 BeadChip (50K), genomic evaluation has been routinely implemented in dairy cattle breeding. However, for an average dairy producer, total costs associated with the 50K chip are still too high to have all the cows genotyped and genomically evaluated. To study the accuracy of cheaper low-density chips, genotypes were simulated for 2 low-density chips, the Illumina Bovine3K BeadChip (3K) and BovineLD BeadChip (6K), according to their original marker maps. Simulated missing genotypes of the 50K chip were imputed using the programs Beagle and Findhap. Three genotype data sets were used to study imputation accuracy: the EuroGenomics data set, with 14,405 reference bulls (data set I); the smaller EuroGenomics data set, with 11,670 older reference bulls (data set II); and the data set of all genotyped German Holsteins, with 31,597 reference animals (data set III). Imputed genotypes were compared with their original ones to calculate allele error rate for validation animals in the 3 data sets. To evaluate the loss in accuracy of genomic prediction when using imputed genotypes, a genomic evaluation was conducted only for EuroGenomics data set II. Furthermore, combined genome-enhanced breeding values calculated from the original and imputed genotypes were compared. Allele error rate for EuroGenomics data set II was highest for the Findhap program on the 3K chip (3.3%) and lowest for the Beagle program on the 6K chip (0.6%). Across the data sets, Beagle was shown to be about 2 times as accurate as Findhap. Compared with the real 50K genotypes, the reduction in reliability of the genomic prediction when using the imputed genotypes was highest for Findhap on the 3K chip (5.3%) and lowest for Beagle on the 6K chip (1%) when averaged over the 12 evaluated traits. Differences in genome-enhanced breeding values of the original and imputed genotypes were largest for Findhap on the 3K chip, whereas Beagle on the 6K chip had the smallest difference. The low-density chip, 6K, gave markedly higher imputation accuracy and more accurate genomic prediction than the 3K chip. On the basis of the relatively small reduction in accuracy of genomic prediction, we would recommend the BovineLD 6K chip for large-scale genotyping as long as its costs are acceptable to breeders.  相似文献   

8.
《Journal of dairy science》2019,102(9):8175-8183
The use of multi-trait across-country evaluation (MACE) and the exchange of genomic information among countries allows national breeding programs to combine foreign and national data to increase the size of the training populations and potentially increase accuracy of genomic prediction of breeding values. By including genotyped and nongenotyped animals simultaneously in the evaluation, the single-step genomic BLUP (GBLUP) approach has the potential to deliver more accurate and less biased genomic evaluations. A single-step genomic BLUP approach, which enables integration of data from MACE evaluations, can be used to obtain genomic predictions while avoiding double-counting of information. The objectives of this study were to apply a single-step approach that simultaneously includes domestic and MACE information for genomic evaluation of workability traits in Canadian Holstein cattle, and compare the results obtained with this methodology with those obtained using a multi-step approach (msGBLUP). By including MACE bulls in the training population, msGBLUP led to an increase in reliability of genomic predictions of 4.8 and 15.4% for milking temperament and milking speed, respectively, compared with a traditional evaluation using only pedigree and phenotypic information. Integration of MACE data through a single-step approach (ssGBLUPIM) yielded the highest reliabilities compared with other considered methods. Integration of MACE data also helped reduce bias of genomic predictions. When using ssGBLUPIM, the bias of genomic predictions decreased by half compared with msGBLUP using domestic and MACE information. Therefore, the reliability and bias of genomic predictions for both traits improved substantially when a single-step approach was used for evaluation compared with a multi-step approach. The use of a single-step approach with integration of MACE information provides an alternative to the current method used in Canadian genomic evaluations.  相似文献   

9.
Genome-wide association testing facilitates the identification of genetic variants associated with complex traits. Mapping genes that promote genetic resistance to mastitis could reduce the cost of antibiotic use and enhance animal welfare and milk production by improving outcomes of breeding for udder health. Using imputed whole-genome sequence variants, we carried out association studies for 2 traits related to udder health, udder index, and milking speed in Nordic Holstein cattle. A total of 4,921 bulls genotyped with the BovineSNP50 BeadChip array were imputed to high-density genotypes (Illumina BovineHD BeadChip, Illumina, San Diego, CA) and, subsequently, to whole-genome sequence variants. An association analysis was carried out using a linear mixed model. Phenotypes used in the association analyses were deregressed breeding values. Multitrait meta-analysis was carried out for these 2 traits. We identified 10 and 8 chromosomes harboring markers that were significantly associated with udder index and milking speed, respectively. Strongest association signals were observed on chromosome 20 for udder index and chromosome 19 for milking speed. Multitrait meta-analysis identified 13 chromosomes harboring associated markers for the combination of udder index and milking speed. The associated region on chromosome 20 overlapped with earlier reported quantitative trait loci for similar traits in other cattle populations. Moreover, this region was located close to the FYB gene, which is involved in platelet activation and controls IL-2 expression; FYB is a strong candidate gene for udder health and worthy of further investigation.  相似文献   

10.
Milkability is a trait related to the milking efficiency of an animal, and it is a component of the herd profitability. Due to its economic importance, milkability is currently included in the selection index of the Italian Simmental cattle breed with a weight of 7.5%. This lowly heritable trait is measured on a subjective scale from 1 to 3 (1 = slow, 3 = fast), and genetic evaluations are performed by pedigree-based BLUP. Genomic information is now available for some animals in the Italian Simmental population, and its inclusion in the genetic evaluation system could increase accuracy of breeding values and genetic progress for milkability. The aim of this study was to test the feasibility and advantages of having a genomic evaluation for this trait in the Italian Simmental population. Phenotypes were available for 131,308 cows. A total of 9,526 animals had genotypes for 42,152 loci; among the genotyped animals, 2,455 were cows with phenotypes, and the other were their relatives. The youngest cows with both phenotypes and genotypes (n = 900) were identified as selection candidates. Variance components and heritability were estimated using pedigree information, whereas genetic and genomic evaluations were carried out using BLUP and single-step genomic BLUP (ssGBLUP), respectively. In addition, a weighted ssGBLUP was assessed using genomic regions from a genome-wide association study. Evaluation models were validated using theoretical and realized accuracies. The estimated heritability for milkability was 0.12 ± 0.01. The mean theoretical accuracies for selection candidates were 0.43 ± 0.08 (BLUP) and 0.53 ± 0.06 (ssGBLUP). The mean realized accuracies based on linear regression statistics were 0.29 (BLUP) and 0.40 (ssGBLUP). No genomic regions were significantly associated with milkability, thus no improvements in accuracy were observed when using weighted ssGBLUP. Results indicated that genomic information could improve the accuracy of breeding values and increase genetic progress for milkability in Italian Simmental.  相似文献   

11.
Genomic evaluations using genotypes from the Illumina Bovine3K BeadChip (3K) became available in September 2010 and were made official in December 2010. The majority of 3K-genotyped animals have been Holstein females. Approximately 5% of male 3K genotypes and between 3.7 and 13.9%, depending on registry status, of female genotypes had sire conflicts. The chemistry used for the 3K is different from that of the Illumina BovineSNP50 BeadChip (50K) and causes greater variability in the accuracy of the genotypes. Approximately 2% of genotypes were rejected due to this inaccuracy. A single nucleotide polymorphism (SNP) was determined to be not usable for genomic evaluation based on percentage missing, percentage of parent-progeny conflicts, and Hardy-Weinberg equilibrium discrepancies. Those edits left 2,683 of the 2,900 3K SNP for use in genomic evaluations. The mean minor allele frequencies (MAF) for Holstein, Jersey, and Brown Swiss were 0.32, 0.28, and 0.29, respectively. Eighty-one SNP had both a large number of missing genotypes and a large number of parent-progeny conflicts, suggesting a correlation between call rate and accuracy. To calculate a genomic predicted transmitting ability (GPTA) the genotype of an animal tested on a 3K is imputed to the 45,187 SNP included in the current genomic evaluation based on the 50K. The accuracy of imputation increases as the number of genotyped parents increases from none to 1 to both. The average percentage of imputed genotypes that matched the corresponding actual 50K genotypes was 96.3%. The correlation of a GPTA calculated from a 3K genotype that had been imputed to 50K and GPTA from its actual 50K genotype averaged 0.959 across traits for Holsteins and was slightly higher for Jerseys at 0.963. The average difference in GPTA from the 50K- and 3K-based genotypes across trait was close to 0. The evaluation system has been modified to accommodate the characteristics of the 3K. The low cost of the 3K has greatly increased genotyping of females. Prior to the availability of the 3K (August 2010), female genotyping accounted for 38.7% of the genotyped animals. In the past year, the portion of total genotypes from females across all chip types rose to 59.0%.  相似文献   

12.
Marker sets used in US dairy genomic predictions were previously expanded by including high-density (HD) or sequence markers with the largest effects for Holstein breed only. Other non-Holstein breeds lacked enough HD genotyped animals to be used as a reference population at that time, and thus were not included in the genomic prediction. Recently, numbers of non-Holstein breeds genotyped using HD panels reached an acceptable level for imputation and marker selection, allowing HD genomic prediction and HD marker selection for Holstein plus 4 other breeds. Genotypes for 351,461 Holsteins, 347,570 Jerseys, 42,346 Brown Swiss, 9,364 Ayrshires (including Red dairy cattle), and 4,599 Guernseys were imputed to the HD marker list that included 643,059 SNP. The separate HD reference populations included Illumina BovineHD (San Diego, CA) genotypes for 4,012 Holsteins, 407 Jerseys, 181 Brown Swiss, 527 Ayrshires, and 147 Guernseys. The 643,059 variants included the HD SNP and all 79,254 (80K) genetic markers and QTL used in routine national genomic evaluations. Before imputation, approximately 91 to 97% of genotypes were unknown for each breed; after imputation, 1.1% of Holstein, 3.2% of Jersey, 6.7% of Brown Swiss, 4.8% of Ayrshire, and 4.2% of Guernsey alleles remained unknown due to lower density haplotypes that had no matching HD haplotype. The higher remaining missing rates in non-Holstein breeds are mainly due to fewer HD genotyped animals in the imputation reference populations. Allele effects for up to 39 traits were estimated separately within each breed using phenotypic reference populations that included up to 6,157 Jersey males and 110,130 Jersey females. Correlations of HD with 80K genomic predictions for young animals averaged 0.986, 0.989, 0.985, 0.992, and 0.978 for Jersey, Ayrshire, Brown Swiss, Guernsey, and Holstein breeds, respectively. Correlations were highest for yield traits (about 0.991) and lowest for foot angle and rear legs–side view (0.981and 0.982, respectively). Some HD effects were more than twice as large as the largest 80K SNP effect, and HD markers had larger effects than nearby 80K markers for many breed-trait combinations. Previous studies selected and included markers with large effects for Holstein traits; the newly selected HD markers should also improve non-Holstein and crossbred genomic predictions and were added to official US genomic predictions in April 2020.  相似文献   

13.
《Journal of dairy science》2022,105(4):3306-3322
Genomic evaluation based on a single-step model uses all available data of phenotype, genotype, and pedigree; therefore, it should provide unbiased genomic breeding values with a higher correlation of prediction than the current multistep genomic model. Since 2019, a mixed reference population of cows and bulls has been applied to the routine multistep genomic evaluation in German Holsteins. For a fair comparison between the single-step and multistep genomic models, the same phenotype, genotype, and pedigree data were used. Because of its simple structure of the standard multitrait animal model used for German Holstein conventional evaluation, conformation traits were chosen as the first trait group to test a single-step SNP BLUP model for the large, genotyped population of German Holsteins. Genotype, phenotype, and pedigree data were taken from the official August 2020 conventional and genomic evaluation. Because of the same trait definition in national and multiple across-country evaluation for the conformation traits, deregressed multiple across-country evaluation estimated breeding value (EBV) of foreign bulls were treated as a new source of data for the same trait in the genomic evaluations. Due to a short history of female genotyping in Germany, the last 3 yr of youngest cows and bulls were deleted, instead of 4 yr, to perform a genomic validation. In comparison to the multistep genomic model, the single-step SNP BLUP model resulted in a higher correlation and greater variance of genomic EBV according to 798 national validation bulls. The regression of genomic prediction of the current, full evaluation on the earlier, truncated evaluation was slightly closer to 1 than the multistep model. For the validation bulls or youngest genomic artificial insemination bulls, correlation of genomic EBV between the 2 models was, on average, 0.95 across all the conformation traits. We did not find overprediction of young animals by the single-step SNP BLUP model for the conformation traits in German Holsteins.  相似文献   

14.
Prediction of breeding values using whole-genome dense marker maps for genomic selection has become feasible with the advances in DNA chip technology and the discovery of thousands of single nucleotide polymorphisms in genome-sequencing projects. The objective of this study was to compare the accuracy of predicted breeding values from genomic selection (GS), selection without genetic marker information (BLUP), and gene-assisted selection (GEN) on real dairy cattle data for 1 chromosome. Estimated breeding values of 1,300 bulls for fat percentage, based on daughter performance records, were obtained from the national genetic evaluation and used as phenotypic data. All bulls were genotyped for 32 genetic markers on chromosome 14, of which 1 marker was the causative mutation in a gene with a large effect on fat percentage. In GS, the data were analyzed with a multiple quantitative trait loci (QTL) model with haplotype effects for each marker bracket and a polygenic effect. Identical-by-descent probabilities based on linkage and linkage disequilibrium information were used to model the covariances between haplotypes. A Bayesian method using Gibbs sampling was used to predict the presence of a putative QTL and the effects of the haplotypes in each marker bracket. In BLUP, the haplotype effects were removed from the model, whereas in GEN, the haplotype effects were replaced by the effect of the genotype at the known causative mutation. The breeding values from the national genetic evaluation were treated as true breeding values because of their high accuracy and were used to compute the accuracy of prediction for GS, BLUP, and GEN. The allele substitution effect for the causative mutation, obtained from GEN, was 0.35% fat. The accuracy of the predicted breeding values for GS (0.75) was as high as for GEN (0.75) and higher than for BLUP (0.51). When some markers close to the QTL were omitted from the model, the accuracy of prediction was only slightly lower, around 0.72. The removal of all markers within 8 cM from the QTL reduced the accuracy to 0.64, which was still much higher than BLUP. It is concluded that, when applied to 1 chromosome and if genetic markers close to the QTL are available, the presented model for GS is as accurate as GEN.  相似文献   

15.
The genomic evaluation system in the United States: past, present, future   总被引:1,自引:0,他引:1  
Implementation of genomic evaluation has caused profound changes in dairy cattle breeding. All young bulls bought by major artificial insemination organizations now are selected based on such evaluation. Evaluation reliability can reach approximately 75% for yield traits, which is adequate for marketing semen of 2-yr-old bulls. Shortened generation interval from using genomic evaluations is the most important factor in increasing the rate of genetic improvement. Genomic evaluations are based on 42,503 single nucleotide polymorphisms (SNP) genotyped with technology that became available in 2007. The first unofficial USDA genomic evaluations were released in 2008 and became official for Holsteins, Jerseys, and Brown Swiss in 2009. Evaluation accuracy has increased steadily from including additional bulls with genotypes and traditional evaluations (predictor animals). Some of that increase occurs automatically as young genotyped bulls receive a progeny test evaluation at 5 yr of age. Cow contribution to evaluation accuracy is increased by decreasing mean and variance of their evaluations so that they are similar to bull evaluations. Integration of US and Canadian genotype databases was critical to achieving acceptable initial accuracy and continues to benefit both countries. Genotype exchange with other countries added predictor bulls for Brown Swiss. In 2010, a low-density chip with 2,900 SNP and a high-density chip with 777,962 SNP were released. The low-density chip has increased greatly the number of animals genotyped and is expected to replace microsatellites in parentage verification. The high-density chip can increase evaluation accuracy by better tracking of loci responsible for genetic differences. To integrate information from chips of various densities, a method to impute missing genotypes was developed based on splitting each genotype into its maternal and paternal haplotypes and tracing their inheritance through the pedigree. The same method is used to impute genotypes of nongenotyped dams based on genotyped progeny and mates. Reliability of resulting evaluations is discounted to reflect errors inherent in the process. Further increases in evaluation accuracy are expected because of added predictor animals and more SNP. The large population of existing genotypes can be used to evaluate new traits; however, phenotypic observations must be obtained for enough animals to allow estimation of SNP effects with sufficient accuracy for application to the general population.  相似文献   

16.
Identification of the genetic variants associated with calf survival in dairy cattle will aid in the elimination of harmful mutations from the cattle population and the reduction of calf and young stock mortality rates. We used de-regressed estimated breeding values for the young stock survival (YSS) index as response variables in a genome-wide association study with imputed whole-genome sequence variants. A total of 4,610 bulls with estimated breeding values were genotyped with the Illumina BovineSNP50 (Illumina, San Diego, CA) single nucleotide polymorphism (SNP) genotyping array. Genotypes were imputed to whole-genome sequence variants. After quality control, 15,419,550 SNP on 29 Bos taurus autosomes (BTA) were used for association analysis. A modified mixed-model association analysis was used for a genome scan, followed by a linear mixed-model analysis for selected genetic variants. We identified 498 SNP on BTA5 and BTA18 that were associated with the YSS index in Nordic Holstein. The SNP rs440345507 (Chr5:94721790) on BTA5 was the putative causal mutation affecting YSS. Two haplotype-based models were used to identify haplotypes with the largest detrimental effects on YSS index. For each association signal, 1 haplotype region with harmful effects and the lead associated SNP were identified. Detected haplotypes on BTA5 and BTA18 explained 1.16 and 1.20%, respectively, of genetic variance for the YSS index. We examined whether YSS quantitative trait loci (QTL) on BTA5 and BTA18 were associated with stillbirth. YSS QTL on BTA18 overlapped a QTL region for stillbirth, but most likely 2 different causal variants were responsible for these 2 QTL. Four component traits of the YSS index, defined by sex and age, were analyzed separately by the modified mixed-model approach. The same genomic regions were associated with both bull and heifer calf mortality. Several genes (EPS8, LOC100138951, and KLK family genes) contained a lead associated SNP or were included in haplotypes with large detrimental effects on YSS in Nordic Holstein cattle.  相似文献   

17.
In March 2016, Zoetis Genetics offered the first commercially available evaluation for wellness traits of Holstein dairy cattle. Phenotypic data on health events, pedigree, and genotypes were collected directly from producers upon obtaining their permission. Among all recorded health events, 6 traits were chosen to be included in the evaluation: mastitis, metritis, retained placenta, displaced abomasum, ketosis, and lameness. Each trait was defined as a binary event, having a value of 1 if a cow has been recorded with a disorder at any point during the lactation and zero otherwise. The number of phenotypic records ranged from 1.8 million for ketosis to 4.1 million for mastitis. Over 14 million pedigree records and 114,216 genotypes were included in the evaluation. All traits were analyzed using univariate threshold animal model with repeated observations, including fixed effect of parity and random effects of herd by year by season of calving, animal, and permanent environment. A total of 45,425 single nucleotide polymorphisms were used in the genomic analyses. Animals genotyped with low-density chips were imputed to the required number of single nucleotide polymorphisms. All analyses were based on the single-step genomic BLUP, a method that combines phenotype, pedigree, and genotype information. Predicted transmitting abilities were expressed in percentage points as a difference from the average estimated probability of a disorder in the base population. Reliabilities of breeding values were obtained by approximation based on partitioning of a function of reliability into contributions from records, pedigree, and genotypes. Reliabilities of genomic predicted transmitting abilities for young genotyped and pedigreed females without recorded health events had average values between 50.2% (displaced abomasum) and 51.9% (mastitis). Genomic predictions for wellness traits can provide new information about an animal’s genetic potential for health and new selection tools for dairy wellness improvement.  相似文献   

18.
The objective of the present study was to evaluate the predictive ability of direct genomic values for economically important dairy traits when genotypes at some single nucleotide polymorphism (SNP) loci were imputed rather than measured directly. Genotypic data consisted of 42,552 SNP genotypes for each of 1,762 Jersey sires. Phenotypic data consisted of predicted transmitting abilities (PTA) for milk yield, protein percentage, and daughter pregnancy rate from May 2006 for 1,446 sires in the training set and from April 2009 for 316 sires in the testing set. The SNP effects were estimated using the Bayesian least absolute selection and shrinkage operator (LASSO) method with data of sires in the training set, and direct genomic values (DGV) for sires in the testing set were computed by multiplying these estimates by corresponding genotype dosages for sires in the testing set. The mean correlation across traits between DGV (before progeny testing) and PTA (after progeny testing) for sires in the testing set was 70.6% when all 42,552 SNP genotypes were used. When genotypes for 93.1, 96.6, 98.3, or 99.1% of loci were masked and subsequently imputed in the testing set, mean correlations across traits between DGV and PTA were 68.5, 64.8, 54.8, or 43.5%, respectively. When genotypes were also masked and imputed for a random 50% of sires in the training set, mean correlations across traits between DGV and PTA were 65.7, 63.2, 53.9, or 49.5%, respectively. Results of this study indicate that if a suitable reference population with high-density genotypes is available, a low-density chip comprising 3,000 equally spaced SNP may provide approximately 95% of the predictive ability observed with the BovineSNP50 Beadchip (Illumina Inc., San Diego, CA) in Jersey cattle. However, if fewer than 1,500 SNP are genotyped, the accuracy of DGV may be limited by errors in the imputed genotypes of selection candidates.  相似文献   

19.
Causal variants inferred from sequence data analysis are expected to increase accuracy of genomic selection. In this work we evaluated the gain in reliability of genomic predictions, for stature in US Holsteins, when adding selected sequence variants to a pre-existent SNP chip. Two prediction methods were tested: de-regressed proofs assuming heterogeneous (genomic BLUP; GBLUP) residual variances and by single-step GBLUP (ssGBLUP) using actual phenotypes. Phenotypic data included 3,999,631 records for stature on 3,027,304 Holstein cows. Genotypes on 54,087 SNP markers (54k) were available for 26,877 bulls. Additionally, 16,648 selected sequence variants were combined with the 54k markers, for a total of 70,735 (70k) markers. In all methods, SNP in the genomic relationship matrix (G) were unweighted or weighted iteratively, with weights derived either by SNP effects squared or by a nonlinear method that resembles BayesA (nonlinear A). Reliability of genomic predictions were obtained by cross validation. With unweighted G derived from 54k markers, the reliabilities (× 100) were 72.4 for GBLUP and 75.3 for ssGBLUP. With unweighted G derived from 70k markers, the reliabilities were 73.4 and 76.0, respectively. Weighting by nonlinear A changed reliabilities to 73.3, and 75.9, respectively. Addition of selected sequence variants had a small effect on reliabilities. Weighting by quadratic functions reduced reliabilities. Weighting by nonlinear A increased reliabilities for GBLUP but had only a small effect in ssGBLUP. Reliabilities for direct genomic values extracted from ssGBLUP using unweighted G with 54k were higher than reliabilities by any GBLUP. Thus, ssGBLUP seems to capture more information than GBLUP and there is less room for extra reliability. Improvements in GBLUP may be because the weights in G change the covariance structure, which can explain a proportion of the variance that is accounted for when a heterogeneous residual variance is assumed by considering a different number of daughters per bull.  相似文献   

20.
Low-density chips are appealing alternative tools contributing to the reduction of genotyping costs. Imputation enables researchers to predict missing genotypes to recreate the denser coverage of the standard 50K (~50,000) genotype. Two alternative in silico chips were defined in this study that included markers selected to optimize minor allele frequency and spacing. The objective of this study was to compare the imputation accuracy of these custom low-density chips with a commercially available 3K chip. Data consisted of genotypes of 4,037 Holstein bulls, 1,219 Montbéliarde bulls, and 991 Blonde d'Aquitaine bulls. Criteria to select markers to include in low-density marker panels are described. To mimic a low-density genotype, all markers except the markers present on the low-density panel were masked in the validation population. Imputation was performed using the Beagle software. Combining the directed acyclic graph obtained with Beagle with the PHASEBOOK algorithm provides fast and accurate imputation that is suitable for routine genomic evaluations based on imputed genotypes. Overall, 95 to 99% of alleles were correctly imputed depending on the breed and the low-density chip used. The alternative low-density chips gave better results than the commercially available 3K chip. A low-density chip with 6,000 markers is a valuable genotyping tool suitable for both dairy and beef breeds. Such a tool could be used for preselection of young animals or large-scale screening of the female population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号