首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Journal of dairy science》2023,106(4):2933-2947
Understanding nutrient utilization and partitioning is essential for advancing the efficiency of dairy cattle. Our objective was to determine if dairy cows exposed to a 24-h fasting period differ in heat production (HP) and macronutrient oxidation at different stages of lactation. Twelve primiparous, lactating German Holstein dairy cows were used in a longitudinal study design spanning from 2013 to 2014. Dairy cows were housed in respiration chambers during 3 stages of the lactation cycle: early (mean ± SD; 28.8 ± 6.42 d), mid- (89.4 ± 4.52 d), and late (293 ± 7.76 d) lactation. Individual CO2, O2, and CH4 gas exchanges were measured every 6 min for two 24-h periods, an ad libitum period and fasting period (RES). Blood was sampled at the start and end of the RES period. Gas measurements were used to calculate HP, net carbohydrate oxidation (COX), and net fat oxidation (FOX). Measurements were corrected with metabolic BW (kg of BW0.75; cBW). The RES period for each stage of lactation was further subdivided into the start (RESstart) and end (RESend) by averaging the first and last 2 h of the RES period. The net change was calculated as RESend − RESstart. All energy variables differed among lactation stage within the RES period except for HP/cBW. As expected, COX, COX/cBW, COX/HP, HP, and HP/cBW, were greater at the RESstart compared with RESend, whereas FOX, FOX/cBW, and FOX/HP were greater at the RESend except for FOX and FOX/cBW during mid lactation, which was only a tendency for a difference. The net change for COX, COX/cBW, HP, HP/cBW, and FOX/cBW did not differ among stages of lactation. Despite detecting a tendency for a difference among stage of lactation for FOX, pairwise analysis revealed no differences. Plasma triglyceride, urea, and nonesterified fatty acid concentrations were greater at RESend than RESstart. The net change for plasma glucose, urea, β-hydroxybutyrate, and nonesterified fatty acid concentrations were greater in early than late lactation. Our results demonstrate that despite differences in absolute measurements of energy variables and plasma metabolites, the change in whole-body macronutrient oxidation and HP as cows' transition from a fed-like state to a starvation-like state during a 24-h fasting period is consistent throughout lactation.  相似文献   

2.
Diet digestibility and rate of passage, eating and rumination behavior, dry matter intake (DMI), and lactation performance were compared in 6 Jersey and 6 Holstein multiparous cows. Cows were fed gestation diets according to body weight (BW) beginning 7 wk before expected calving and ad libitum amounts of a lactation diet postpartum. Diet digestibility and rate of passage were measured in 5-d periods at wk 5 prepartum and wk 6 and 14 of lactation. Eating and ruminating behavior was measured over 5-d periods at wk 5 and 2 prepartum and wk 2, 6, 10, and 14 of lactation. Milk yield and DMI were higher in Holsteins, but milk energy output per kilogram of metabolic BW (BW0.75) and intake capacity (DMI/kg of BW) did not differ between breeds. Holsteins spent longer ruminating per day compared with Jerseys, but daily eating time did not differ between breeds. Jerseys spent more time eating and ruminating per unit of ingested feed. The duration and number of meals consumed did not differ between breeds, but the meals consumed by Jerseys were distributed more evenly throughout each 24-h period, providing a more regular supply of feed to the rumen. Feed passed through the digestive tract more quickly in Jerseys compared with Holsteins, suggesting particle breakdown and rumen outflow were faster in Jerseys, but this may also reflect the relative size of their digestive tract. Neutral detergent fiber digestibility was greater in Jerseys, despite the shorter rumen retention time, but digestibility of dry matter, organic matter, starch, and N did not differ between breeds. Utilization of digested N for tissue retention was higher at wk 5 prepartum and lower at wk 14 of lactation in Jerseys. In contrast to numerous published studies, intake capacity of Jerseys was not higher than that of Holsteins, but in the present study, cows were selected on the basis of equal expected milk energy yield per kilogram of metabolic BW. Digestibility of neutral detergent fiber and rate of digesta passage were higher in Jerseys, probably as a consequence of increased mastication per unit of feed consumed in Jerseys and their smaller size.  相似文献   

3.
Although the effect of nutrition on enteric methane (CH4) emissions from confined dairy cattle has been extensively examined, less information is available on factors influencing CH4 emissions from grazing dairy cattle. In the present experiment, 40 Holstein-Friesian dairy cows (12 primiparous and 28 multiparous) were used to examine the effect of concentrate feed level (2.0, 4.0, 6.0, and 8.0 kg/cow per day; fresh basis) on enteric CH4 emissions from cows grazing perennial ryegrass-based swards (10 cows per treatment). Methane emissions were measured on 4 occasions during the grazing period (one 4-d measurement period and three 5-d measurement periods) using the sulfur hexafluoride technique. Milk yield, liveweight, and milk composition for each cow was recorded daily during each CH4 measurement period, whereas daily herbage dry matter intake (DMI) was estimated for each cow from performance data, using the back-calculation approach. Total DMI, milk yield, and energy-corrected milk (ECM) yield increased with increasing concentrate feed level. Within each of the 4 measurement periods, daily CH4 production (g/d) was unaffected by concentrate level, whereas CH4/DMI decreased with increasing concentrate feed level in period 4, and CH4/ECM yield decreased with increasing concentrate feed level in periods 2 and 4. When emissions data were combined across all 4 measurement periods, concentrate feed level (2.0, 4.0, 6.0, and 8.0 kg/d; fresh basis) had no effect on daily CH4 emissions (287, 273, 272, and 277 g/d, respectively), whereas CH4/DMI (20.0, 19.3, 17.7, and 18.1 g/kg, respectively) and CH4-E/gross energy intake (0.059, 0.057, 0.053, and 0.054, respectively) decreased with increasing concentrate feed levels. A range of prediction equations for CH4 emissions were developed using liveweight, DMI, ECM yield, and energy intake, with the strongest relationship found between ECM yield and CH4/ECM yield (coefficient of determination = 0.50). These results demonstrate that offering concentrates to grazing dairy cows increased milk production per cow and decreased CH4 emissions per unit of milk produced.  相似文献   

4.
Reducing enteric methane (CH4) production and improving feed conversion efficiency of dairy cows is of high importance. Residual feed intake (RFI) is one measure of feed efficiency, with low RFI animals being more efficient in feed conversion. Enteric CH4 is an important source of digestible energy loss in ruminants and, because research in beef cattle has reported a positive relationship between RFI and daily CH4 production, we hypothesized that low RFI dairy heifers, which are more feed efficient, would produce less CH4/d. We measured the daily methane production (g of CH4/d), methane yield [g of CH4/kg of dry matter intake (DMI)], and CH4 per kilogram of body weight (BW) gain for 56 heifers (20–22 mo old) in a 2 × 2 factorial arrangement: factors included 2 breeds (Holstein-Friesian and Jersey; n = 28/breed), with equal numbers of animals previously determined as being either high [+2.0 kg of dry matter (DM)/d] or low RFI (?2.1 kg of DM/d; n = 28/RFI category). All heifers were commingled and offered unrestricted access to the same diet of dried alfalfa cubes. Between RFI categories, heifers did not differ in BW or BW gain but low RFI heifers had 9.3 and 10.6% lower DMI and DMI/kg of BW, respectively, than high RFI heifers. Similarly, RFI category did not affect CH4/d or CH4/kg of BWg, but CH4/kg of DMI was higher in low RFI heifers because of their lower DMI. These results might reflect more complete digestion of ingested feed in the more efficient, low RFI heifers, consistent with previous reports of greater apparent digestibility of organic matter. Holstein-Friesian heifers were heavier and consumed more total DM than Jersey heifers, but breed did not affect DMI/kg of BW or BWg. Jersey heifers produced less CH4/d, but not CH4/kg of DMI or CH4/kg of BWg. We detected no interaction between breed and RFI category in any of the variables measured. In conclusion, differences in RFI in dairy heifers did not affect daily CH4 production (g/d); however, low RFI heifers had a greater CH4 yield (g/kg of DMI) on a high forage diet.  相似文献   

5.
Feed intake is one of the most important components of feed efficiency in dairy systems. However, it is a difficult trait to measure in commercial operations for individual cows. Milk spectrum from mid-infrared spectroscopy has been previously used to predict milk traits, and could be an alternative to predict dry matter intake (DMI). The objectives of this study were (1) to evaluate if milk spectra can improve DMI predictions based only on cow variables; (2) to compare artificial neural network (ANN) and partial least squares (PLS) predictions; and (3) to evaluate if wavelength (WL) selection through Bayesian network (BN) improves prediction quality. Milk samples (n = 1,279) from 308 mid-lactation dairy cows [127 ± 27 d in milk (DIM)] were collected between 2014 and 2016. For each milk spectra time point, DMI (kg/d), body weight (BW, kg), milk yield (MY, kg/d), fat (%), protein (%), lactose (%), and actual DIM were recorded. The DMI was predicted with ANN and PLS using different combinations of explanatory variables. Such combinations, called covariate sets, were as follows: set 1 (MY, BW0.75, DIM, and 361 WL); set 2 [MY, BW0.75, DIM, and 33 WL (WL selected by BN)]; set 3 (MY, BW0.75, DIM, and fat, protein, and lactose concentrations); set 4 (MY, BW0.75, DIM, 33 WL, fat, protein, and lactose); set 5 (MY, BW0.75, DIM, 33 WL, and visit duration in the feed bunk); set 6 (MY, DIM, and 33 WL); set 7 (MY, BW0.75, and DIM); set-WL (included 361 WL); and set-BN (included just 33 selected WL). All models (i.e., each combination of covariate set and fitting approach, ANN or PLS) were validated with an external data set. The use of ANN improved the performance of models 2, 5, 6, and BN. The use of BN combined with ANN yielded the highest accuracy and precision. The addition of individual WL compared with milk components (set 2 vs. set 3) did not improve prediction quality when using PLS. However, when ANN was employed, the model prediction with the inclusion of 33 WL was improved over the model containing only milk components (set 2 vs. set 3; concordance correlation coefficient = 0.80 vs. 0.72; coefficient of determination = 0.67 vs. 0.53; root mean square error of prediction 2.36 vs. 2.81 kg/d). The use of ANN and the inclusion of a behavior parameter, set 5, resulted in the best predictions compared with all other models (coefficient of determination = 0.70, concordance correlation coefficient = 0.83, root mean square error of prediction = 2.15 kg/d). The addition of milk spectra information to models containing cow variables improved the accuracy and precision of DMI predictions in lactating dairy cows when ANN was used. The use of BN to select more informative WL improved the model prediction when combined with cow variables, with further improvement when combined with ANN.  相似文献   

6.
The objectives of this study were to investigate the relationship between dry matter intake (DMI) and urinary purine derivative (PD) excretion, to develop equations to predict DMI and to determine the endogenous excretion of PD for beef and dairy cattle using a meta-analytical approach. To develop the models, 62 published studies for both dairy (45 studies) and beef cattle (17 studies) were compiled. Twenty models were tested using DMI (kg/d) and digestible DMI (dDMI, kg/d) as response variables and PD:creatinine (linear term: PD:C, and quadratic term: PD:C2), allantoin:creatinine (linear term: ALLA:C, and quadratic term: ALLA:C2), metabolic body weight (BW0.75, kg), milk yield (MY, kg/d), and their combination as explanatory variables for dairy and beef (except for MY) cattle. The models developed to predict DMI for dairy cattle were validated using an independent data set from 2 research trials carried out at the University of Wisconsin (trial 1: n = 45; trial 2: n = 50). A second set of models was developed to estimate the endogenous PD excretion. In all evaluated models, the effect of PD (either as PD:C or ALLA:C) was significant, supporting our hypothesis that PD are in fact correlated with DMI. Despite the BW-independent relationship between PD and DMI, the inclusion of BW0.75 in the models with PD:C and ALLA:C as predictors slightly decreased the values of root mean square error (RMSE) and Akaike information criterion for the models of DMI. Our models suggest that both DMI and dDMI can be equally well predicted by PD-related variables; however, predicting DMI seems more useful from a practical and experimental standpoint. The inclusion of MY into the dairy models substantially decreased RMSE and Akaike information criterion values, and further increased the precision of the equations. The model including PD:C, BW0.75, and MY presented greater concordance correlation coefficient (0.93 and 0.63 for trials 1 and 2, respectively) and lower RMSE of prediction (1.90 and 3.35 kg/d for trials 1 and 2, respectively) when tested in the validation data set, emerging as a potentially useful estimator of nutrient intake in dairy cows. Endogenous PD excretion was estimated by the intercept of the linear regression between DMI (g/kg of BW0.75) and PD excretion (mmol/kg of BW0.75) for beef (0.404 mmol/kg of BW0.75) and dairy cattle (0.651 mmol/kg of BW0.75). Based on the very close agreement between our results for beef cattle and the literature, the linear regression appears to be an adequate method to estimate endogenous PD excretion.  相似文献   

7.
The objective of our work was to supplement a forage and cereal diet of lactating dairy cows with whole cottonseed (WCS) for 12 wk and to determine whether the expected reduction in CH4 would persist. A secondary objective was to determine the effect of supplementing the diet with WCS on milk yield and rumen function over the 12-wk feeding period. Fifty lactating cows were randomly allocated to 1 of 2 diets (control or WCS). The 2 separate groups were each offered, on average, 4.2 kg of DM/cow per day of alfalfa hay (a.m.) and 6.6 kg of DM/cow per day of ryegrass silage (p.m.) on the ground in bare paddocks each day for 12 wk. Cows in each group were also individually offered dietary supplements for 12 wk in a feed trough at milking times of 5.4 kg of DM/cow per day of cracked wheat grain and 0.5 kg of DM/cow per day of cottonseed meal (control) or 2.8 kg of DM/cow per day of cracked wheat grain and 2.61 kg of DM/cow per day of WCS. The 2 diets were formulated to be similar in their concentrations of CP and ME, but the WCS diet was designed to have a higher fat concentration. Samples of rumen fluid were collected per fistula from the rumen approximately 4 h after grain feeding in the morning. Samples were taken from 8 cows (4 cows/diet) on 2 consecutive days in wk 2 of the covariate and wk 3, 6, 10, and 12 of treatment and analyzed for volatile fatty acids, ammonia-N, methanogens, and protozoa. The reduction in CH4 emissions (g/d) because of WCS supplementation increased from 13% in wk 3 to 23% in wk 12 of treatment. Similarly, the reduction in CH4 emissions (g/kg of DMI) increased from 5.1% in wk 3 to 14.5% in wk 12 of treatment. It was calculated that the average reduction in CH4 emissions over the 12-wk period was 2.9% less CH4 per 1% added fat, increasing from 1.5% in wk 3 to 4.4% less CH4 in wk 12. There was no effect of WCS supplementation on rumen ammonia-N, rumen volatile fatty acids, rumen methanogens, and rumen protozoa. On average over the 12-wk period, supplementation with WCS decreased the yield of milk (10%), fat (11%), protein (14%), lactose (11%), and fat plus protein (12%) and BW gain (31%). The WCS supplementation had no effect on milk fat concentration but resulted in a decrease in concentration of protein (5%) and lactose (11%). The major finding from this study is that addition of WCS to the diet of lactating dairy cows resulted in a persistent reduction in CH4 emissions (g of CH4/kg of DMI) over a 12-wk period and that these reductions in CH4 are consistent with previous work that has studied the addition of oilseeds to ruminant diets.  相似文献   

8.
The effect of concentrate feeding level on enteric CH4 emissions from cows grazing medium quality summer pasture is yet to be investigated. Sixty multiparous Jersey cows (9 rumen-cannulated) were used in a randomized complete block design study (with the cannulated cows in a 3 × 3 Latin square design) to investigate the effect of concentrate feeding level (0, 4, and 8 kg/cow per day; as-fed basis) on enteric CH4 emissions, production performance, and rumen fermentation of dairy cows grazing summer pasture (17 cows plus 3 cannulated cows per treatment). Enteric CH4 emissions were measured from 11 cows per treatment group during one 7-d measurement period using the sulfur hexafluoride tracer gas technique. Pasture dry matter intake (DMI) was determined parallel with the CH4 measurement period using TiO2 as an external marker, and milk yield, milk composition, cow condition, and pasture pre- and postgrazing measurements were also recorded. Daily total DMI (11.2 to 15.6 kg/cow), milk yield (9.1 to 18.2 kg/cow), energy-corrected milk (ECM; 11.2 to 21.6 kg/cow), and milk lactose content (44.1 to 46.7 g/kg) increased linearly, whereas pasture DMI (11.2 to 8.4 kg/cow) decreased linearly with increasing concentrate feeding level. Daily CH4 production (323 to 378 g/d) increased linearly due to the increase in total DMI, whereas CH4 yield (29.1 to 25.1 g/kg of DMI) and CH4 intensity (35.5 to 21.1 g/kg of milk yield; and 28.8 to 17.6 g/kg of ECM) decreased linearly with increasing concentrate feeding level. Diurnal ruminal pH (6.45 to 6.32) and in sacco DM and neutral detergent fiber disappearance decreased linearly. Acetic and propionic acid were unaffected by treatment, whereas butyric acid (5.21 to 6.14 mM) increased linearly and quadratically with increasing concentrate feeding level. It was concluded that a high concentrate feeding level not only increases animal efficiency but is moreover a viable CH4 mitigation option for dairy cows grazing kikuyu-dominant pasture in late summer when pasture is inherently fibrous.  相似文献   

9.
《Journal of dairy science》2022,105(2):1211-1224
We evaluated the potential of feeding high-oil rapeseed cake or natural additives as rumen modifiers on enteric methane (CH4) emissions, nutrient utilization, performance, and milk fatty acid (FA) profile of dairy cows. Eight Nordic Red dairy cows averaging (mean ± SD) 81 ± 21 d in milk and 41.0 ± 1.9 kg of milk yield at the beginning of the study were randomly assigned to a replicated 4 × 4 Latin square design with 21-d periods. Treatments comprised grass silage-based diets (45:55 forage to concentrate ratio on dry matter basis) including (1) control containing 19.3% rapeseed meal (CON), (2) CON with full replacement of rapeseed meal with rapeseed cake (RSC), (3) supplementation of CON with 50 g/d of yeast hydrolysate product plus coniferous resin acid-based compound (YHR), and (4) supplementation of CON with 20 g/d of combination of garlic-citrus extract and essential oils in a pellet (GCE). Apparent total-tract digestibility was measured using total collection of feces, and CH4 emissions were measured in respiratory chambers on 4 consecutive days. Data collected during d 17 and 21 in each period were used for ANOVA analysis using a mixed model. Treatments did not affect dry matter intake (DMI), whereas feeding RSC increased crude protein and ether extract digestibility compared with the other diets. Emissions of CH4 per day, per kilogram of DMI, and per kilogram of energy-corrected milk, and gross energy intake were lower for RSC compared with other diets. We found no effect of YHR on daily CH4 emissions, whereas CH4 yield (g of CH4/kg of DMI or as percentage of gross energy intake) decreased with GCE compared with CON. Treatments did not influence energy balance. Further, RSC reduced the proportion of N intake excreted in feces, and YHR improved N balance compared with CON diet. Feeding RSC resulted in greatest yields of milk and energy-corrected milk, and feed efficiency. Relative to the CON diet, RSC decreased saturated FA by 10% in milk fat by increasing cis-monounsaturated FA but also increased the proportion of trans FA. Proportion of odd- and branched-chain FA increased with GCE and YHR compared with CON. We conclude that replacing rapeseed meal by rapeseed cake decreased CH4 emissions, whereas YHR or GCE had no effect on CH4 emissions in this study.  相似文献   

10.
《Journal of dairy science》2021,104(9):9827-9841
This study investigated the effects of an amylase-enabled corn silage on lactational performance, enteric CH4 emission, and rumen fermentation of lactating dairy cows. Following a 2-wk covariate period, 48 Holstein cows were blocked based on parity, days in milk, milk yield (MY), and CH4 emission. Cows were randomly assigned to 1 of 2 treatments in an 8-wk randomized complete block design experiment: (1) control corn silage (CON) from an isogenic corn without α-amylase trait and (2) Enogen hybrid corn (Syngenta Seeds LLC) harvested as silage (ECS) containing a bacterial transgene expressing α-amylase (i.e., amylase-enabled) in the endosperm of the grain. The ECS and CON silages were included at 40% of the dietary dry matter (DM) and contained, on average, 43.3 and 41.8% DM and (% DM) 36.7 and 37.5% neutral detergent fiber, and 36.1 and 33.1% starch, respectively. Rumen samples were collected from a subset of 10 cows using the ororuminal sampling technique on wk 3 of the experimental period. Enteric CH4 emission was measured using the GreenFeed system (C-Lock Inc.). Dry matter intake (DMI) was similar between treatments. Compared with CON, MY (38.8 vs. 40.8 kg/d), feed efficiency (1.47 vs. 1.55 kg of MY/kg of DMI), and milk true protein (1.20 vs. 1.25 kg/d) and lactose yields (1.89 vs. 2.00 kg/d) were increased, whereas milk urea nitrogen (14.0 vs. 12.7 mg/dL) was decreased, with the ECS diet. No effect of treatment on energy-corrected MY (ECM) was observed, but a trend was detected for increased ECM feed efficiency (1.45 vs. 1.50 kg of ECM/kg of DMI) for cows fed ECS compared with CON-fed cows. Daily CH4 emission was not affected by treatment, but emission intensity was decreased with the ECS diet (11.1 vs. 10.3 g/kg of milk, CON and ECS, respectively); CH4 emission intensity on ECM basis was not different between treatments. Rumen fermentation, apart from a reduced molar proportion of butyrate in ECS-fed cows, was not affected by treatment. Apparent total-tract digestibility of nutrients and urinary and fecal nitrogen excretions, apart from a trend for increased DM digestibility by ECS-fed cows, were not affected by treatment. Overall, ECS inclusion at 40% of dietary DM increased milk, milk protein, and lactose yields and feed efficiency, and tended to increase ECM feed efficiency but had no effect on ECM yield in dairy cows. The increased MY with ECS led to a decrease in enteric CH4 emission intensity, compared with the control silage.  相似文献   

11.
《Journal of dairy science》2021,104(9):10399-10414
Intensified milk replacer (MR) feeding in calves has nutritional long-term effects and is suggested to increase milk production later in life. However, the underlying mechanisms are not completely understood. The aim of our study was to investigate whether MR feeding intensity has long-term effects on energy metabolism and energy use efficiency of dairy calves. Newborn female Holstein calves (n = 28) were randomly assigned to 2 liquid feeding groups offered daily either 10% of body weight (BW) colostrum followed by 10% of BW MR (10%-MR) or 12% of BW colostrum followed by 20% of BW MR (20%-MR). Calves were housed individually. Weaning was completed by the end of wk 12. Hay and calf starter were fed from d 1 until the end of wk 14 and 16, respectively. A total mixed ration was fed from wk 11 onward, and the metabolizable energy intake (MEI) was determined daily. Energy metabolism of calves was measured in respiratory chambers before weaning in wk 6 and 9, and after weaning in wk 14 and 22. The MEI/BW0.75 was higher before weaning but lower during and shortly after weaning in 20%-MR calves. During the preweaning period, the 20%-MR animals had higher average daily gain, BW, back fat thickness and muscle diameter, but lower plasma β-hydroxybutyrate concentrations. The group difference in average daily gain ceased in wk 9, differences in back fat thickness and muscle diameter ceased after weaning, whereas difference in BW0.75 persisted until wk 23. The energy conversion ratio (BW gain/MEI) was not different before weaning, but was lower during and after weaning in 20%-MR calves. The higher MEI and BW0.75 in 20%-MR calves resulted in higher heat production (HP), as well as in higher carbohydrate oxidation (COX) and fat oxidation during the preweaning period. Gas exchange variables normalized to BW0.75 or MEI differed between groups only during preweaning. The energy balance was lower in 10%-MR calves in wk 6 and 9. The HP/BW0.75 and COX/BW0.75 were higher, whereas HP/MEI was lower in 20%-MR calves in wk 6. When normalized to BW0.75 and MEI, HP in wk 6 and 9, and COX in wk 9 was lower in 20%-MR calves. In conclusion, 20%-MR calves showed greater efficiency estimates preweaning, but this effect did not occur after weaning, suggesting that energy use efficiency does not persist until later stages in life.  相似文献   

12.
Our objectives were to determine the effects of readily rumen-available carbohydrate source (refined starch vs. dextrose), the level of rumen-degradable protein (RDP), and their interaction on lactation performance, ruminal measurements, enteric methane (CH4) emission, nutrient digestibility, and nitrogen (N) balance in lactating dairy cows. Eighteen mid-lactation multiparous Holstein cows were used in this split-plot study. The main plots were created by randomly assigning 9 cows to diets of 11 or 9% RDP obtained by altering the percentage of soybean meal, expeller soybean meal, and blood meal in the diet. All diets included 16.4% crude protein. In the subplots, the effects of 0:10, 5:5, and 10:0 refined starch:dextrose ratio (% of dietary dry matter) were determined in three 3 × 3 Latin squares by randomly assigning the 9 cows in each RDP level into squares. Each period lasted 4 wk, with the last 2 wk allotted for sample collection. Carbohydrate source × RDP level interaction tended to influence dry matter intake (DMI), the concentration of urinary N, and urinary urea-N. Replacing refined starch with dextrose increased DMI, the molar percentage of ruminal butyrate and valerate, daily CH4 production (g/d), and fecal N and decreased the molar percentage of ruminal branched-chain volatile fatty acids, feed efficiency (fat- and protein-corrected milk/DMI), and N use efficiency (milk N/intake N) but did not influence nutrient digestibility. Enteric CH4 production was negatively related to the molar percentage of ruminal propionate but positively related to the molar percentage of ruminal butyrate. Treatments did not influence milk production responses, but cows fed 9% RDP diets had lower ruminal ammonia concentration (7.2 vs. 12.3 mg/dL) and tended to excrete less urinary purine derivatives (428 vs. 493 mmol/d) compared with cows fed 11% RDP diets, suggesting lower ruminal synthesis of microbial protein. Reducing the level of RDP in iso-nitrogenous diets had no effect on nutrient apparent total-tract digestibility, manure excretion and composition, N balance, and CH4 production. In this study, treatments did not affect yield (20.0 g of CH4/kg of DMI) or intensity (13.1 g of CH4/kg of fat- and protein-corrected milk), but methane production (g of CH4/d) was 7.0% lower and N use efficiency (conversion of intake N into milk protein) was 7.8% higher for cows fed a diet of 28.1% starch and 4.6% water-soluble carbohydrate compared with diets with lower starch and higher water-soluble carbohydrate contents.  相似文献   

13.
This study investigated the effects of feeding solvent-extracted canola meal (CM), extruded soybean meal (ESBM), or solvent-extracted soybean meal (SSBM) on an equivalent crude protein basis on performance, plasma AA profiles, enteric gas emissions, milk fatty acids, and nutrient digestibility in lactating dairy cows. Fifteen Holstein cows (95 ± 20 d in milk) were used in a replicated 3 × 3 Latin square design experiment with 3 periods of 28 d each. Treatments were 3 diets containing 17.1% CM, 14.2% ESBM, or 13.6% SSBM (dry matter basis). Vegetable oil was added (canola oil for CM or soybean oil for SSBM) to equalize the ether extract concentration of the diets. Rumen-protected Met was supplemented targeting digestible Met supply of 2.2% of metabolizable protein in all diets. Canola meal increased dry matter intake (DMI) by 5.9 and 8.9% in comparison with ESBM and SSBM, respectively. Milk urea nitrogen was lowest in CM, followed by SSBM, and was highest for ESBM. No differences were observed in feed efficiency, energy-corrected milk yield, and milk composition or component yields among treatments. Cows fed CM emitted less enteric CH4 per kg of DMI compared with both ESBM and SSBM, but CH4 emission intensity (CH4 per kg of energy-corrected milk) was similar among treatments. In summary, replacement of ESBM or SSBM with CM, on an equal crude protein basis, in the diet of lactating dairy cows enhanced DMI, but yields of energy-corrected milk and milk components and feed efficiency were similar among treatments.  相似文献   

14.
The objective of the present study was to compare the enteric methane (CH4) emissions and milk production of spring-calving Holstein-Friesian cows offered either a grazed perennial ryegrass diet or a total mixed ration (TMR) diet for 10 wk in early lactation. Forty-eight spring-calving Holstein-Friesian dairy cows were randomly assigned to 1 of 2 nutritional treatments for 10 wk: 1) grass or 2) TMR. The grass group received an allocation of 17 kg of dry matter (DM) of grass per cow per day with a pre-grazing herbage mass of 1,492 kg of DM/ha. The TMR offered per cow per day was composed of maize silage (7.5 kg of DM), concentrate blend (8.6 kg of DM), grass silage (3.5 kg of DM), molasses (0.7 kg of DM), and straw (0.5 kg of DM). Daily CH4 emissions were determined via the emissions from ruminants using a calibrated tracer technique for 5 consecutive days during wk 4 and 10 of the study. Simultaneously, herbage dry matter intake (DMI) for the grass group was estimated using the n-alkane technique, whereas DMI for the TMR group was recorded using the Griffith Elder feeding system. Cows offered TMR had higher milk yield (29.5 vs. 21.1 kg/d), solids-corrected milk yield (27.7 vs. 20.1 kg/d), fat and protein (FP) yield (2.09 vs. 1.54 kg/d), bodyweight change (0.54 kg of gain/d vs. 0.37 kg of loss/d), and body condition score change (0.36 unit gain vs. 0.33 unit loss) than did the grass group over the course of the 10-wk study. Methane emissions were higher for the TMR group than the grass group (397 vs. 251 g/cow per day). The TMR group also emitted more CH4 per kg of FP (200 vs. 174 g/kg of FP) than did the grass group. They also emitted more CH4 per kg of DMI (20.28 vs. 18.06 g/kg of DMI) than did the grass group. In this study, spring-calving cows, consuming a high quality perennial ryegrass diet in the spring, produced less enteric CH4 emissions per cow, per unit of intake, and per unit of FP than did cows offered a standard TMR diet.  相似文献   

15.
《Journal of dairy science》2023,106(7):4725-4737
Heat stress (HS) negatively affects dry matter intake (DMI), milk yield (MY), feed efficiency (FE), and free water intake (FWI) in dairy cows, with detrimental consequences to animal welfare, health, and profitability of dairy farms. Absolute enteric methane (CH4) emission, yield (CH4/DMI), and intensity (CH4/MY) may also be affected. Therefore, the goal of this study was to model the changes in dairy cow productivity, water intake, and absolute CH4 emissions, yield, and intensity with the progression (days of exposure) of a cyclical HS period in lactating dairy cows. Heat stress was induced by increasing the average temperature by 15°C (from 19°C in the thermoneutral period to 34°C) while keeping relative humidity constant at 20% (temperature-humidity index peaks of approximately 83) in climate-controlled chambers for up to 20 d. A database composed of individual records (n = 1,675) of DMI and MY from 82 heat-stressed lactating dairy cows housed in environmental chambers from 6 studies was used. Free water intake was also estimated based on DMI, dry matter, crude protein, sodium, and potassium content of the diets, and ambient temperature. Absolute CH4 emissions was estimated based on DMI, fatty acids, and dietary digestible neutral detergent fiber content of the diets. Generalized additive mixed-effects models were used to describe the relationships of DMI, MY, FE, and absolute CH4 emissions, yield, and intensity with HS. Dry matter intake and absolute CH4 emissions and yield reduced with the progression of HS up to 9 d, when it started to increase again up to 20 d. Milk yield and FE reduced with the progression of HS up to 20 d. Free water intake (kg/d) decreased during the exposure to HS mainly because of a reduction in DMI; however, when expressed in kg/kg of DMI it increased modestly. Methane intensity also reduced initially up to d 5 during HS exposure but then started to increase again following the DMI and MY pattern up to d 20. However, the reductions in CH4 emissions (absolute, yield, and intensity) occurred at the expense of decreases in DMI, MY, and FE, which are not desirable. This study provides quantitative predictions of the changes in animal performance (DMI, MY, FE, FWI) and CH4 emissions (absolute, yield, and intensity) with the progression of HS in lactating dairy cows. The models developed in this study could be used as a tool to help dairy nutritionists to decide when and how to adopt strategies to mitigate the negative effects of HS on animal health and performance and related environmental costs. Thus, more precise and accurate on-farm management decisions could be taken with the use of these models. However, application of the developed models outside of the ranges of temperature-humidity index and period of HS exposure included in this study is not recommended. Also, validation of predictive capacity of the models to predict CH4 emissions and FWI using data from in vivo studies where these variables are measured in heat-stressed lactating dairy cows is required before these models can be used.  相似文献   

16.
Monensin is a widely used feed additive with the potential to minimize methane (CH4) emissions from cattle. Several studies have investigated the effects of monensin on CH4, but findings have been inconsistent. The objective of the present study was to conduct meta-analyses to quantitatively summarize the effect of monensin on CH4 production (g/d) and the percentage of dietary gross energy lost as CH4 (Ym) in dairy cows and beef steers. Data from 22 controlled studies were used. Heterogeneity of the monensin effects were estimated using random effect models. Due to significant heterogeneity (>68%) in both dairy and beef studies, the random effect models were then extended to mixed effect models by including fixed effects of DMI, dietary nutrient contents, monensin dose, and length of monensin treatment period. Monensin reduced Ym from 5.97 to 5.43% and diets with greater neutral detergent fiber contents (g/kg of dry matter) tended to enhance the monensin effect on CH4 in beef steers. When adjusted for the neutral detergent fiber effect, monensin supplementation [average 32 mg/kg of dry matter intake (DMI)] reduced CH4 emissions from beef steers by 19 ± 4 g/d. Dietary ether extract content and DMI had a positive and a negative effect on monensin in dairy cows, respectively. When adjusted for these 2 effects in the final mixed-effect model, monensin feeding (average 21 mg/kg of DMI) was associated with a 6 ± 3 g/d reduction in CH4 emissions in dairy cows. When analyzed across dairy and beef cattle studies, DMI or monensin dose (mg/kg of DMI) tended to decrease or increase the effect of monensin in reducing methane emissions, respectively. Methane mitigation effects of monensin in dairy cows (–12 ± 6 g/d) and beef steers (–14 ± 6 g/d) became similar when adjusted for the monensin dose differences between dairy cow and beef steer studies. When adjusted for DMI differences, monensin reduced Ym in dairy cows (–0.23 ± 0.14) and beef steers (–0.33 ± 0.16). Monensin treatment period length did not significantly modify the monensin effects in dairy cow or beef steer studies. Overall, monensin had stronger antimethanogenic effects in beef steers than dairy cows, but the effects in dairy cows could potentially be improved by dietary composition modifications and increasing the monensin dose.  相似文献   

17.
Rotational 3-breed crossbred cows of Montbéliarde, Viking Red, and Holstein (CB) were compared with Holstein (HO) cows for alternative measures of feed efficiency as well as income over feed cost (IOFC) and residual feed intake (RFI) during the first 150 d of first, second, and third lactations. Primiparous and multiparous CB (n = 63 and n = 43, respectively) and HO (n = 60 and n = 37, respectively) cows were fed the same total mixed ration twice daily with refusals weighed once daily. Feed was analyzed for dry matter content, net energy for lactation, and crude protein content. Body weight (BW) was recorded twice weekly. Daily production of milk, fat, and protein were estimated from monthly test days with best prediction. Measures of efficiency from 4 to 150 d in milk (DIM) were feed conversion efficiency (FCE), defined as fat plus protein production (kg) per kilogram of dry matter intake (DMI); ECM/DMI, defined as kilograms of energy-corrected milk (ECM) per kilogram of DMI; net energy for lactation efficiency (NELE), defined as ECM (kg) per megacalorie of net energy for lactation intake; crude protein efficiency (CPE), defined as true protein production (kg) per kilogram of crude protein intake; and DMI/BW, defined as DMI (kg) per kilogram of BW. The IOFC was defined as revenue from fat plus protein production minus feed cost. The RFI from 4 to 150 DIM for each lactation was the residual error remaining from regression of DMI on milk energy output (Mcal), metabolic BW, and energy required for change in BW (Mcal). Statistical analysis of measures of feed efficiency and RFI for primiparous cows included the fixed effects of year of calving and breed group. For multiparous cows, statistical analysis included breed as a fixed effect and cow as a repeated effect nested within breed group. Primiparous CB cows had higher means for FCE (+5.5%), ECM/DMI (+4.0%), NELE (+4.0%), and CPE (+5.2%) and a lower mean DMI/BW (–5.3%) than primiparous HO cows. Primiparous CB cows ($875) also had higher mean IOFC than primiparous HO cows ($825). In addition, mean RFI from 4 to 150 DIM was significantly lower (more desirable) for primiparous CB cows than HO cows. Likewise, multiparous CB cows had higher means for FCE (+8.2%), ECM/DMI (+5.9%), NELE (+5.8%), and CPE (+8.1%) and a lower mean for DMI/BW (–4.8%) than multiparous HO cows. Multiparous CB cows ($1,296) also had a higher mean for IOFC than multiparous HO cows ($1,208) and a lower mean for RFI from 4 to 150 DIM than HO cows.  相似文献   

18.
Mitigating the dairy chain's contribution to climate change requires cheap, rapid methods of predicting enteric CH4 emissions (EME) of dairy cows in the field. Such methods may also be useful for genetically improving cows to reduce EME. Our objective was to evaluate different procedures for predicting EME traits from infrared spectra of milk samples taken at routine milk recording of cows. As a reference method, we used EME traits estimated from published equations developed from a meta-analysis of data from respiration chambers through analysis of various fatty acids in milk fat by gas chromatography (FAGC). We analyzed individual milk samples of 1,150 Brown Swiss cows from 85 farms operating different dairy systems (from very traditional to modern), and obtained the cheese yields of individual model cheeses from these samples. We also obtained Fourier-transform infrared absorbance spectra on 1,060 wavelengths (5,000 to 930 waves/cm) from the same samples. Five reference enteric CH4 traits were calculated: CH4 yield (CH4/DMI, g/kg) per unit of dry matter intake (DMI), and CH4 intensity (CH4/CM, g/kg) per unit of corrected milk (CM) from the FAGC profiles; CH4 intensity per unit of fresh cheese (CH4/CYCURD, g/kg) and cheese solids (CH4/CYSOLIDS, g/kg) from individual cheese yields (CY); and daily CH4 production (dCH4, g/d). Direct infrared (IR) calibrations were obtained by BayesB modeling; the determination coefficients of cross-validation varied from 0.36 for dCH4 to 0.57 for CH4/CM, and were similar to the coefficient of determination values of the equations based on FAGC used as the reference method (0.47 for CH4/DMI and 0.54 for CH4/CM). The models allowed us to select the most informative wavelengths for each EME trait and to infer the milk chemical features underlying the predictions. Aside from the 5 direct infrared prediction calibrations, we tested another 8 indirect prediction models. Using IR-predicted informative fatty acids (FAIR) instead of FAGC, we were able to obtain indirect predictions with about the same precision (correlation with reference values) as direct IR predictions of CH4/DMI (0.78 vs. 0.76, respectively) and CH4/CM (0.82 vs. 0.83). The indirect EME predictions based on IR-predicted CY were less precise than the direct IR predictions of both CH4/CYCURD (0.67 vs. 0.81) and CH4/CYSOLIDS (0.62 vs. 0.78). Four indirect dCH4 predictions were obtained by multiplying the measured or IR-predicted daily CM production by the direct or indirect CH4/CM. Combining recorded daily CM and predicted CH4/CM greatly increased precision over direct dCH4 predictions (0.96–0.96 vs. 0.68). The estimates obtained from the majority of direct and indirect IR-based prediction models exhibited herd and individual cow variability and effects of the main sources of variation (dairy system, parity, days in milk) similar to the reference data. Some rapid, cheap, direct and indirect IR prediction models appear to be useful for monitoring EME in the field and possibly for genetic/genomic selection, but future studies directly measuring CH4 with different breeds and dairy systems are needed to validate our findings.  相似文献   

19.
This study aimed to quantify the relationship between CH4 emission and fatty acids, volatile metabolites, and nonvolatile metabolites in milk of dairy cows fed forage-based diets. Data from 6 studies were used, including 27 dietary treatments and 123 individual observations from lactating Holstein-Friesian cows. These dietary treatments covered a large range of forage-based diets, with different qualities and proportions of grass silage and corn silage. Methane emission was measured in climate respiration chambers and expressed as production (g per day), yield (g per kg of dry matter intake; DMI), and intensity (g per kg of fat- and protein-corrected milk; FPCM). Milk samples were analyzed for fatty acids by gas chromatography, for volatile metabolites by gas chromatography-mass spectrometry, and for nonvolatile metabolites by nuclear magnetic resonance. Dry matter intake was 15.9 ± 1.90 kg/d (mean ± SD), FPCM yield was 25.2 ± 4.57 kg/d, CH4 production was 359 ± 51.1 g/d, CH4 yield was 22.6 ± 2.31 g/kg of DMI, and CH4 intensity was 14.5 ± 2.59 g/kg of FPCM. The results show that changes in individual milk metabolite concentrations can be related to the ruminal CH4 production pathways. Several of these relationships were diet driven, whereas some were partly dependent on FPCM yield. Next, prediction models were developed and subsequently evaluated based on root mean square error of prediction (RMSEP), concordance correlation coefficient (CCC) analysis, and random 10-fold cross-validation. The best models with milk fatty acids (in g/100 g of fatty acids; MFA) alone predicted CH4 production, yield, and intensity with a RMSEP of 34 g/d, 2.0 g/kg of DMI, and 1.7 g/kg of FPCM, and with a CCC of 0.67, 0.44, and 0.75, respectively. The CH4 prediction potential of both volatile metabolites alone and nonvolatile metabolites alone was low, regardless of the unit of CH4 emission, as evidenced by the low CCC values (<0.35). The best models combining the 3 types of metabolites as selection variables resulted in the inclusion of only MFA for CH4 production and CH4 yield. For CH4 intensity, MFA, volatile metabolites, and nonvolatile metabolites were included in the prediction model. This resulted in a small improvement in prediction potential (CCC of 0.80; RMSEP of 1.5 g/kg of FPCM) relative to MFA alone. These results indicate that volatile and nonvolatile metabolites in milk contain some information to increase our understanding of enteric CH4 production of dairy cows, but that it is not worthwhile to determine the volatile and nonvolatile metabolites in milk to estimate CH4 emission of dairy cows. We conclude that MFA have moderate potential to predict CH4 emission of dairy cattle fed forage-based diets, and that the models can aid in the effort to understand and mitigate CH4 emissions of dairy cows.  相似文献   

20.
The objective of this study was to evaluate the effects of feeding lactating dairy cows with regrowth silages from different 2- and 3-cut harvesting systems on milk production, efficiency of N, and energy utilization. Thirty Nordic Red cows were offered 5 experimental diets containing regrowth silages, crimped barley, and canola meal in replicated incomplete 5 × 4 Latin squares with four 21-d periods consisting of 14 d of feed adaptation and 7 d of sampling. Four second-cut silage diets were examined in a 2 × 2 factorial arrangement, enabling evaluation of effect of harvest time of the early or late first cut on second-cut silages, short or long regrowth interval within second cut, and their interaction on dairy cow performance. The third-cut silage diet harvested from early first cut and short regrowth interval of second-cut ley was compared with the second-cut silage diets to evaluate the difference in dairy cow performance between second- and third-cut silages. Postponing the first cut and extending the regrowth interval decreased dry matter intake (DMI), energy-corrected milk (ECM) yield, nutrient digestibility, and urinary energy output, but improved N efficiency (milk N/N intake). Postponing the first cut also decreased the efficiency of metabolizable energy use for lactation, but increased CH4 yield (CH4/DMI). Extending the regrowth interval decreased feed efficiency (ECM/DMI) and increased CH4 intensity (CH4/ECM). Thus, feeding regrowth silages in 2- or 3-cut systems harvested after an early first cut and short regrowth interval promoted better dairy performance and feed intake, and higher efficiency of feed and energy utilization, but with poorer N efficiency. Feeding third-cut silage improve milk yield and feed efficiency compared with second-cut silages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号