首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

In this study, g-C3N4-TiO2 nanocomposite structure has been loaded with Co3O4 via electroless plating and thermal annealing to form Co3O4@g-C3N4-TiO2 catalyst material for H2 generation from NaBH4 hydrolysis. The material characterizations of the fabricated catalyst have been performed before and after exposure to an aqueous NaBH4 solution to understand the changes in catalytic performance and material properties. The Arrhenius activation energies have been determined to be 58 kJ mol?1. The hydrogen generation rates have been observed as 180 and 1200 mL min?1 gcat?1 for the catalyst hydrolysis of NaBH4 at 30 °C and 60 °C, respectively. The catalytic activity performed in NaBH4 solution exhibited good reusability.

Graphical Abstract
  相似文献   

2.
Chi  Xianhu  Tan  Siyu  Song  Jun  Liu  Fengjiao  Tian  Yaxi  Yuan  Haibin  Guan  Rongfeng 《Catalysis Letters》2021,151(12):3592-3602

g-C3N4 has received much attention due to its role in photocatalytic hydrogen evolution and contaminants degradation. Nevertheless, the photocatalytic property of bulk g-C3N4 (BCN) is seriously restricted owing to its short photo-generated carrier lifetime, small specific surface area and low visible light utilization rate, etc. In this study, nanosheet constructing and heteroatom phosphorus (P) doping, as two important strategies, are synergistically adopted to co-enhance its activity. The controllable P atoms were successfully doped into the framework of g-C3N4 nanosheet (NCN-P) through forming P-N bond. The optimized NCN-P sample displays an excellent H2 production rate (3263.99 µmol·g?1·h?1) under white LED light irradiation, which is more than 11.6 times that of the BCN. Moreover, it also exhibits excellent photocatalytic degradation ratio of tetracycline reached 80% in 1 h. Furthermore, the optimized NCN-P sample still maintains robust photocatalytic performance after recycling tests, making it as a bright prospect photocatalyst for solar energy utilization and contaminants removal.

Graphic Abstract
  相似文献   

3.
Zhang  Jiapeng  Li  Yilin  Yang  Lijing  Zhang  Fengming  Li  Ran  Dong  Hua 《Catalysis Letters》2022,152(5):1386-1391

A monolithic complexed catalyst composed of a piece of Co foam decorated with Ru nanosheets has been fabricated. This catalyst has demonstrated excellent performance in catalyzing NaBH4 hydrolysis under alkaline conditions. Most importantly, the bulky size of the developed catalyst provides convenience to control the start and stop of hydrogen production by manipulating the attachment and detachment between the catalyst and NaBH4 solution. These features endow this catalyst with great potential for on-site hydrogen supply.

Graphic Abstract
  相似文献   

4.
Fang  Fei  Chang  Jiarui  Zhang  Jie  Chen  Xuenian 《Catalysis Letters》2021,151(12):3509-3515

An efficient solvent-free catalyst system for hydrosilylation of aldehydes and ketones was developed based on iron pre-catalyst Fe2(CO)9/C6H4-o-(NCH2PPh2)2BH. The reactions were tolerant of many functional groups and the corresponding alcohols were isolated in good to excellent yields following basic hydrolysis of the reaction products. The reaction is likely catalyzed by an in situ generated pincer ligated iron hydride complex.

Graphic Abstract
  相似文献   

5.

Ni–Mo2C and Ni–WC were evaluated in dry reforming of methane employing different CH4/CO2 ratios. Ni–Mo2C remained active under an excess of CH4, but deactivation occurred under an excess of CO2. Ni–WC was resistant to excess of CO2 but showed carbon deposition under excess of CH4.

Graphic Abstract
  相似文献   

6.

This work addresses the reduction of NOx by H2 under O2-rich conditions using Al2O3/SiO2-supported Pt catalysts with different loads of WOx promotor. The samples were thoroughly characterised by N2 physisorption, temperature-programmed desorption of CO, scanning electron microscopy, X-ray diffraction, laser raman spectroscopy, X-ray photoelectron spectroscopy and diffuse reflectance infrared fourier transform spectroscopy with probe molecule CO. The catalytic studies of the samples without WOx showed pronounced NOx conversion below 200 °C, whereas highest efficiency was related to small Pt particles. The introduction of WOx provided increasing deNOx activity as well as N2 selectivity. This promoting effect was referred to an additional reaction path at the Pt-WOx/Al2O3/SiO2 interface, whereas an electronic activation of Pt by strong metal support interaction was excluded.

Graphic Abstract
  相似文献   

7.
Lai  Guan-Hui  Huang  Bi-Sheng  Yang  Ta-I  Chou  Yi-Chen  Huang  Tsao-Cheng 《Catalysis Letters》2022,152(10):3100-3109

Heterogeneous catalysts based on metallic nanoparticles are promising candidates for wastewater treatment. However, they aggregate easily as a result of their high surface energy. Polymers are very popular supporting catalyst materials because they can stabilize the metallic nanoparticles to prevent aggregation. In this study, aniline-pentamer-based electroactive polyurea (EPU) was synthesized by oxidative coupling, and Au nanoparticles were anchored to the EPU via its aniline segments. Electrochemical redox behavior of the as-synthesized EPU was monitored by electrochemical cyclic voltammetry. The Au/EPU composite was characterized by FTIR, UV–vis, TGA, SEM, TEM, XRD XPS, and ICP-OES. SEM showed that the EPU had a flower-like structure, and the Au nanoparticles were uniformly immobilized on the EPU surface. The reduction of 4-nitrophenol (4-NP) by NaBH4 was used as a model reaction to evaluate the catalytic properties of the Au/EPU composite. Moreover, the optimization of the reaction conditions for the reduction of 4-NP to 4-aminophenol (4-AP) were also studied in detail. The Au/EPU composite catalyzed the reduction of 4-NP to 4-AP within 4 min with a rate constant of 2.4?×?10–2 s?1 and an activation energy of 40.17 kJ/mol. The Au/EPU composite demonstrated high conversion (98%) after 20 successive cycles.

Graphical abstract
  相似文献   

8.
Du  Hong  Jiang  Miao  Zhao  Ziang  Li  Yihui  Liu  Tao  Zhu  Hejun  Zhang  Z. Conrad  Ding  Yunjie 《Catalysis Letters》2021,151(12):3632-3638

Although numerous efforts have been made in direct syngas conversion to higher alcohols via Fischer–Tropsch synthesis, the higher alcohols distribution remains a challenge. Here, we introduce alkaline earth metal oxide as promoter into activated carbon supported cobalt catalyst to tune distribution of higher alcohols. With the addition of Mg, the distribution of C2-5 alcohols increase from 41.2 to 75.8% accompanying with distribution of C6-18 alcohols decrease from 52.8 to 14.0%. Ba-promoted Co based catalyst (CoBa/AC) presents similar alcohols distribution to un-promoted catalyst, while the alcohol selectivity over CoBa/AC is higher than Co/AC. For promoted catalysts, the distribution of C6-18 alcohols increased in the order of Mg?<?Ca?<?Sr?<?Ba. The characterization results exhibit that the promoter addition facilitates the cobalt carbide formation, which leads to enhancement of selectivity to higher alcohols. The available active cobalt sites of promoted Co based catalysts increase in the same above order of Mg?<?Ca?<?Sr?<?Ba.

Graphic Abstract
  相似文献   

9.
Huang  Pengpeng  Pan  Deng  Lai  Qian  Jiang  Lihong  Zheng  Yane  Wang  Yaming  Zhi  Yunfei  Shan  Shaoyun  Hu  Tianding  Su  Hongying 《Catalysis Letters》2021,151(10):2851-2863

APO-11 aluminophosphate molecular sieve was prepared by hydrothermal method of aluminum hydroxide with diisopropylamine. Ni–P/APO-11 amorphous alloy catalysts were prepared by chemical reduction method and used for the hydrogenation of α-pinene reaction. The catalysts were characterized by X-Ray photoelectron spectroscopy (XPS), Nitrogen adsorption–desorption isotherms (BET), scanning electron microscope (SEM), transmission electron microscope (TEM) and fourier transform infrared spectrometer (FT-IR).The prepared conditions of the Ni–P/APO-11 catalysts played important roles on the hydrogenation of α-pinene reaction. It was found that the preparation temperature, P/Ni molar ratio and pH value had great influence on the reduction dosage, dispersion and particle sizes of the catalysts, thus affecting the reactivity of the catalysts. The appropriate reaction conditions explored were at 30 °C, n(P/Ni)?=?5 and pH?=?8, obtaining a 90.65% conversion of α-pinene and 97.87% selectivity to cis-pinane. Under these conditions, the catalysts exhibited better repeatability and stability.

Graphic Abstract
  相似文献   

10.

The magic number clusters Au102(p-MBA)44 and Au144(p-MBA)60 were synthesized and tested for their ability to catalyze the reduction of 4-nitrophenol. Kinetic and thermodynamic analyses demonstrate that both clusters are effective catalysts with activation energies less than 10 kJ/mol and turnover frequencies approaching 103 h–1 per surface gold atom.

Graphic Abstract
  相似文献   

11.
Wang  Hong  Li  Yaoyao  Liu  Zhongying  Liu  Jiawang  Yang  Renchun 《Catalysis Letters》2021,151(6):1707-1719

To achieve the well-dispersed Ni–NiS dual-cocatalysts anchored CdS, the samples have been successfully constructed by a cheap and convenient method of hydroxy acid assisted hydrothermal method. Based on the coordination and reduction effects of hydroxy acids, Ni2+ can be facilely transformed into the high dispersed dual-function sites of Ni0 electrons trap and NiS holes reservoir. The highly dispersed Ni–NiS dual-cocatalysts not only provide more dual-function active sites but also present distinctly enhanced visible light absorption, effectively separated electron hole pairs and quickly migrated charge carriers. The optimized Ni–NiS/CdS–CA presented an excellent photocatalytic H2 generation rate of 57.88 mmol·h?1·g?1, which is about 15.35 times higher than that of NiS/CdS. Moreover, the stability can be distinctly increased by modulating the surface cover of Ni–NiS with a suitable Ni/(Ni?+?Cd) atomic ratio. This work would provide a unique strategy to design the high effective photocatalysts with high dispersed bi-function dual cocatalysts.

Graphic Abstract

The well-dispersed Ni-NiS dual-cocatalysts anchored CdS in situ have been successfully constructed via the coordination and reduction effects of hydroxy acid assisted hydrothermal method. Ni-NiS/CdS-CA not only presents dual-function active sites but also exhibits distinctly enhanced visible light absorption, effectively separated electron hole pairs and quickly migrated charge carriers, resulting in a remarkable enhancement in photocatalytic H2 evolution activity.

  相似文献   

12.
Hu  Aiyun  Wang  Haijun  Ding  Jian 《Catalysis Letters》2022,152(10):3158-3167

In order to further improve the catalytic activity and stability of heterogeneous acid catalysts, a polystyrene microspheres modified sulfonic acid-based catalyst (PS-SO3H) was prepared. PS-SO3H was characterized by Fourier transform infrared spectroscopy, powder X-ray diffraction, scanning electron microscope, transmission electron microscope, N2 adsorption–desorption, and X-ray photoelectron spectroscopy. Catalytic efficiency was determined using the reaction of furfuryl alcoholysis to ethyl levulinate (EL). The obtained results showed that PS-SO3H had excellent catalytic performance, with EL yield of 94.7%. In addition, PS-SO3H was easily separated from the reaction system and recycled multiple times without significant reduction in activity. High catalytic activity stemmed from the effect of Brønsted acid sites and appropriate structural properties.

Graphical Abstract
  相似文献   

13.
Liu  Yonghui 《Catalysis Letters》2022,152(5):1338-1346

Achieving the removal of the toxic nitric oxide (NO) gas efficiently and cheaply has always been a challenge. Herein, we systematically investigate the reduction mechanisms of NO on the surface of the Fe–PCs (PCs?=?phthalocyanines) using density functional theory calculations. The isolated iron atom not only plays the role of an adsorption and activation site for the NO molecule but also works as an electron transfer medium in the whole reaction process. The results indicate that the catalytic reduction of NO to N2 takes place through a continuous two-step pathway. The first step involves the reduction of NO to N2O through a competitive Langmuir–Hinshelwood and Eley–Rideal mechanisms with the energy barrier of 1.19 eV and 0.60 eV, respectively. The second step involves the reduction of N2O to N2 with an energy barrier of 0.91 eV. These reaction pathways are favorable thermodynamically, thus the Fe–PCs catalyst is a promising candidate for the abatement of NO gases.

Graphic Abstract
  相似文献   

14.
Amirov  Nurlan  Vakhshouri  Amir Reza 《Catalysis Letters》2021,151(11):3273-3286

The statistical selectivity models were developed for four different Fischer–Tropsch synthesis product range, including methane (CH4), light olefins (C2=C4), light paraffins (C2–C4), and long-chain hydrocarbons (C5+), based on the experimental data obtained over thirteen γ-Al2O3 supported cobalt-based catalysts with different cobalt particle and pore sizes. The input variables consist of cobalt metal particle size and catalyst pore size. The cubic and quadratic polynomial equations were fitted to the experimental data, however, the mathematical models were subjected to model reduction for the enhancement of model adequacy, which was investigated through ANOVA. The multi-objective optimization revealed that the maximum C5+?selectivity (84.150%) could be achieved at the cobalt particle size and pore sizes of 14.764 and 23.129 nm, respectively, while keeping the selectivity to other hydrocarbon products minimum.

Graphic Abstract
  相似文献   

15.
Ma  Li-hai  Gao  Xin-hua  Ma  Jing-jing  Hu  Xiu-de  Zhang  Jian-li  Guo  Qing-jie 《Catalysis Letters》2022,152(5):1451-1460

LaBO3 (B?=?Fe, Mn, and FeMn) perovskite-type oxides were prepared by sol–gel method and then used as catalysts in CO hydrogenation for light olefins. The catalysts were characterized using XRD, H2-TPR, SEM, CO (CO2)-TPD, and XPS. The results showed that the lattice oxygen migration and oxygen vacancies promoted oxygen mobility by doping Mn2+ at the B site, Moreover, the presence of manganese as a promoter in the catalyst increased olefin selectivity compared with the olefin selectivity of the catalyst containing iron at the B-site and exhibited resistance to carbon deposition; while reducing the metal elements. In CO hydrogenation, potassium-promoted LaFeMnO3 catalysts afforded high catalytic activity and C2=–C4= selectivity. An O/P value of 5.0 and a C2=–C4= fraction of 54% were achieved for all hydrocarbons with low methane selectivity.

Graphic Abstract
  相似文献   

16.

In this research, four cholines supported on core–shell iron oxides, Fe2O3@MgO@Ch.OAc (choline acetate), Fe2O3@MgO@Ch.OH (choline hydroxide), Fe3O4@Ch.OAc, Fe3O4@Ch.OH, were synthesized. The synthesized catalysts were tested in 1,2,3-triazoles synthesis by the reaction of nitromethane, aldehyde, and benzyl azide in EtOH as a green solvent. Among four synthesized heterogeneous catalysts, the Fe2O3@MgO@ch.OAc showed superior catalytic activity for the reaction and afforded the desired triazoles in good isolated yields under mild reaction conditions.

Graphic Abstract
  相似文献   

17.
Chen  Yaqi  Wu  Xiaoren  Liu  Qing  He  Maoshuai  Bai  Hongcun 《Catalysis Letters》2022,152(9):2738-2744

This work proposed a new path to synthesize Ni-phyllosilicate through the reaction of nickel hydroxide and silica sol on the surface of Ni-foam to form the monolithic Ni-phyllosilicate/Ni-foam catalyst. Ni-phyllosilicate could reprint the morphology of nickel hydroxid and firmly anchor on the framework of Ni-foam, which obtained fine Ni particles of 2.8 nm after reduction in H2 at 650 °C, resulting in high catalytic activity for CO2 methanation. In addition, the Ni-phyllosilicate/Ni-foam catalyst showed high long-term stability in a 100 h-lifetime test owing to the combined effects of surface confinement of Ni-phyllosilicate, firm anchoring between Ni-phyllosilicate and Ni-foam, as well as the high heat transfer property of Ni-foam.

Graphical Abstract
  相似文献   

18.
Wu  Di  Gao  Kaiyue  Tang  Zhi  Zhou  Xiaoyu  Xie  Fazhi  Xie  Wenjie  Wang  Xiufang  Zhao  Xiaoli 《Catalysis Letters》2021,151(12):3721-3732

In this study, the porous ultrathin graphitic carbon nitride (CN) nanosheets with rich C and nitrogen defects were prepared by one-step calcining the mixture of melamine and glucose (Glu) in air atmosphere (Glu-CN). Introducing simultaneously rich C atoms and nitrogen defects into CN structures continuously modulates the bandgaps from 2.67 to 1.81 eV of CN photocatalysts. Due to large surface area, more active sites, remarkably longer lifetime of charge carriers and adjustable band gap structure, the prepared ultrathin porous CN nanosheets show the enhanced photocatalytic performance for the degradation of methyl orange (MO) under visible light. The degradation efficiency of optimal CN nanosheet photocatalyst for MO is 5.75 times that of bulk CN. This work provides a facile and universal relevance approach to engineer the band structures of CN by introduction of rich C and porous morphology for high-performance photocatalytic, which can provide informative principles for the design of efficient photocatalysis systems for solar energy conversion.

Graphic Abstract
  相似文献   

19.
Chen  Lei  Chen  Yanjiao  Dai  Xuan  Guo  Jiaming  Peng  Xinhua 《Catalysis Letters》2022,152(10):2881-2891

The efficient SBA-15 supported silver catalysts(Ag/SBA-15) were prepared and characterized by ICP-OES, XRD, TEM, SEM, XPS and N2 adsorption–desorption techniques. The catalysts exhibited an excellent catalytic activity for the aerobic oxidation of toluene to benzaldehyde under solvent-free conditions. Conversion of toluene and selectivity of benzaldehyde were 50% and 89% respectively over catalyst with 9.1 wt% Ag loading (10Ag/SBA-15). A wide range of substrates were tolerated under the selected reaction conditions. The kinetic study shows that the oxidation of toluene over 10Ag/SBA-15 is pseudo-first-order reaction and the activation energy Ea is 45.1 kJ/mol. A plausible mechanism involving oxygen free radicals was proposed for the aerobic oxidation reaction. Compared with the traditional method, the newly designed heterogeneous catalytic system shows better economic applicability, environmental friendliness and broader application prospects.

Graphical abstract
  相似文献   

20.
Li  Xinyue  Le  Son Dinh  Nishimura  Shun 《Catalysis Letters》2022,152(9):2860-2868

Beta-zeolite supported ruthenium catalysts for reductive amination of 5-hydroxymethyl-2-furaldehyde (HMF) with an aqueous solution of ammonia (NH3 aq.) and molecular hydrogen (H2) are examined to synthesize the corresponding primary amine of 5-aminomethyl-2-furylmethanol (FAA). Various SiO2/Al2O3 (Si/2Al) ratios of the beta-zeolite support were used to prepare the Ru-based catalysts. It was observed that the Si/2Al ratio was contributed to the catalytic activity, and the Si/2Al?=?150 of beta-zeolite was found to be the most active for Ru catalyzed reductive amination of HMF, affording ca. 70% yield. Characterization techniques were taken to analysis the factors that influence the reactivity of catalysts, and which revealed that not only the ruthenium nanoparticle size but also the ratio of RuO2 against metallic Ru species were crucial factors for the reactivity of reductive amination of HMF to FAA.

Graphical Abstract
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号