首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Journal of dairy science》2022,105(10):8099-8114
This study evaluated the effect on dairy cows of the partial replacement of whole plant corn silage (WPCS) with corn ear fibrous coproduct (CEFC) in diets with concentrate coproducts from citrus and corn on dry matter intake (DMI), lactation performance, digestibility, and chewing behavior. Holstein dairy cows (n = 20) in 5, 4 × 4 Latin squares (21-d periods) were fed a combination of strategies for feeding fibrous coproducts in a 2 × 2 factorial arrangement of the following treatments: (1) forage feeds: the partial replacement of WPCS (CS) with CEFC (CO), and (2) concentrate feeds: the partial replacement of wet corn gluten feed (GF) with a blend of pelleted citrus and corn distillers dried grains (CD) to have isonitrogenous diets. The concentrations of physically effective neutral detergent fiber (NDF; peNDF>8) were (% of dry matter): 21.8% for CS, 19.2% for CO, 20.7% for GF, and 20.2% for CD. Cows fed diet CS-CD had the highest yield of energy-corrected milk (30.0 kg/d) relative to the other diets (28.4 kg/d). Milk fat concentration was reduced on CO relative to CS. Cows fed the CO diets had higher DMI (21.2 vs. 20.2 kg/d) and digestible organic matter intake and tended to have a lower ratio of energy-corrected milk to DMI than cows fed CS. Diets CO reduced the daily intake of peNDF>8 and the intake as percent of body weight of peNDF>8, forage NDF, and total NDF relative to CS. Cows fed CO had greater meal frequency and lower daily meal time, meal duration, meal size, and duration of the largest meal than cows fed CS. The CO diet reduced rumination and total chewing in minutes per day and minutes per kilogram of DMI. When expressed per unit of peNDF>8 intake, rumination and total chewing were not affected by forage source. The total-tract starch digestibility coefficient was lower for cows fed CO than CS, but the intake of digestible starch was higher on CO than CS. Cows fed GF had reduced milk yield (29.6 vs. 30.8 kg/d), tended to have reduced DMI (20.4 vs. 21.0 kg/d), and had reduced digestible organic matter intake than cows fed CD. Feed efficiency was not affected by source of concentrate. The type of concentrate did not affect the intake of forage NDF and peNDF>8, but cows fed GF had higher intake of total NDF as percent of body weight than cows fed CD. The GF increased meal frequency and reduced meal size and largest meal duration and size. Cows fed GF had higher rumination and total chewing than cows fed CD (min/d, min/kg of DMI, and min/kg peNDF>8). Starch digestibility was higher and the intake of digestible starch tended to be higher on cows fed GF than CD. Plasma urea-N was higher, milk urea-N tended to be higher, and N utilization efficiency tended to be lower on cows fed GF than CD. Ruminal microbial yield was not affected by any treatment. All strategies evaluated were nutritionally viable and CEFC was a feasible partial replacement for WPCS.  相似文献   

2.
Forty midlactation Holstein cows averaging 635 kg of body weight (SE = 8) were allotted at wk 25 of lactation to ten groups of four cows blocked for similar calving dates to determine the effects of formaldehyde treatment of flaxseed and sunflower seed on fatty acid composition of blood and milk, milk yield, feed intake, and apparent digestibility. Cows were fed a total mixed diet based on grass silage and supplements for ad libitum intake over a 10-wk period. Cows within each block were assigned to one of the four isonitrogenous supplements based on either untreated whole flaxseed, formaldehyde-treated whole flaxseed, untreated whole sunflower seed, or formaldehyde-treated whole sunflower seed. Cows fed whole flaxseed compared with sunflower seed maintained greater dry matter (DM) intake (20.3 vs. 18.9 kg/d). Intake of DM, expressed as a percentage of body weight, was increased by adding formaldehyde to oilseeds (3.24 vs. 2.98%). Milk production was similar for cows fed flaxseed and those fed sunflower. Formaldehyde treatment of flaxseed and sunflower seed increased milk production by an average of 2.65 kg/d. Efficiency of fat-corrected milk yield per kilogram of DM intake was increased by formaldehyde treatment (1.31 vs. 1.21), and it was greater with sunflower seed than with flaxseed (1.33 vs.1.21). Protein concentration in milk was greater for cows fed flaxseed (3.38%) compared with those fed sunflower seed (3.21%) and formaldehyde had no effect. Apparent digestibility of DM was not affected by type of seed but it was greater for cows fed formaldehyde-treated seeds. Cows fed formaldehyde-treated flaxseed had the greatest apparent digestibilities of acid detergent and neutral detergent fiber compared with those fed the other diets. Apparent digestibilities of fatty acids were greater for sunflower seed than for flaxseed-based diets. In general, formaldehyde treatment had limited effect on milk fatty acid composition, suggesting that formaldehyde was not very effective in protecting polyunsaturated fatty acids against ruminal biohydrogenation. Feeding flaxseed resulted in the lowest omega 6 to omega 3 fatty acid ratio. The data suggest that both flaxseed and sunflower seed are acceptable fat sources for midlactating cows and that flaxseed increases milk protein percentage compared to sunflower seed.  相似文献   

3.
Thirty-eight midlactating Holstein cows averaging 597 kg of body weight (SD = 59) were used to determine the effects of dietary flaxseed on protein requirement and N excretion in urine and feces. Milk yield and composition, intake, and digestibility were also determined. Cows were allotted from wk 20 to 30 of lactation to 1 of 4 TMR containing 1) no flaxseed (control) and 16% protein (MPC), 2) whole flaxseed and 16% protein (MPF), 3) no flaxseed (control) and 18% protein (HPC), and 4) whole flaxseed and 18% protein (HPF). Cows fed high protein diets had greater feed intake than those fed medium protein diets (20.2 vs. 18.4 kg/d), and cows fed no flaxseed had greater dry matter intake than those fed flaxseed (20.1 vs. 18.5 kg/d). Milk yield was lower for cows fed MPF (20.3 kg/d) than for those fed HPC (24.4 kg/d), HPF (24.9 kg/d), or MPC (24.0 kg/d). Milk protein and lactose concentrations were similar for cows fed MPC and HPC, but flaxseed decreased milk protein concentration in cows fed MPF or HPF compared with cows fed the control diets. Milk fat concentration was similar in cows fed diets with or without flaxseed, but it was decreased by higher protein concentration. Digestibility was generally reduced when diets contained flaxseed and lower protein concentration. Dietary protein had no effect while dietary flaxseed increased fecal N excretion. Retention of N was lower in cows fed flaxseed compared with cows fed the control diets. Feeding flaxseed decreased milk concentrations of short- and medium-chain fatty acids and increased those of long-chain fatty acids. Flaxseed had no effect on the dietary requirement of N by midlactating dairy cows.  相似文献   

4.
The effect of starch source and phytic acid (PA) supplementation on phosphorus (P) partitioning and ruminal phytase activity was evaluated in eight midlactation cows (four ruminally cannulated). Cows were randomly assigned to treatments in replicated 4 x 4 Latin squares with four 18-d periods. Diets included dry ground corn (DG) or steam-flaked corn (SF), with no supplemental P (L; 0.33% P) or supplemental purified PA (0.44% P) to provide additional P from a nonmineral source. Total collection of milk, urine, and feces was conducted on d 16 to 18 of each period. Ruminal fluid was sampled and ruminal pH measured every 8 h on d 17 and 18. Milk yield was unaffected by starch source, despite lower DMI by cows fed SF. Cows fed SF had increased DM digestibility compared with those fed DG, and tended to have higher efficiency of milk yield (1.40 vs. 1.35 kg of milk/kg of DMI). Intake and fecal excretion of P was lower in cows fed SF than in cows fed DG. In cows fed SF, milk P as a percentage of P intake increased compared with cows fed DG. Ruminal pH was unaffected by diet, but milk fat content was lower for cows fed SF. Milk yield, DMI, and feed to milk ratio were not affected by supplementation with PA. Although cows fed PA had increased P intake compared with cows fed low P diet, increased P excretion resulted in no differences in apparent P digestibility. Phosphorus balance tended to be higher in cows fed PA, but milk P as a percentage of intake was reduced. The interaction of starch source and PA affected ruminal phytase activity. Altering starch source to improve efficiency of milk yield in lactating dairy cows may help reduce P losses from dairy farms.  相似文献   

5.
The effects of fat supplements that differed in fatty acid composition (chain length and degree of saturation) and chemical form (free fatty acids, Ca salts of fatty acids, and triacylglyceride) on digestible energy (DE) concentration of the diet and DE intake by lactating cows were measured. Holstein cows were fed a control diet [2.9% of dry matter (DM) as long-chain fatty acids] or 1 of 3 diets with 3% added fatty acids (that mainly replaced starch). The 3 fat supplements were (1) mostly saturated (C18:0) free fatty acids (SFA), (2) Ca-salts of fatty acids (CaFA), and (3) triacylglyceride high in C16:0 fatty acids (TAG). Cows fed CaFA (22.8 kg/d) consumed less DM than cows fed the control (23.6 kg/d) and TAG (23.8 kg/d) diets but similar to cows fed SFA (23.2 kg/d). Cows fed fat produced more fat-corrected milk than cows fed the control diet (38.2 vs. 41.1 kg/d), mostly because of increased milk fat percentage. No differences in yields of milk or milk components were observed among the fat-supplemented diets. Digestibility of DM, energy, carbohydrate fractions, and protein did not differ between diets. Digestibility of long-chain fatty acids was greatest for the CaFA diet (76.3%), intermediate for the control and SFA diets (70.3%), and least for the TAG diet (63.3%). Fat-supplemented diets had more DE (2.93 Mcal/kg) than the control diet (2.83 Mcal/kg), and DE intake by cows fed supplemented diets was 1.6 Mcal/d greater than by cows fed the control, but no differences were observed among the supplements. Because the inclusion rate of supplemental fats is typically low, large differences in fatty acid digestibility may not translate into altered DE intake because of small differences in DM intake or digestibility of other nutrients.  相似文献   

6.
Twelve second-lactation Holstein cows were used in a replicated Latin square design to examine the effects of dietary wheat on lactation performance, ruminal fermentation, and whole-tract nutrient digestibility. Cows were randomly assigned to 1 of 3 diets containing 0, 10, and 20% steam-rolled wheat on a dry matter basis at the expense of steam-rolled barley. Cows were fed and milked twice daily. Six of the cows were ruminally cannulated, and rumen fluid samples were obtained from these cows 18 times during the last 2 d of each period. Treatment did not affect dry matter intake (20.9 kg/d) or yields of milk (36.1 kg/d) or milk components (1.25, 1.10, and 1.67 kg/d for fat, protein, and lactose, respectively). Fat percentage was not different among the treatments but protein content of the milk was reduced by the wheat treatments, and was lower when 10% wheat was included in the diet versus 20%. Cows fed wheat had lower ruminal pH (6.36 vs. 6.44) and greater NH3-N (11.49 vs. 8.10 mg/dL) and total volatile fatty acids (121 vs. 113 mM) concentrations than cows not fed wheat. The acetate:propionate ratio was lower for cows fed wheat than for those not fed wheat (3.21 vs. 3.36), but was not different between cows fed 10% versus 20% wheat. Wheat feeding did not alter whole-tract apparent digestibility of dry matter, crude protein, acid detergent fiber, and neutral detergent fiber. Results of this study show that up to 20% steam-rolled wheat can be included in the diet of dairy cows without compromising production or causing subacute ruminal acidosis if adequate fiber is provided and the diets are properly formulated and mixed.  相似文献   

7.
Inclusion of hemicellulose extract (HE) in cattle diets have shown potential for improving fiber digestibility and production efficiency. The objective of this research was to evaluate production and digestibility effects of a HE on midlactation cows. Twelve multiparous Holstein cows (142 ± 44 d in milk, 685 ± 19 kg of body weight) including 4 with ruminal fistula were used in a 2 × 2 Latin square design with 21-d periods. Cows were fed a control (CON) diet containing 55% forage [dry matter (DM) basis, 2/3 corn silage and 1/3 alfalfa hay] or a similar diet where 1.0% of the diet DM was replaced with HE (TRT). Dry matter intake averaged 27.1 and 26.9 kg/d, for CON and TRT respectively, and was not affected by addition of extract. The percentage of milk protein (3.40 vs. 3.29%) was greater, whereas the percentage of milk fat (3.91 vs. 3.80%) tended to be greater, for cows fed the CON compared with the TRT diet. Because of numerically greater milk production (38.8 vs. 39.2 kg/d) for cows fed the TRT diet, no differences were observed in component yields other than lactose (1.86 vs. 1.94 kg/d), which tended to be greater for cows fed the TRT ration. Treatment improved neutral detergent fiber (NDF) digestibility (38.6 vs. 48.1%) for the TRT diet compared with the CON diet but did not affect apparent total-tract DM (67.8 vs. 68.5%), crude protein (67.2 vs. 67.9%), acid detergent fiber (ADF; 37.1 vs. 43.3%), or starch (92.8 vs. 92.2%) digestibility. For in situ determinations, Dacron bags containing corn silage, alfalfa hay, and either the CON or TRT ration were incubated in triplicate in the rumens of the cannulated cows at 0, 3, 6, 9, 12, 24, and 48 h on d 18 of each period. Each total mixed ration was incubated only in cows assigned to the corresponding diet. For corn silage, the rate of disappearance of NDF (1.70 vs. 4.27%) and ADF (1.79 vs. 4.66%) increased for cows fed the TRT diet. For alfalfa hay, the disappearance of fraction A of DM, NDF, and ADF decreased and fraction B of DM and NDF increased with treatment. The rate of disappearance for DM (8.03 vs. 11.04%), NDF (6.30 vs. 10.28%), and ADF (5.52 vs. 9.19%) increased for the alfalfa hay in rumens of treated cows. For the total mixed ration, the disappearance of the A fraction of NDF and ADF increased for cows fed the TRT diet. Supplementing diets of lactating dairy cows with an HE has beneficial effects on fiber degradation characteristics and provides opportunities for improving animal performance.  相似文献   

8.
《Journal of dairy science》2019,102(11):9814-9826
Dry matter intake, lactation performance, and chewing behavior of multiparous Holstein cows (n = 15) fed diets containing a novel bm3 corn silage hybrid with floury kernel genetics were compared with cows fed diets containing commercially available conventional and bm3 hybrids using a replicated 3 × 3 Latin square design with 28-d periods. Cows were housed in tiestalls, milked 3 times/d, and fed a total mixed ration containing 49.0% (dry matter basis) of (1) a conventional corn silage hybrid (CONV); (2) a brown midrib bm3 hybrid (BMR); or (3) a bm3 hybrid with floury kernel genetics (BMRFL). All diets contained 6.3% hay crop silage and 44.7% concentrate. Dietary nutrient composition averaged 32.7% neutral detergent fiber (NDF) and 26.3 starch (% of dry matter). Data were analyzed by ANOVA using the MIXED procedure in SAS (SAS Institute Inc., Cary, NC). The dry matter intake was greater for cows fed BMR (28.0 kg/d) compared with CONV (26.8 kg/d), whereas dry matter intake for cows fed BMRFL was intermediate (27.6 kg/d). Energy-corrected milk (ECM) yield was greater for cows fed BMR (50.3 kg/d) and BMRFL (51.8 kg/d) compared with CONV (47.2 kg/d). Milk fat yield was higher for cows fed BMRFL (1.87 kg/d) compared with CONV (1.74 kg/d) and BMR (1.80 kg/d). Milk protein yield was greater for cows fed BMR (1.49 kg/d) and BMRFL (1.54 kg/d) compared with CONV (1.36 kg/d). Milk urea-N was reduced for cows fed BMR (11.61 mg/dL) and BMRFL (11.16 mg/dL) compared with CONV (13.60 mg/dL). Feed efficiency (ECM/dry matter intake) was higher for cows fed BMRFL (1.87) compared with CONV (1.76) and BMR (1.79). Milk N efficiency was greatest for cows fed BMRFL (40.4%) followed by BMR (38.1%) and finally CONV (35.3%). Cows fed CONV chewed 5 min more per kilograms of NDF consumed than cows fed either of the BMR hybrids. No differences were observed among diets in apparent total-tract digestibility of NDF (58.1%) or starch (99.3%). Overall lactational performance was enhanced for cows fed diets containing both BMR and BMRFL hybrids versus CONV. In addition, feeding the BMRFL corn silage improved efficiency of component-corrected milk production and milk N efficiency compared with the CONV and BMR silages.  相似文献   

9.
We aimed to compare the effects of ground (GC) or cracked corn (CC), with or without flaxseed oil (FSO), on milk yield, milk and plasma fatty acid (FA) profile, and nutrient digestibility in Jersey cows fed diets formulated to contain similar starch concentrations. Twelve multiparous organic-certified Jersey cows averaging (mean ± standard deviation) 455 ± 41.9 kg of body weight and 152 ± 34 d in milk and 4 primiparous organic-certified Jersey cows averaging (mean ± standard deviation) 356 ± 2.41 kg of body weight and 174 ± 30 d in milk in the beginning of the experiment were used. Cows were randomly assigned to treatment sequences in a replicated 4 × 4 Latin square design with a 2 × 2 factorial arrangement of treatments. Each period lasted 24 d with 18 d for diet adaptation and 6 d for data and sample collection. Treatments were fed as total mixed rations consisting of (dry matter basis): (1) 0% FSO + 27.1% GC, (2) 0% FSO + 28.3% CC, (3) 3% FSO + 27.1% GC, and (4) 3% FSO + 28.3% CC. All cows were offered 55% of the total diet dry matter as mixed grass-legume baleage and treatments averaged 20% starch. Significant FSO × corn grain particle size interactions were observed for some variables including milk concentration of lactose and proportions of cis-9,cis-12,cis-15 18:3 in milk and plasma. The proportion of cis-9,cis-12,cis-15 18:3 in milk and plasma decreased slightly when comparing GC versus CC in 0% FSO cows, but a larger reduction was observed in 3% FSO cows. Dry matter intake did not differ and averaged 16.1 kg/d across diets. Feeding 3% FSO increased yields of milk and milk fat and lactose and feed and milk N efficiencies, but decreased fat, true protein, and MUN concentrations and apparent total-tract digestibility of fiber. The Σ branched-chain, Σ<16C, Σ16C, and Σn-6 FA decreased, whereas Σ18C, Σcis-18:1, and Σtrans-18:1 FA increased in 3% versus 0% FSO cows. No effect of corn particle size was observed for production and milk components. However, the apparent total-tract digestibility of starch was greater in GC than CC cows. Compared with CC, GC increased Σ branched-chain, Σ<16C, Σ16C, Σn-6 FA, and decreased Σ18C and Σ cis-18:1 FA in milk fat. Overall, results of this study are more directly applicable to dairy cows fed low starch, mixed grass-legume baleage-based diets.  相似文献   

10.
A total of 90 lactating Holstein cows averaging 628 kg (SE = 8) of body weight (BW) were allotted at calving to 30 groups of three cows blocked for similar calving dates to determine the effects of feeding whole untreated flaxseed on milk production and composition, fatty acid composition of blood and milk, and digestibility, and to determine whether flaxseed could substitute for other sources of fat such as Megalac and micronized soybeans. Cows were fed a total mixed diet based on grass and corn silage and fat supplements for ad libitum intake. The experiment was carried out from calving up to wk 16 of lactation. Cows within each block were assigned to one of the three isonitrogenous, isoenergetic, and isolipidic supplements based on either whole flaxseed (FLA), Megalac (MEG), or micronized soybeans (SOY). Intake of dry matter and change in BW were similar among diets. Cows fed FLA had greater milk yield than those fed MEG (35.7 vs. 33.5 kg/d) and there was no difference between cows fed FLA and those fed SOY (34.4 kg/d). Fat percentage was higher in the milk of cows fed MEG (4.14%) than in the milk of those fed FLA (3.81%) or SOY (3.70%), but milk protein percentage was higher for cows fed FLA (2.98%) than for those fed MEG (2.86%) and SOY (2.87%). Digestibilities of acid detergent fiber, neutral detergent fiber, and ether extract were lower for cows fed FLA than for those fed SOY and MEG. Retention of N was similar among diets. Feeding FLA resulted in the lowest omega-6-to-omega-3-fatty-acids ratio, which would improve the nutritive value of milk from a human health point of view. The data suggest that micronized soybeans and Megalac can be completely substituted by whole untreated flaxseed as the fat source in the diet of early lactating cows without any adverse effect on production and that flaxseed increased milk protein percentage and its omega-6-to-omega-3-fatty-acids ratio.  相似文献   

11.
Exogenous fibrolytic enzymes have been shown to be a promising way to improve feed conversion efficiency (FCE). β-Mannanase is an important enzyme digesting the polysaccharide β-mannan in hemicellulose. Supplementation of diets with β-mannanase to improve FCE has been more extensively studied in nonruminants than in ruminants. The objective of this study was to investigate the effects of β-mannanase supplementation on nutrient digestibility, FCE, and nitrogen utilization in lactating Holstein dairy cows. Twelve post-peak-lactation multiparous Holstein cows producing 45.5 ± 6.6 kg/d of milk at 116 ± 19.0 d in milk were randomly allotted to 1 of 3 treatments in a 3 × 3 Latin square design with 3 periods of 18 d (15 d for adaptation plus 3 d for sample collection). All cows were fed the same basal diet and the 3 treatments differed only by the β-mannanase dose: 0% dry matter (DM; control), 0.1% of DM (low supplement, LS), and 0.2% of DM (high supplement, HS) supplemented to the basal diet. Supplementation of β-mannanase enzyme at the LS dose reduced dry matter intake (DMI) but did not affect milk yield or milk composition. Cows receiving LS produced 90 g more milk per kg of DMI compared with control cows. Somatic cell count (SCC) in milk was lower for cows fed the LS diet compared with cows fed control diets. Cows fed LS diet had lower DM, organic matter and crude protein digestibility compared with cows fed control diets. Starch, neutral detergent fiber, and acid detergent fiber digestibility were not affected by LS. Milk yield, DMI, SCC, and nutrient digestibility did not change for HS. Despite the reduced crude protein digestibility, reduced N intake led to similar fecal N excretions in LS cows and control cows (234 vs. 235 g/cow per day). Urinary N excretions remained similar between enzyme-fed and control cows (~190 g/cow per day), although the percentage of N intake partitioned to urinary N tended to be greater in LS than in control cows (31 vs. 27%). Cows fed LS significantly improved the percentage of apparently absorbed N partitioned to milk protein N (42 vs. 38%). When supplemented at 0.1% of dietary DM, β-mannanase can improve FCE and lower the SCC of dairy cows without affecting milk yield, milk composition, or total manure N excretions of dairy cows.  相似文献   

12.
Twelve multiparous lactating Holstein cows were used to compare effects of 1) no buffer, 2) 1.5% sodium bicarbonate, 3) 1.25% potassium carbonate, or 4) 1.85% potassium carbonate in total diet on rumen environment and liquid turnover, dry matter intake and digestibility, milk yield and composition, and blood acid-base balance. Cows fed buffered diets had greater dry matter intake and greater digestibility of dry matter, acid detergent fiber, and neutral detergent fiber than controls. Rumen pH was higher in cows fed buffers than in controls 2 to 4 h postfeeding, but buffered diets were not different. Rumen volume, osmolality, and liquid turnover were unaffected by dietary treatment. Molar percentage of rumen acetate was greater, propionate was less, and acetate:propionate ratio was greater in cows fed 1.85% potassium carbonate compared with other treatments. There were no treatment effects on milk yield, although milk fat percentage tended to be greater in buffered diets. Blood acid-base balance was not altered. Cows fed diets containing potassium carbonate performed similarly to those fed sodium bicarbonate. No adverse effects of potassium carbonate on rumen function or environment were observed. Potassium carbonate is an acceptable buffer and serves as a potassium supplement.  相似文献   

13.
Ruminants have a unique metabolism and digestion of unsaturated fatty acids (UFA). Unlike monogastric animals, the fatty acid (FA) profile ingested by ruminants is not the same as that reaching the small intestine. The objective of this study was to evaluate whole raw soybeans (WS) in diets as a replacer for calcium salts of fatty acids (CSFA) in terms of UFA profile in the abomasal digesta of early- to mid-lactation cows. Eight Holstein cows (80 ± 20 d in milk, 22.9 ± 0.69 kg/d of milk yield, and 580 ± 20 kg of body weight; mean ± standard deviation) with ruminal and abomasal cannulas were used in a 4 × 4 Latin square experiment with 22-d periods. The experiment evaluated different fat sources rich in linoleic acid on ruminal kinetics, ruminal fermentation, FA abomasal flow, and milk FA profile of cows assigned to treatment sequences containing a control (CON), with no fat source; soybean oil, added at 2.68% of diet dry matter (DM); WS, addition of WS at 14.3% of diet DM; and CSFA, addition of CSFA at 2.68% of diet DM. Dietary fat supplementation had no effect on nutrient intake and digestibility, with the exception of ether extract. Cows fed fat sources tended to have lower milk fat concentration than those fed CON. In general, diets containing fat sources tended to decrease ruminal neutral detergent fiber digestibility in relation to CON. Cows fed WS had lower ruminal digestibility of DM and higher abomasal flow of DM in comparison to cows fed CSFA. As expected, diets containing fat supplements increased FA abomasal flow of C18:0 and total FA. Cows fed WS tended to present a higher concentration of UFA in milk when compared with those fed CSFA. This study suggests that under some circumstances, abomasal flow of UFA in early lactation cows can be increased by supplementing their diet with fat supplements rich in linoleic acid, regardless of rumen protection, with small effects on ruminal DM digestibility.  相似文献   

14.
Twenty-four lactating Holstein cows were used in a 6-wk randomized block design trial with a 2 × 2 factorial arrangement of treatments to determine the effects of feeding ground corn (GC) or steam-flaked corn (SFC) in diets based on either annual ryegrass silage (RS) or a 50:50 blend of annual ryegrass and corn silages (BLEND). Experimental diets contained 49.6% forage and were fed as a total mixed ration once daily for 4 wk after a 2-wk preliminary period. No interactions were observed among treatments. Cows fed BLEND consumed more dry matter (DM), organic matter (OM), neutral detergent fiber (NDF), and acid detergent fiber (ADF) than those fed RS, but total-tract digestibility of OM, NDF, and ADF was greater for RS than for BLEND. No differences in nutrient intake were observed among treatments during wk 4 when nutrient digestibility was measured, but digestibility of DM and OM was greater for SFC than for GC. Cows fed BLEND tended to produce more energy-corrected milk than those fed RS, resulting in improved efficiency (kg of milk per kg of DM intake). When diets were supplemented with SFC, cows consumed less DM and produced more milk that tended to have lower milk fat percentage. Yield of milk protein and efficiency was greatest with SFC compared with GC. Blood glucose and milk urea nitrogen concentrations were similar among treatments, but blood urea nitrogen was greater for cows fed GC compared with those fed SFC. Results of this trial indicate that feeding a blend of annual ryegrass and corn silage is more desirable than feeding diets based on RS as the sole forage. Supplementing diets with SFC improved performance and efficiency compared with GC across forage sources.  相似文献   

15.
《Journal of dairy science》2023,106(9):6041-6059
This study evaluated the physical effectiveness of whole-plant corn silage (CS) particles stratified with the Penn State Particle Separator, composed of 19- and 8-mm-diameter sieves and a pan, for lactating dairy cows. Eight Holstein cows (27.6 ± 2.8 kg/d of milk, 611 ± 74 kg body weight; 152 ± 83 d in milk) were assigned to two 4 × 4 Latin squares (22-d periods, 16-d adaptation), where one square was formed with rumen-cannulated cows. Three CS particle fractions were manually isolated using the 8- and 19-mm diameter sieves and re-ensiled in 200-L drums. The 4 experimental diets were (% dry matter): (1) CON (control): 17% forage neutral detergent fiber (NDF) from CS (basal roughage), 31.5% starch, and 31.9% NDF; (2) PSPan: 17% forage NDF from CS + 9% NDF from CS particles <8 mm, 25.9% starch, and 37.9% NDF; (3) PS8: 17% forage NDF from CS + 9% NDF from CS particles 8 to 19 mm, 25.5% starch, and 38.3% NDF; and (4) PS19: 17% forage NDF from CS + 9% NDF from CS particles >19 mm, 24.9% starch, and 38.8% NDF. Cows fed PS8 had greater dry matter intake and energy-corrected milk yield (22.4 and 26.9 kg/d, respectively) than cows fed CON (20.8 and 24.7 kg/d) and PS19 (21.2 and 24.8 kg/d), but no difference was detected between PSPan (21.6 and 25.8 kg/d) and other treatments. Milk fat concentration was greater for PS8 than CON, with intermediate values for PSPan and PS19. Milk fat yield was greater for cows fed PS8 than CON and PS19, and cows fed PSPan secreted more fat than CON cows but were not different from cows fed the other 2 diets. Cows fed CON had a lower meal frequency than cows fed PSPan, shorter meal and rumination times than PS8, and greater meal size and lower rates of rumination and chewing than the other 3 diets. Total chewing per unit of NDF was higher for PS8 than PSPan, although neither treatment differed from CON or PS19. Cows fed PS19 had higher refusal of feed particles >19 mm than cows fed CON and PSPan. The refusal of dietary NDF and undigested NDF in favor of starch were all greater for PS19 than on the other treatments. Cows fed PS19 had a greater proportion of the swallowed bolus and rumen digesta with particles >19 mm than the other 3 diets. Cows fed CON had the lowest ruminal pH and greatest lactate concentration relative to the other 3 diets. Plasma lipopolysaccharide was higher for cows fed CON and PSPan than for cows fed PS8 and PS19, and serum d-lactate tended to be lower on PSPan than for CON and PS8. In summary, the inclusion of CS fractions in a low-forage fiber diet (CON) reduced signs of ruminal acidosis. Compared with CS NDF <8 and >19 mm, CS NDF with 8- to 19-mm length promoted better rumen health and performance of dairy cows. These results highlight the importance of adjusting CS harvest and formulating dairy diets based on the proportion of particles retained between the 8- and 19-mm sieves.  相似文献   

16.
《Journal of dairy science》2023,106(1):233-244
Lactation diets dependent on rumen undegradable protein (RUP) sources derived from soybean meal (SBM) products are generally high in Lys and poor in Met. We conducted an experiment to evaluate the effects of increasing dietary RUP and altering digestible AA supply by inclusion of heat-treated soybean meal (HTSBM) or high-protein corn dried distillers grains with soluble (DDGS) on performance in mid-lactation dairy cows. Twenty-four Holstein cows (200 ± 40 d in milk and 30.0 ± 3.92 kg/d of milk yield) blocked according to parity, milk yield, and days in milk were used in a 3 × 3 Latin square design experiment with 21-d periods. Treatments were (1) control (CON), a diet with 6.0% RUP containing 15.9% SBM as the main protein source; (2) HTSBM, a diet with 6.7% RUP containing 4.4% HTSBM partially replacing SBM; and (3) high-protein DDGS (FP; FlexyPro, SJC Bioenergia), a diet with 6.9% RUP containing 5.34% FP partially replacing SBM and ground corn. Diets had similar crude protein (16.9%) and net energy of lactation. Data were submitted to ANOVA using the mixed procedure of SAS software (SAS Institute Inc.). Treatment differences were evaluated using orthogonal contrasts: (1) increasing RUP (SBM vs. HTSBM + FP) and (2) altering digestible AA supply (HTSBM vs. FP). Cows fed HTSBM and FP had greater intake (values in parentheses represent treatment means of CON, HTSBM, and FP, respectively) of neutral detergent fiber (7.14, 7.35, and 7.69 kg/d), crude protein (4.27, 4.37, and 4.51 kg/d), and ether extract (0.942, 0.968, and 1.04 kg/d) compared with cows fed CON. Feeding FP resulted in greater intake of neutral detergent fiber and ether extract compared with HTSBM. Cows fed HTSBM and FP had lower sorting index for feed particles <4 mm than cows fed CON (1.029, 1.008, and 1.022). Feeding FP resulted in greater intake of feed particles <4 mm compared with HTSBM. Treatments containing HTSBM or FP tended to decrease organic matter digestibility (72.4, 71.2, and 71.1%), but no other effects were detected in digestibility of neutral detergent fiber, crude protein, or ether extract. No evidence for differences among treatments was detected in excretion of purine derivatives in milk and urine. Milk yield was greater in cows fed HTSBM or FP than in cows fed CON (28.0, 28.9, and 28.8 kg/d, respectively). Cows fed HTSBM or FP tended to have greater energy-corrected milk and protein yield compared with those fed CON. Milk protein concentration was greater in DDGS cows than those in the HTSBM group (3.45 and 3.40%, respectively). No differences were detected in milk fat yield and concentration, milk urea nitrogen, feed efficiency, or serum concentrations of urea and glucose. Overall, increasing dietary RUP by feeding HTSBM or FP improved intake of nutrients and milk yield without affecting feed efficiency. Altering digestible AA supply while maintaining similar dietary RUP had negligible effects on performance of cows.  相似文献   

17.
A study was carried out to verify the effect of Ca and P levels on production, digestibility, and serum bone metabolism biomarkers in dairy cows. Fifty-two nonlactating multiparous cows (≥3 lactations) were confined in a free-stall barn approximately 20 d before calving. A standard close-up diet was fed to cows once daily until d 2 postpartum. Cows were randomly assigned to 1 of 4 dietary treatments arranged in a 2 × 2 factorial approach averaging 0.64% Ca for high Ca (HCa), 0.46% Ca for low Ca (LCa), 0.47% P for high P (HP), and 0.38% P for low P (LP) on a dry matter basis. Experimental diets were fed twice daily from 3 d in milk (DIM) until 31 DIM. Intake and milk yield were recorded daily. Milk samples were collected on d 28, 29, and 30 postpartum for components analyses. Blood samples were drawn 10 d before expected calving, at calving, and at 15 and 30 DIM for serum analyses of osteocalcin, a biomarker of bone accretion, and pyridinoline, a biomarker of bone resorption. Total fecal collection was conducted when cows in a block averaged 20 DIM. Intake and production traits were not significantly affected by any of the dietary treatments. Cows averaged nearly 21 kg/d dry matter intake and 44 kg/d milk yield from 6 to 31 DIM. There were no significant differences across treatments in body weight or body condition score loss. Phosphorus intake, P fecal output, P digestibility, and P apparent absorption were affected by dietary P content. Calcium intake was higher with HCa, but Ca fecal output, digestibility, and apparent absorption showed an interaction between dietary Ca and dietary P. Calcium fecal output was 100.6 g/d for cows fed HCaHP, intermediate for cows on the HCaLP diet (89 g/d), and similar among cows fed the 2 LCa diets (70 g/d with LCaHP and 75 with LCaLP). There was no significant effect of Ca or P on osteocalcin measurements. Pyridinoline concentrations were affected by dietary Ca levels and tended to have a significant dietary Ca × dietary P interaction. Phosphorus apparent digestibility occurred independently of dietary Ca levels. Results of this study suggest that more bone was mobilized in cows fed LCa diets, but excess dietary P caused greater and prolonged bone mobilization regardless of dietary Ca content.  相似文献   

18.
Twenty-four primiparous Holstein cows were fed corn silage:grain (1:1, DM basis) and hay (.9 kg/d) beginning 30 d prepartum and through wk 18 of lactation. Ten grams of Biomate Yeast Plus (5 X 10(9) cfu of Saccharomyces cerevisiae/g) were top-dressed on the a.m. allotment of corn silage:grain fed to 12 cows. Corn silage:grain was restricted during prepartum and thereafter fed for ad libitum intake. Cows fed supplemental yeast peaked earlier and had a higher milk yield compared with control cows (wk 7, 29.5 kg/d vs. wk 11, 28.7 kg/d). Digestibilities of protein and cellulose were improved in cows fed supplemental yeast, contributing to a greater DMI during the first 6 wk of lactation and a higher average milk yield through wk 18 of lactation compared with control cows (27.2 vs. 26.0 kg/d).  相似文献   

19.
The effect of starch source and supplemental phytic acid (PA) on N partitioning and excretion and ammonia volatilization from dairy manure was evaluated with 8 midlactation cows. Cows were randomly assigned to treatments in replicated 4 x 4 Latin squares with four 18-d periods. Diets were 61% forage, 25% starch, 17.2% crude protein, and 31% neutral detergent fiber and included dry ground corn (DG) or steam flaked corn (SF) with no supplemental P (L; 0.34% P) or supplemental purified PA (0.45% P) to provide additional P from a non-mineral source. Total collection of milk, urine, and feces was conducted on d 16 to 18 of each period. Cows fed SF had lower dry matter (DM) intakes than those fed DG, which, in addition to increased starch digestibility and ruminal fermentation, contributed to higher DM digestibility. Cows fed SF had reduced feces and urine excretion compared with cows fed DG. Also, N intake for cows fed SF was lower, and N digestibility was higher, compared with cows fed DG; therefore, N excretion in both feces and urine was reduced in these cows. Despite the differences in DM intake, lactation performance was not affected by starch sources. Therefore, the efficiency of N utilization increased with SF. Addition of PA did not affect N intake or utilization. Feces and urine were subsampled from each cow, and wet feces and urine were mixed in sealed chambers in the proportions excreted. Ammonia volatilization was measured for 36 h using acid traps sampled on a planned time course. Nitrogen at time zero (A0), rate of ammonia emission (k), and residual N (R) were calculated using the exponential decay model At = A0 e(-kt) + R. Rate of ammonia loss from mixed feces and urine was lower from cows fed SF than from those fed DG. Altering dietary starch source to improve nutrient digestibility and to reduce N excretion by lactating cows may provide opportunity to reduce ammonia losses from manure.  相似文献   

20.
Two experiments were conducted to evaluate the effects of maturity and mechanical processing of two hybrids of whole plant corn silage on DM and OM digestibility, nitrogen metabolism, ruminal fermentation, and milk production and composition in lactating Holstein cows. In the first experiment, Pioneer hybrid 3845 whole plant corn was harvested at hard dough, one-third milkline, and two-thirds milkline with a theoretical length-of-cut of 6.4 mm. At each stage of maturity, corn was harvested with (1-mm roll clearance) and without (15.9-mm roll clearance) mechanical processing using a John Deere 5830 harvester with an on-board kernel processor. In the second experiment, Pioneer hybrids 3845 and Quanta were harvested at one-third milkline, two-thirds milkline, and blackline stages of maturity with and without mechanical processing. The theoretical length-of-cut was 12.7 mm. Total tract DM and OM digestibilities were lower for cows fed diets containing processed corn silage in experiment 1, and tended to be lower for cows fed diets containing unprocessed corn silage in experiment 2. Ruminal acetate concentrations were greater and ruminal propionate concentrations were lower 2 and 6 h after feeding for cows fed diets containing corn silage harvested at physiological maturity in experiment 2. This was due to decreased digestion of starch at advanced maturities in experiment 2. Ruminal pH tended to decline rapidly after feeding for cows fed hybrid Quanta (2 h) compared to hybrid 3845 (5 h) corn silage based diets. Ruminal acetate concentrations decreased and ruminal propionate concentrations increased 2 and 6 h after feeding for cows fed diets containing hybrid Quanta corn silage compared to hybrid 3845 corn silage. This was related to a greater starch concentration in the corn silage, greater starch intake, and increased rate of starch digestion for cows fed hybrid Quanta corn silage-based diets. Microbial nitrogen flow was lower and feed nitrogen flow was greater for cows fed diets containing hybrid Quanta corn silage. The lower microbial nitrogen flow was due to lower microbial nitrogen concentration and nonammonia nitrogen flow to the duodenum. Milk fat and protein concentrations had a strong quadratic relationship with forage NDF intake as a percentage of body weight. When forage NDF intake as a percentage of body weight dropped below 0.70%, there was a rapid decline in milk fat and protein concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号