Topics in Catalysis - New composites formed by layered hybrid TiO2(stearic acid) (LHTiO2) and, Cu2O nanoparticles were studied as photocatalysts that extend the response range to light visible for... 相似文献
Journal of Inorganic and Organometallic Polymers and Materials - A mesoporous g-C3N4 with guanidine hydrochloride as precursor was prepared by molten salt assisted hard template of silica (SiO2)... 相似文献
Topics in Catalysis - With the goal of providing an economically viable method for reducing water pollution and health impact by the mezcal industry wastes, photocatalytic degradation of toxic... 相似文献
Catalysis Letters - In the present work, non-precious Cu2O and Cu loaded hydrogenated black TiO2 nanoparticles were prepared, and the H2 evolution and the removal of a waterbased organic pollutant... 相似文献
To achieve the well-dispersed Ni–NiS dual-cocatalysts anchored CdS, the samples have been successfully constructed by a cheap and convenient method of hydroxy acid assisted hydrothermal method. Based on the coordination and reduction effects of hydroxy acids, Ni2+ can be facilely transformed into the high dispersed dual-function sites of Ni0 electrons trap and NiS holes reservoir. The highly dispersed Ni–NiS dual-cocatalysts not only provide more dual-function active sites but also present distinctly enhanced visible light absorption, effectively separated electron hole pairs and quickly migrated charge carriers. The optimized Ni–NiS/CdS–CA presented an excellent photocatalytic H2 generation rate of 57.88 mmol·h?1·g?1, which is about 15.35 times higher than that of NiS/CdS. Moreover, the stability can be distinctly increased by modulating the surface cover of Ni–NiS with a suitable Ni/(Ni?+?Cd) atomic ratio. This work would provide a unique strategy to design the high effective photocatalysts with high dispersed bi-function dual cocatalysts.
Graphic Abstract
The well-dispersed Ni-NiS dual-cocatalysts anchored CdS in situ have been successfully constructed via the coordination and reduction effects of hydroxy acid assisted hydrothermal method. Ni-NiS/CdS-CA not only presents dual-function active sites but also exhibits distinctly enhanced visible light absorption, effectively separated electron hole pairs and quickly migrated charge carriers, resulting in a remarkable enhancement in photocatalytic H2 evolution activity.
Photocatalytic green hydrogen (H2) production through water electrolysis is deemed as green, efficient, and renewable fuel or energy carrier due to its great energy density and zero greenhouse emissions. However, developing efficient and low-cost noble-metal-free photocatalysts remains one of the daunting challenges in low-cost H2 production. Porous graphitic carbon nitride (gCN) nanostructures have drawn broad multidisciplinary attention as metal-free photocatalysts in the arena of H2 production and other environmental remediation. This is due to their impressive catalytic/photocatalytic properties (i.e., high surface area, narrow bandgap, and visible light absorption), unique physicochemical durability, tunable electronic properties, and feasibility to synthesize in high yield from inexpensive and earth-abundant resources. The physicochemical and photocatalytic properties of porous gCNs can be easily optimized via the integration of earth-abundant heteroatoms. Although there are various reviews on porous gCN-based photocatalysts for various applications, to the best of our knowledge, there are no reviews on heteroatom-doped porous gCN nanostructures for the photocatalytic H2 evolution reaction (HER). It is essential to provide timely updates in this research area to highlight the research related to fabrication of novel gCNs for large-scale applications and address the current barriers in this field. This review emphasizes a panorama of recent advances in the rational design of heteroatom (i.e., P, O, S, N, and B)-doped porous gCN nanostructures including mono, binary, and ternary dopants for photocatalytic HERs and their optimized parameters. This is in addition to H2 energy storage, non-metal configuration, HER fundamental, mechanism, and calculations. This review is expected to inspire a new research entryway to the fabrication of porous gCN-based photocatalysts with ameliorated activity and durability for practical H2 production. 相似文献
Catalysis Letters - Here, we successfully fabricated sulfurized Co-Mo alloy thin film electrodes with different compositions and studied their catalytic properties for hydrogen evolution reaction... 相似文献
Herein the recent experiments performed by the authors on fabricated multi-walled BN nanotubes and monoatomic BN graphene-like nanosheets are reviewed. The results are presented in several sections, namely: (i) method for high-yield synthesis of thin, defect-free BN nanotubes of only a few-layers, with external diameters below 10 nm; (ii) verification of BN nanotube piezoelectrical behavior and its electrically-induced thermal decomposition under combined resistive heating and electrical charging in a transmission electron microscope; (iii) the first direct measurements of the true tensile strength and Young’s modulus of BN nanotubes, using newly developed nanotensile tests inside an electron microscope; the measured values were found to be ∼30 GPa and ∼900 GPa, respectively; and (iv) diverse kinetic processes taking place within the prepared monoatomic BN sheets (so-called “white graphenes”) affiliated with intensive knock-on B and N atom displacements under high energy electron beam irradiation in an aberration-corrected medium-voltage high-resolution transmission electron microscope. 相似文献
Catalysis Letters - Catalytic materials without using precious metallic elements for electrocatalytic water splitting are a crucial demand to the renewable energy production. Cobalt molybdenum... 相似文献
The surface nature and the composition of AlN powder, as-received and exposed to binder burnout, were studied using XPS and TEM. The surface of as-received AlN powder was covered by a thin layer of aluminum oxynitride and oxide mixture. A small portion of residual carbon from binder burnout was bound to oxygen atoms on the AlN powder surface, and the majority of the carbon was amorphous graphitoid carbon which covered the AlN powder surface uniformly. AlN samples were made using tape casting and pressureless sintering. Surface-carbon-to-oxygen ratio of AlN powder after binder burnout was evaluated using XPS. The surface C/O atomic ratios were observed to correlate with the sintering behavior, the composition of the second phase, the second phases distribution, and grain-boundary composition, as well as thermal conductivity of AlN samples. 相似文献
Self-healing hydrogels often possess poor mechanical properties which largely limits their applications in many fields. In this work, boron nitride nanosheets are introduced into a network of the poly(vinyl alcohol)/borax (PVA/borax) hydrogels to enhance the mechanical properties of the hydrogel without compromising the self-healing abilities. The obtained hydrogels exhibit excellent mechanical properties with a tensile strength of 0.410 ± 0.007 MPa, an elongation at break of 1712%, a Young's Modulus of 0.860 ± 0.023 MPa, and a toughness of 3.860 ± 0.075 MJ m−3. In addition, the self-healing efficiency of the hydrogels is higher than 90% within 10 min at room temperature. Benefiting from the excellent self-healing properties, the shapeability of the hydrogel fragments is observed using different molds. In addition, the hydrogels display rapid pH-driven shape memory effects and can recover to their original shape within 260 s. Overall, this work provides a new approach to hydrogels with integrated excellent mechanical properties, self-healing abilities, and rapid pH-driven shape memory effects. 相似文献
Polymeric carbon nitride, which was synthesized by polymerization of dicyandiamide at 500°C, was used as a nitridation reagent in the conversion of δ‐alumina (δ‐Al2O3) to aluminum nitride (AlN). The products obtained at various reaction temperatures were characterized by powder X‐ray diffraction, 27Al magic‐angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy, Raman spectroscopy, and X‐ray photoelectron spectroscopy (XPS). δ‐Al2O3 began to convert to AlN at 900°C, which is the lowest temperature reported for the formation of AlN from Al2O3, and completely converted to AlN at 1400°C. The occurrence of reaction intermediates during nitridation was confirmed by 27Al MAS NMR and XPS. The change in Raman spectra with reaction temperatures indicated that lattice defects in AlN were reduced by calcining at higher reaction temperatures. 相似文献
Transition metal dichalcogenides (TMDCs) based materials are considered as highly active alternatives to the precious Pt-based catalysts for the hydrogen evolution reaction (HER). In particular, MoSe2 emerges as a promising catalyst due to its abundance and electrochemical stability, but further modifications are still required to enhance its performance, specifically in alkaline conditions. Here, we developed a method to obtain MoSe2 with two cobalt doping patterns: homogeneously doped and edge doped nanoflowers, with abundant edge sites and extended surface area. The results show that low concentration of doping enhances the catalytic activity toward HER. Incorporation of cobalt as a substituent dopant within the layered structure of MoSe2 appears to have two major contributions: it changes the chemical environment providing more active sites with favored hydrogen adsorption properties, and improves the charge transfer resistance and thus facilitates the HER kinetics. Moreover, the homogeneous and edge-doped nanoflowers show different pH-dependence of HER activity. Edge-doped samples exhibit significantly improved performance in acidic medium, while the overpotential increases in alkaline environment upon doping. A mechanistic explanation of the observed effect is proposed. This work opens up an additional path for improving the catalytic activity of TMDCs in acidic or alkaline medium using a simple and facile method with only small quantities of dopants. 相似文献