首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 89 毫秒
1.
摘要:以丙烯酰胺(AM)、2-丙烯酰胺-十二烷基磺酸钠(AMC12S)、疏水单体GTE-10为原料,通过反相乳液聚合法制备了一种缔合型耐盐聚合物p(AM/AMC12S/GTE-10)。通过FTIR、1HNMR、SEM、TEM及激光粒度分析仪对其结构和形貌进行表征,并对其流变性能进行评价。结果表明,疏水单体GTE-10成功引入聚合物中,聚合完成后的乳液粒径分布集中且均一,盐的加入使得p(AM/AMC12S/GTE-10)分子聚集态更紧密,形成的空间网络结构更稳定。质量分数为0.7%的p(AM/AMC12S/GTE-10)聚合物水溶液在140 ℃时表现出较好的耐温性能;在120 ℃,170 s-1条件下剪切1 h,在质量浓度为20000 mg/L的NaCl和CaCl2水溶液中分别配制质量分数0.7%的聚合物溶液,其黏度分别为64.7和54.2 mPa·s;触变性能测试表明,聚合物具有较好的剪切恢复性能;黏弹性测试结果表明,盐水条件下储能模量(G′)>损耗模量(G″),金属离子与苯氧乙烯基发生络合反应,使分子间作用力增强,形成的空间结构更稳定且难被破坏,黏弹性更高。  相似文献   

2.
针对高温储层压裂需求,以丙烯酰胺(AM)、丙烯酸(AA)、十八烷基二甲基烯丙基氯化铵(ODAAC)和十八烷基甲基丙烯酸酯(SMA)为原料制备了一种疏水缔合聚合物(AAOS),再使用低分子醇(乙二醇、丙三醇、正丙醇)、表面活性剂(椰子油脂肪酸二乙醇酰胺和十二烷基硫酸钠)和AAOS配制开发一种“自交联”耐高温清洁水性稠化剂(FPM-1)。SEM结果表明,质量分数为0.30 %的FPM-1水溶液能显著增强AAOS聚合物分子间的疏水缔合交联作用,增大聚合物的流体力学体积。通过对FPM-1的溶解性、表观黏度、耐盐性、流变学测试表明,FPM-1溶液为高黏弹性流体,悬砂性能好;质量分数为0.27 %的AAOS在水中的溶解时间为7 min,最终黏度为90 mPa·s,质量分数为0.60 %的FPM-1(具有等效聚合物含量)在水中的溶解时间仅需3 min,且最终黏度为165 mPa·s,表明FPM-1体系能显著提高聚合物的黏度和溶解速度。在90℃,170 s-1条件下剪切1 h后,质量分数为0.27 %的AAOS水溶液的黏度为51 mPa·s,质量分数为0.60 %的FPM-1水溶液黏度为77 mPa·s;质量分数为1.40 %的FPM-1水溶液在180℃,170 s-1条件下剪切1 h,最终黏度为53 mPa·s;质量分数为0.60 %的FPM-1在5×104 mg/L矿化度盐水中黏度保持率为60 %,因此,FPM-1水溶液具有优异的耐盐、耐高温、耐剪切性能。通过对破胶液的表/界面张力测试表明,FPM-1体系破胶液具有低的表/界面张力,有利于破胶液的返排和回收再利用。  相似文献   

3.
以二乙醇胺(DEA)、丙烯酸甲酯(MA)、三羟甲基丙烷(TMP)、顺丁烯二酸酐(MAH)为原料,合成了一种端羧基超支化大单体HPAE-C。并以HPAE-C、丙烯酰胺(AM)、丙烯酸(AA)以及2-丙烯酰胺基-2-甲基丙磺酸(AMPS)为单体,在水溶液中进行自由基聚合得到一种四元共聚物稠化剂PHPAE-C。通过FTIR和1HNMR对其结构进行表征。评价了超支化稠化剂的溶液性质和交联性能。结果表明,稠化剂质量浓度为3000 mg/L(剪切速率为7.34 s-1,25℃)时,溶液表观黏度可达846.7 mPa·s,升温至90℃时,黏度仍为570 mPa·s,并且在Na+质量浓度为6000 mg/L、Ca2+和Mg2+质量浓度为600 mg/L时表观黏度仍能达到300mPa·s以上,说明PHPAE-C具有良好的增黏、耐温、耐盐和抗剪切性能;在交联比m(聚合物水溶液)∶m(乙酰丙酮锆)=100∶0.06、交联温度为55 ℃、pH=5时交联效果最佳。并对交联效果最佳的压裂液进行了性能评价,结果表明,在120℃、170s-1下剪切80 min后,该体系的表观黏度可达到450 mPa·s左右,并且是一种具有良好悬砂、破胶性能的低伤害压裂液体系。  相似文献   

4.
采用丙烯酰胺(AM)、丙烯酸(AA)、2-丙烯酰胺-2-甲基丙烷磺酸(AMPS)和水溶性阴离子疏水单体S-18制备了新型耐盐疏水缔合聚合物S-18HPAM。聚合放热测试表明:疏水单体含量的增加导致放热时间的延长,更有利于疏水结构的形成。微观结构测试表明:聚合物具有复杂的网状结构,在NaCl溶液中网状结构更为明显。流变测试结果表明:聚合物在盐溶液中具有良好的耐温和抗剪切性能。聚合物质量分数为0.3%(基于溶液总质量),温度90℃,剪切速率170 s–1和NaCl质量浓度20000 mg/L条件下,剪切后表观黏度大于70 mPa·s。在总矿化度20000 mg/L模拟地下水条件下,S-18HPAM质量分数为0.3%,剪切后黏度为70 mPa·s,加入质量分数0.5%表面活性剂十二烷基硫酸钠(SDS)后,黏度增加到170m Pa·s。储能模量G'随着聚合物质量分数的增加而增大,体系弹性增强,同时疏水结构单元数量增加,形成致密的空间网络结构。  相似文献   

5.
以丙烯酰胺(AM)、丙烯酸(AA)、N-(3-甲基丙烯酰胺基丙基)-N,N-二甲基十六烷基溴化铵(NADA)以及1-二甲胺基烯丙基膦酸(DMAAPA)为原料,制备了一种水溶性两性离子共聚物驱油剂(ANND),对其进行了FTIR结构表征,考察了NADA与DMAAPA的加量和配比、引发剂加量、温度对共聚物特性黏数的影响,探究了共聚物的耐盐、抗温、流变等性能。结果表明:聚合物ANND具有良好的水溶性;在相同条件下,与HPAM溶液进行对比,共聚物ANND溶液在剪切速率500 s-1下的黏度保留值为28.46 mPa·s,而1000万分子量的HPAM的为23.1 mPa·s;当温度为100 ℃,剪切速率为170 s-1时,ANND黏度为40.48 mPa·s,而HPAM溶液的为31.31 mPa·s;在80 ℃下老化10 d后,其黏度保留率为38%,高于同等条件下HPAM溶液的17%;在抗盐性实验中,2000 mg/L共聚物ANND溶液在质量浓度为30000 mg/L的NaCl,2000 mg/L的MgCl2和CaCl2溶液中的表观黏度分别为28.9、32.1和30.7 mPa·s,优于HPAM的9.8、17.7和16.3 mPa·s。在模拟驱油实验中,ANND的采出率为55.67%,与水驱相比,能够提高原油采收率达14.30%;与HPAM相比,提高原油采收率6.73%。  相似文献   

6.
以丙烯酰胺(AM)、丙烯酸(AA)、2-丙烯酰胺基-2-甲基丙磺酸(AMPS)、甲基丙烯酸二甲氨基乙酯-十二烷基溴(DMDB)为原料,通过自由基聚合法制备了AM/AA/AMPS/DMDB表面活性聚合物。利用红外光谱和核磁氢谱对聚合物进行结构表征,并考察了引发剂用量、单体质量分数、单体投加量等因素对聚合物溶液的表观黏度的影响。与部分水解聚丙烯酰胺(HPAM)进行对比,评价了其耐温、抗盐、抗剪切、抗老化、乳化性等性能。结果表明:该聚合物具有较好的耐温抗盐性,耐剪切和抗老化性也均优于HPAM;界面张力测试和乳化性测试表明该聚合物具有一定乳化性和降低界面张力的能力。  相似文献   

7.
:以丙烯酰胺(AM)、十八烷基二甲基烯丙基氯化铵(ODAAC)和抗盐性非离子功能单体异构十烷聚氧乙烯醚丙烯酸酯(ECY)为原料,通过水溶液聚合反应合成了一种抗盐疏水缔合聚合物(HLMY)。通过黏度、荧光光谱、扫描电镜(SEM)和流变测试研究了HLMY在水溶液中的自组装缔合性能以及盐和温度对HLMY缔合行为的影响。结果表明,HLMY的临界缔合质量分数约为0.30%~0.35%。盐的加入增强了拟空间网络结构,同时,HLMY分子在NaCl溶液中比在CaCl2溶液中聚集得更紧密。在90、120和180 ℃,170 s-1下,将质量分数为0.6%HLMY溶液(以质量分数为5%NaCl盐溶液为溶剂)剪切时间小于500 s时,黏度随温度的升高而增加,说明HLMY在NaCl中具有优异的盐增稠能力,继续剪切2500 s时,黏度仍大于50 mPa·s。弹性模量(G′)随HLMY质量分数的增加而增大,体系的弹性增大,疏水结构单元数增加,形成密集的拟空间网络结构。  相似文献   

8.
为了改进聚丙烯酰胺在原油三次采收领域存在的耐温耐盐性能差等问题,采用无助溶剂的无皂乳液聚合方式,以微量(0.05mol%)辣素衍生单体N-[3-(丙烯酰氨基甲基)-2-羟基-4,5-二甲基苄基]-丙烯酰胺(HMMAM)为功能性单体,与甲基丙烯酸十八烷基酯(SMA)、甲基丙烯酸异冰片酯(IBOMA)等共聚合成新型疏水缔合聚合物PACSAM和PACIAM以提高聚丙烯酰胺的各项耐受性能。采用FTIR、1HNMR、TGA、SEM等进行结构和形貌表征;探讨聚合物的疏水缔合特性、耐温耐盐性、溶解性及缓蚀性能等。结果表明,PACIAM和PACSAM存在稳定的三维网状结构,临界缔合浓度分别为4.5 × 10-3 g/mL和4 × 10-3 g/mL,微量辣素衍生单体的引入使0.01 g/mL聚合物溶液在30℃下表观黏度提升至776 mPa·s和1224 mPa·s,90 ℃黏度保留率为37.57%和41.44%,在0.01 g/mL的NaCl溶液中黏度保留率为37.57%和42.12%,溶解速率为25 min和27 min,4 × 10-3 g/mL的聚合物溶液的缓蚀效率可达96.76%和97.28%,表明微量HMMAM的引入大大增加了聚合物的各项性能。  相似文献   

9.
将丙烯酰胺(AM)/丙烯酸钠(Na AA)/十六烷基二甲基烯丙基氯化铵(C16DMAAC)共聚物(PA),与丙烯酰胺(AM)/丙烯酸钠(Na AA)/2-丙烯酰胺基十四烷基磺酸钠(Na AMC14S)共聚物(PB)混合得到混合溶液PA/PB。在5 000 mg/L Na Cl溶液中,固定聚合物质量浓度为2 000 mg/L的条件下,以黏度为依据确定了PA与PB的最佳质量比为3∶7,此时混合溶液PA/PB表观黏度为62.7 m Pa·s,高于单一聚合物溶液PA和PB的黏度。在最佳复合配比下,考察了Na Cl浓度、温度、剪切速率及聚合物浓度对混合溶液PA/PB黏度的影响,结果表明,混合溶液PA/PB具有比单一聚合物溶液PA和PB更好的耐温抗盐、抗剪切性能和增黏性能,证实PA与PB之间存在明显的协同效应。通过流变性测试获得特征松弛时间(TR)和平台区模量(G0)研究了两者的协同机理,表明混合溶液PA/PB网络结构交联点密度高于PA和PB,且强度强于PA和PB。  相似文献   

10.
以丙烯酰胺(AM)、疏水单体烯丙基十二胺和耐盐单体H-66为原料,通过自由基水溶液聚合制备一种聚丙烯酰胺类聚合物RDTA。通过1H NMR和FTIR表征聚合物结构,通过表观黏度、SEM和流变性能测试研究了RDTA在不同溶液中的缔合效应和该缔合行为随温度变化的影响关系。实验结果表明,RDTA的临界缔合质量分数(W*)在0.25% ~ 0.3%。盐离子对RDTA高分子链的刺激作用能够增强该分子链的结构黏度。弹性模量G′随RDTA质量分数的增加而增大,溶液体系表现出弹性体,体系的空间结构更加密集。70℃、90℃和120℃,170 s-1剪切下,0.5% RDTA在6% NaCl盐溶液中剪切时间 < 300 s时,溶液黏度呈现缓慢上升趋势,说明RDTA在NaCl盐溶液中存在盐刺激RDTA溶液增稠的现象,继续剪切1 h后,剪切剩余黏度仍60 mPa·s以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号