首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of dairy science》2022,105(2):923-939
Single-step genomic BLUP (ssGBLUP) is a method for genomic prediction that integrates matrices of pedigree (A) and genomic (G) relationships into a single unified additive relationship matrix whose inverse is incorporated into a set of mixed model equations (MME) to compute genomic predictions. Pedigree information in dairy cattle is often incomplete. Missing pedigree potentially causes biases and inflation in genomic estimated breeding values (GEBV) obtained with ssGBLUP. Three major issues are associated with missing pedigree in ssGBLUP, namely biased predictions by selection, missing inbreeding in pedigree relationships, and incompatibility between G and A in level and scale. These issues can be solved using a proper model for unknown-parent groups (UPG). The theory behind the use of UPG is well established for pedigree BLUP, but not for ssGBLUP. This study reviews the development of the UPG model in pedigree BLUP, the properties of UPG models in ssGBLUP, and the effect of UPG on genetic trends and genomic predictions. Similarities and differences between UPG and metafounder (MF) models, a generalized UPG model, are also reviewed. A UPG model (QP) derived using a transformation of the MME has a good convergence behavior. However, with insufficient data, the QP model may yield biased genetic trends and may underestimate UPG. The QP model can be altered by removing the genomic relationships linking GEBV and UPG effects from MME. This altered QP model exhibits less bias in genetic trends and less inflation in genomic predictions than the QP model, especially with large data sets. Recently, a new model, which encapsulates the UPG equations into the pedigree relationships for genotyped animals, was proposed in simulated purebred populations. The MF model is a comprehensive solution to the missing pedigree issue. This model can be a choice for multibreed or crossbred evaluations if the data set allows the estimation of a reasonable relationship matrix for MF. Missing pedigree influences genetic trends, but its effect on the predictability of genetic merit for genotyped animals should be negligible when many proven bulls are genotyped. The SNP effects can be back-solved using GEBV from older genotyped animals, and these predicted SNP effects can be used to calculate GEBV for young-genotyped animals with missing parents.  相似文献   

2.
《Journal of dairy science》2019,102(11):9956-9970
The objectives of this study were to investigate bias in genomic predictions for dairy cattle and to find a practical approach to reduce the bias. The simulated data included phenotypes, pedigrees, and genotypes, mimicking a dairy cattle population (i.e., cows with phenotypes and bulls with no phenotypes) and assuming selection by breeding values or no selection. With the simulated data, genomic estimated breeding values (GEBV) were calculated with a single-step genomic BLUP and compared with true breeding values. Phenotypes and genotypes were simulated in 10 generations and in the last 4 generations, respectively. Phenotypes in the last generation were removed to predict breeding values for those individuals using only genomic and pedigree information. Complete pedigrees and incomplete pedigrees with 50% missing dams were created to construct the pedigree-based relationship matrix with and without inbreeding. With missing dams, unknown parent groups (UPG) were assigned in relationship matrices. Regression coefficients (b1) and coefficients of determination (R2) of true breeding values on (G)EBV were calculated to investigate inflation and accuracy in GEBV for genotyped animals, respectively. In addition to the simulation study, 18 linear type traits of US Holsteins were examined. For the 18 type traits, b1 and R2 of GEBV with full data sets on GEBV with partial data sets for young genotyped bulls were calculated. The results from the simulation study indicated inflation in GEBV for genotyped males that were evaluated with only pedigree and genomic information under BLUP selection. However, when UPG for only pedigree-based relationships were included, the inflation was reduced, accuracy was highest, and genetic trends had no bias. For the linear type traits, when UPG for only pedigree-based relationships were included, the results were generally in agreement with those from the simulation study, implying less bias in genetic trends. However, when including no UPG, UPG in pedigree-based relationships, or UPG in genomic relationships, inflation and accuracy in GEBV were similar. The results from the simulation and type traits suggest that UPG must be defined accurately to be estimable and inbreeding should be included in pedigree-based relationships. In dairy cattle, known pedigree information with inbreeding and estimable UPG plays an important role in improving compatibility between pedigree-based and genomic relationship matrices, resulting in more reliable genomic predictions.  相似文献   

3.
The objective of this study was to compare genetic trends from single-step genomic BLUP (ssGBLUP) and traditional BLUP models for milk production traits of US Holsteins. Phenotypes were 305-d milk, fat, and protein yields from 21,527,040 cows recorded between January 1990 and August 2015. The pedigree file included 29,651,623 animals and was limited to 3 generations back from recorded or genotyped animals. Genotypes for 764,029 animals were used, and analyses were by a 3-trait repeatability model as used in the US official genetic evaluation. Unknown-parent groups were incorporated into the inverse of a relationship matrix (H?1 in ssGBLUP and A?1 in BLUP) with the QP transformation. For ssGBLUP, 18,359 genotyped animals were randomly chosen as core animals to calculate the inverse of the genomic relationship matrix with the APY algorithm. Computations took 6.5 h and 1.4 GB of memory for BLUP, and 13 h and 115 GB of memory for ssGBLUP. For genotyped sires with at least 10 daughters, the average genetic levels for predicted transmitting ability (PTA) and genomic PTA were similar up to 2008, with a higher level for ssGBLUP later (approximately by 36 kg for milk, 2.1 kg for fat, and 1.1 kg for protein for bulls born in 2010). For genotyped cows, the average genetic levels were similar up to 2006, with a higher level for ssGBLUP (approximately by 91 kg for milk, 3.6 kg for fat, and 2.7 kg for protein for cows born in 2012). For all cows, the average levels were slightly higher for ssGBLUP, with much smaller differences than for genotyped cows. Trends for BLUP indicate bias due to genomic preselection for genotyped sires and cows. For official evaluations released in December 2016, traditional PTA had the same trend as multiple-step genomic PTA for both genotyped bulls and cows except for the youngest bulls, who had traditional PTA slightly lower than genomic PTA. For genotyped bulls born in recent years, genetic gain for official traditional and genomic evaluations was similar in contrast to ssGBLUP and BLUP differences. Official PTA for cows were adjusted so that the Mendelian sampling variance was comparable with that for bulls, and those adjustments likely removed bias due to genomic preselection from traditional PTA, especially for genotyped cows. The ssGBLUP method seems to account partially for that bias and is computationally suitable for national evaluations.  相似文献   

4.
Assigning unknown parent groups (UPG) in mixed-model equations using single-step genomic BLUP was investigated to reduce bias and to increase accuracy in genomic estimated breeding values (GEBV). The original UPG were defined based on the animal's birth year and the sex of the animal's unknown parents. Combining the last 2 UPG for the animals’ birth years and separating the UPG for US and non-US Holsteins were considered in the redefinition. A full data set in the 2011 national genetic evaluation of final score in US Holsteins was used to calculate estimated breeding values (EBV) for validation, and a subset of the 2011 data, which excluded phenotypes recorded after 2007, was used to calculate GEBV for all animals, including 34,500 genotyped bulls. The EBV and GEBV in 2007 were compared with EBV in the 2011 full data. The last group effects for unknown sires and dams were overestimated with the GEBV model using the reduced 2007 data. The genetic trends from EBV in 2011 and GEBV in 2007 with the original UPG in the last few years demonstrated inflation, whereas GEBV with the redefined UPG by combining the last 2 groups showed deflation. On the other hand, the redefined UPG by separating for US and non-US Holsteins reduced the bias in GEBV. Regression coefficients smaller than unity for GEBV for young genotyped bulls with no daughters in 2007 on progeny deviations in 2011 also indicated inflation. The redefining of UPG reduced bias and slightly increased accuracy in GEBV for both US and non-US genotyped bulls. Rank correlations between GEBV in 2007 and in 2011 with the redefined UPG were higher than those with no UPG and the original UPG, especially for non-US bulls. Redefining of UPG in genomic evaluation could improve reliability of GEBV and provide correct genetic trends.  相似文献   

5.
The objective was to compare methods of modeling missing pedigree in single-step genomic BLUP (ssGBLUP). Options for modeling missing pedigree included ignoring the missing pedigree, unknown parent groups (UPG) based on A (the numerator relationship matrix) or H (the unified pedigree and genomic relationship matrix), and metafounders. The assumptions for the distribution of estimated breeding values changed with the different models. We simulated data with heritabilities of 0.3 and 0.1 for dairy cattle populations that had more missing pedigrees for animals of lesser genetic merit. Predictions for the youngest generation and UPG solutions were compared with the true values for validation. For both traits, ssGBLUP with metafounders provided accurate and unbiased predictions for young animals while also appropriately accounting for genetic trend. Accuracy was least and bias was greatest for ssGBLUP with UPG for H for the trait with heritability of 0.3 and with UPG for A for the trait with heritability of 0.1. For the trait with heritability of 0.1 and UPG for H, the UPG accuracy (SD) was ?0.49 (0.12), suggesting poor estimates of genetic trend despite having little bias for validations on young, genotyped animals. Problems with UPG estimates were likely caused by the lesser amount of information available for the lower heritability trait. Hence, UPG need to be defined differently based on the trait and amount of information. More research is needed to investigate accounting for UPG in A22 to better account for missing pedigrees for genotyped animals.  相似文献   

6.
Test-day traits are important for genetic evaluation in dairy cattle and are better modeled by multiple-trait random regression models (RRM). The reliability and bias of genomic estimated breeding values (GEBV) predicted using multiple-trait RRM via single-step genomic best linear unbiased prediction (ssGBLUP) were investigated in the 3 major dairy cattle breeds in Canada (i.e., Ayrshire, Holstein, and Jersey). Individual additive genomic random regression coefficients for the test-day traits were predicted using 2 multiple-trait RRM: (1) one for milk, fat, and protein yields in the first, second, and third lactations, and (2) one for somatic cell score in the first, second, and third lactations. The predicted coefficients were used to derive GEBV for each lactation day and, subsequently, the daily GEBV were compared with traditional daily parent averages obtained by BLUP. To ensure compatibility between pedigree and genomic information for genotyped animals, different scaling factors for combining the inverse of genomic (G?1) and pedigree (A?122) relationship matrices were tested. In addition, the inclusion of only genotypes from animals with accurate breeding values (defined in preliminary analysis) was compared with the inclusion of all available genotypes in the analyzes. The ssGBLUP model led to considerably larger validation reliabilities than the BLUP model without genomic information. In general, scaling factors used to combine the G?1 and A?122 matrices had small influence on the validation reliabilities. However, a greater effect was observed in the inflation of GEBV. Less inflated GEBV were obtained by the ssGBLUP compared with the parent average from traditional BLUP when using optimal scaling factors to combine the G?1 and A?122 matrices. Similar results were observed when including either all available genotypes or only genotypes from animals with accurate breeding values. These findings indicate that ssGBLUP using multiple-trait RRM increases reliability and reduces bias of breeding values of young animals when compared with parent average from traditional BLUP in the Canadian Ayrshire, Holstein, and Jersey breeds.  相似文献   

7.
The success and sustainability of a breeding program incorporating genomic information is largely dependent on the accuracy of predictions. For low heritability traits, large training populations are required to achieve high accuracies of genomic estimated breeding values (GEBV). By including genotyped and nongenotyped animals simultaneously in the evaluation, the single-step genomic BLUP (ssGBLUP) approach has the potential to deliver more accurate and less biased genomic evaluations. The aim of this study was to compare the accuracy and bias of genomic predictions for various traits in Canadian Holstein cattle using ssGBLUP and multi-step genomic BLUP (msGBLUP) under different strategies, such as (1) adding genomic information of cows in the analysis, (2) testing different adjustments of the genomic relationship matrix, and (3) using a blending approach to obtain GEBV from msGBLUP. The following genomic predictions were evaluated regarding accuracy and bias: (1) GEBV estimated by ssGBLUP; (2) direct genomic value estimated by msGBLUP with polygenic effects of 5 and 20%; and (3) GEBV calculated by a blending approach of direct genomic value with estimated breeding values using polygenic effects of 5 and 20%. The effect of adding genomic information of cows in the evaluation was also assessed for each approach. When genomic information was included in the analyses, the average improvement in observed reliability of predictions was observed to be 7 and 13 percentage points for reproductive and workability traits, respectively, compared with traditional BLUP. Absolute deviation from 1 of the regression coefficient of the linear regression of de-regressed estimated breeding values on genomic predictions went from 0.19 when using traditional BLUP to 0.22 when using the msGBLUP method, and to 0.14 when using the ssGBLUP method. The use of polygenic weight of 20% in the msGBLUP slightly improved the reliability of predictions, while reducing the bias. A similar trend was observed when a blending approach was used. Adding genomic information of cows increased reliabilities, while decreasing bias of genomic predictions when using the ssGBLUP method. Differences between using a training population with cows and bulls or with only bulls for the msGBLUP method were small, likely due to the small number of cows included in the analysis. Predictions for lowly heritable traits benefit greatly from genomic information, especially when all phenotypes, pedigrees, and genotypes are used in a single-step approach.  相似文献   

8.
《Journal of dairy science》2023,106(7):4847-4859
The objectives of this study were to investigate the computational performance and the predictive ability and bias of a single-step SNP BLUP model (ssSNPBLUP) in genotyped young animals with unknown-parent groups (UPG) for type traits, using national genetic evaluation data from the Japanese Holstein population. The phenotype, genotype, and pedigree data were the same as those used in a national genetic evaluation of linear type traits classified between April 1984 and December 2020. In the current study, 2 data sets were prepared: the full data set containing all entries up to December 2020 and a truncated data set ending with December 2016. Genotyped animals were classified into 3 types: sires with classified daughters (S), cows with records (C), and young animals (Y). The computing performance and prediction accuracy of ssSNPBLUP were compared for the following 3 groups of genotyped animals: sires with classified daughters and young animals (SY); cows with records and young animals (CY); and sires with classified daughters, cows with records, and young animals (SCY). In addition, we tested 3 parameters of residual polygenic variance in ssSNPBLUP (0.1, 0.2, or 0.3). Daughter yield deviations (DYD) for the validation bulls and phenotypes adjusted for all fixed effects and random effects other than animal and residual (Yadj) for the validation cows were obtained using the full data set from the pedigree-based BLUP model. The regression coefficients of DYD for bulls (or Yadj for cows) on the genomic estimated breeding value (GEBV) using the truncated data set were used to measure the inflation of the predictions of young animals. The coefficient of determination of DYD on GEBV was used to measure the predictive ability of the predictions for the validation bulls. The reliability of the predictions for the validation cows was calculated as the square of the correlation between Yadj and GEBV divided by heritability. The predictive ability was highest in the SCY group and lowest in the CY group. However, minimal difference was found in predictive abilities with or without UPG models using different parameters of residual polygenic variance. The regression coefficients approached 1.0 as the parameter of residual polygenic variance increased, but regression coefficients were mostly similar regardless of the use of UPG across the groups of genotyped animals. The ssSNPBLUP model, including UPG, was demonstrated as feasible for implementation in the national evaluation of type traits in Japanese Holsteins.  相似文献   

9.
Methods for genomic prediction were evaluated for an Israeli Holstein dairy population of 713,686 cows and 1,305 progeny-tested bulls with genotypes. Inclusion of genotypes of 343 elite cows in an evaluation method that considers pedigree, phenotypes, and genotypes simultaneously was also evaluated. Two data sets were available: a complete data set with production records from 1985 through 2011, and a reduced data set with records after 2006 deleted. For each production trait, a multitrait animal model was used to compute traditional genetic evaluations for parities 1 through 3 as separate traits. Evaluations were calculated for the reduced and complete data sets. The evaluations from the reduced data set were used to calculate parent average for validation bulls, which was the benchmark for comparing gain in predictive ability from genomics. Genomic predictions for bulls in 2006 were calculated using a Bayesian regression method (BayesC), genomic BLUP (GBLUP), single-step GBLUP (ssGBLUP), and weighted ssGBLUP (WssGBLUP). Predictions using BayesC and GBLUP were calculated either with or without an index that included parent average. Genomic predictions that included elite cow genotypes were calculated using ssGBLUP and WssGBLUP. Predictive ability was assessed by coefficients of determination (R2) and regressions of predictions of 135 validation bulls with no daughters in 2006 on deregressed evaluations of those bulls in 2011. A reduction in R2 and regression coefficients was observed from parities 1 through 3. Fat and protein yields had the lowest R2 for all the methods. On average, R2 was lowest for parent averages, followed by GBLUP, BayesC, ssGBLUP, and WssGBLUP. For some traits, R2 for direct genomic values from BayesC and GBLUP were lower than those for parent averages. Genomic estimated breeding values using ssGBLUP were the least biased, and this method appears to be a suitable tool for genomic evaluation of a small genotyped population, as it automatically accounts for parental index, allows for inclusion of female genomic information without preadjustments in evaluations, and uses the same model as in traditional evaluations. Weighted ssGBLUP has the potential for higher evaluation accuracy.  相似文献   

10.
《Journal of dairy science》2021,104(12):12713-12723
Cow genotypes are expected to improve the accuracy of genomic estimated breeding values (GEBV) for young bulls in relatively small populations such as Thai Holstein-Friesian crossbred dairy cattle in Thailand. The objective of this study was to investigate the effect of cow genotypes on the predictive ability and individual accuracies of GEBV for young dairy bulls in Thailand. Test-day data included milk yield (n = 170,666), milk component traits (fat yield, protein yield, total solids yield, fat percentage, protein percentage, and total solids percentage; n = 160,526), and somatic cell score (n = 82,378) from 23,201, 82,378, and 13,737 (for milk yield, milk component traits, and SCS, respectively) cows calving between 1993 and 2017, respectively. Pedigree information included 51,128; 48,834; and 32,743 animals for milk yield, milk component traits, and somatic cell score, respectively. Additionally, 876, 868, and 632 pedigreed animals (for milk yield, milk component traits, and SCS, respectively) were genotyped (152 bulls and 724 cows), respectively, using Illumina Bovine SNP50 BeadChip. We cut off the data in the last 6 yr, and the validation animals were defined as genotyped bulls with no daughters in the truncated set. We calculated GEBV using a single-step random regression test-day model (SS-RR-TDM), in comparison with estimated breed value (EBV) based on the pedigree-based model used as the official method in Thailand (RR-TDM). Individual accuracies of GEBV were obtained by inverting the coefficient matrix of the mixed model equations, whereas validation accuracies were measured by the Pearson correlation between deregressed EBV from the full data set and (G)EBV predicted with the reduced data set. When only bull genotypes were used, on average, SS-RR-TDM increased individual accuracies by 0.22 and validation accuracies by 0.07, compared with RR-TDM. With cow genotypes, the additional increase was 0.02 for individual accuracies and 0.06 for validation accuracies. The inflation of GEBV tended to be reduced using cow genotypes. Genomic evaluation by SS-RR-TDM is feasible to select young bulls for the longitudinal traits in Thai dairy cattle, and the accuracy of selection is expected to be increased with more genotypes. Genomic selection using the SS-RR-TDM should be implemented in the routine genetic evaluation of the Thai dairy cattle population. The genetic evaluation should consider including genotypes of both sires and cows.  相似文献   

11.
This study compares how different cow genotyping strategies increase the accuracy of genomic estimated breeding values (EBV) in dairy cattle breeds with low numbers. In these breeds, few sires have progeny records, and genotyping cows can improve the accuracy of genomic EBV. The Guernsey breed is a small dairy cattle breed with approximately 14,000 recorded individuals worldwide. Predictions of phenotypes of milk yield, fat yield, protein yield, and calving interval were made for Guernsey cows from England and Guernsey Island using genomic EBV, with training sets including 197 de-regressed proofs of genotyped bulls, with cows selected from among 1,440 genotyped cows using different genotyping strategies. Accuracies of predictions were tested using 10-fold cross-validation among the cows. Genomic EBV were predicted using 4 different methods: (1) pedigree BLUP, (2) genomic BLUP using only bulls, (3) univariate genomic BLUP using bulls and cows, and (4) bivariate genomic BLUP. Genotyping cows with phenotypes and using their data for the prediction of single nucleotide polymorphism effects increased the correlation between genomic EBV and phenotypes compared with using only bulls by 0.163 ± 0.022 for milk yield, 0.111 ± 0.021 for fat yield, and 0.113 ± 0.018 for protein yield; a decrease of 0.014 ± 0.010 for calving interval from a low base was the only exception. Genetic correlation between phenotypes from bulls and cows were approximately 0.6 for all yield traits and significantly different from 1. Only a very small change occurred in correlation between genomic EBV and phenotypes when using the bivariate model. It was always better to genotype all the cows, but when only half of the cows were genotyped, a divergent selection strategy was better compared with the random or directional selection approach. Divergent selection of 30% of the cows remained superior for the yield traits in 8 of 10 folds.  相似文献   

12.
Genomic selection using dense markers covering the whole genome is a tool for the genetic improvement of livestock and is revolutionizing the breeding system in dairy cattle. Progeny-tested bulls have been used to form reference populations in almost all countries where genomic selection has been implemented. In this study, the accuracy of genomic prediction when cows are used to form the reference population was investigated. The reference population consisted of 3,087 cows. All individuals were genotyped with Illumina BovineSNP50. After genotype imputation and editing, 48,676 single nucleotide polymorphisms were available for analysis. Two methods, genomic BLUP (GBLUP) and BayesB, were used to render genomic estimated breeding values (GEBV) for 5 milk production traits. Accuracies of GEBV were assessed in 3 ways: rGEBV,EBV (the correlation between GEBV and conventional EBV) in 67 progeny-tested bulls, rGEBV,EBV from a 5-fold cross validation in the 3,087 cow reference population, and the theoretical accuracy (for GBLUP) calculated in the same way as for conventional BLUP. The results showed that using GBLUP, the rGEBV,EBV and theoretical accuracy of genomic prediction in Chinese Holstein ranged from 0.59 to 0.76 and 0.70 to 0.80, respectively, which was 0.13 to 0.30 and 0.23 to 0.33 higher than the accuracies of conventional pedigree index, respectively. The results indicate that, as an alternative, genomic selection using cows in the reference population is feasible.  相似文献   

13.
《Journal of dairy science》2022,105(4):3306-3322
Genomic evaluation based on a single-step model uses all available data of phenotype, genotype, and pedigree; therefore, it should provide unbiased genomic breeding values with a higher correlation of prediction than the current multistep genomic model. Since 2019, a mixed reference population of cows and bulls has been applied to the routine multistep genomic evaluation in German Holsteins. For a fair comparison between the single-step and multistep genomic models, the same phenotype, genotype, and pedigree data were used. Because of its simple structure of the standard multitrait animal model used for German Holstein conventional evaluation, conformation traits were chosen as the first trait group to test a single-step SNP BLUP model for the large, genotyped population of German Holsteins. Genotype, phenotype, and pedigree data were taken from the official August 2020 conventional and genomic evaluation. Because of the same trait definition in national and multiple across-country evaluation for the conformation traits, deregressed multiple across-country evaluation estimated breeding value (EBV) of foreign bulls were treated as a new source of data for the same trait in the genomic evaluations. Due to a short history of female genotyping in Germany, the last 3 yr of youngest cows and bulls were deleted, instead of 4 yr, to perform a genomic validation. In comparison to the multistep genomic model, the single-step SNP BLUP model resulted in a higher correlation and greater variance of genomic EBV according to 798 national validation bulls. The regression of genomic prediction of the current, full evaluation on the earlier, truncated evaluation was slightly closer to 1 than the multistep model. For the validation bulls or youngest genomic artificial insemination bulls, correlation of genomic EBV between the 2 models was, on average, 0.95 across all the conformation traits. We did not find overprediction of young animals by the single-step SNP BLUP model for the conformation traits in German Holsteins.  相似文献   

14.
The objective of this study was to investigate the feasibility of genomic evaluation for cow mortality and milk production using a single-step methodology. Genomic relationships between cow mortality and milk production were also analyzed. Data included 883,887 (866,700) first-parity, 733,904 (711,211) second-parity, and 516,256 (492,026) third-parity records on cow mortality (305-d milk yields) of Holsteins from Northeast states in the United States. The pedigree consisted of up to 1,690,481 animals including 34,481 bulls genotyped with 36,951 SNP markers. Analyses were conducted with a bivariate threshold-linear model for each parity separately. Genomic information was incorporated as a genomic relationship matrix in the single-step BLUP. Traditional and genomic estimated breeding values (GEBV) were obtained with Gibbs sampling using fixed variances, whereas reliabilities were calculated from variances of GEBV samples. Genomic EBV were then converted into single nucleotide polymorphism (SNP) marker effects. Those SNP effects were categorized according to values corresponding to 1 to 4 standard deviations. Moving averages and variances of SNP effects were calculated for windows of 30 adjacent SNP, and Manhattan plots were created for SNP variances with the same window size. Using Gibbs sampling, the reliability for genotyped bulls for cow mortality was 28 to 30% in EBV and 70 to 72% in GEBV. The reliability for genotyped bulls for 305-d milk yields was 53 to 65% to 81 to 85% in GEBV. Correlations of SNP effects between mortality and 305-d milk yields within categories were the highest with the largest SNP effects and reached >0.7 at 4 standard deviations. All SNP regions explained less than 0.6% of the genetic variance for both traits, except regions close to the DGAT1 gene, which explained up to 2.5% for cow mortality and 4% for 305-d milk yields. Reliability for GEBV with a moderate number of genotyped animals can be calculated by Gibbs samples. Genomic information can greatly increase the reliability of predictions not only for milk but also for mortality. The existence of a common region on Bos taurus autosome 14 affecting both traits may indicate a major gene with a pleiotropic effect on milk and mortality.  相似文献   

15.
Causal variants inferred from sequence data analysis are expected to increase accuracy of genomic selection. In this work we evaluated the gain in reliability of genomic predictions, for stature in US Holsteins, when adding selected sequence variants to a pre-existent SNP chip. Two prediction methods were tested: de-regressed proofs assuming heterogeneous (genomic BLUP; GBLUP) residual variances and by single-step GBLUP (ssGBLUP) using actual phenotypes. Phenotypic data included 3,999,631 records for stature on 3,027,304 Holstein cows. Genotypes on 54,087 SNP markers (54k) were available for 26,877 bulls. Additionally, 16,648 selected sequence variants were combined with the 54k markers, for a total of 70,735 (70k) markers. In all methods, SNP in the genomic relationship matrix (G) were unweighted or weighted iteratively, with weights derived either by SNP effects squared or by a nonlinear method that resembles BayesA (nonlinear A). Reliability of genomic predictions were obtained by cross validation. With unweighted G derived from 54k markers, the reliabilities (× 100) were 72.4 for GBLUP and 75.3 for ssGBLUP. With unweighted G derived from 70k markers, the reliabilities were 73.4 and 76.0, respectively. Weighting by nonlinear A changed reliabilities to 73.3, and 75.9, respectively. Addition of selected sequence variants had a small effect on reliabilities. Weighting by quadratic functions reduced reliabilities. Weighting by nonlinear A increased reliabilities for GBLUP but had only a small effect in ssGBLUP. Reliabilities for direct genomic values extracted from ssGBLUP using unweighted G with 54k were higher than reliabilities by any GBLUP. Thus, ssGBLUP seems to capture more information than GBLUP and there is less room for extra reliability. Improvements in GBLUP may be because the weights in G change the covariance structure, which can explain a proportion of the variance that is accounted for when a heterogeneous residual variance is assumed by considering a different number of daughters per bull.  相似文献   

16.
Single-step genomic BLUP (ssGBLUP) requires compatibility between genomic and pedigree relationships for unbiased and accurate predictions. Scaling the genomic relationship matrix (G) to have the same averages as the pedigree relationship matrix (i.e., scaling by averages) is one way to ensure compatibility. This requires computing both relationship matrices, calculating averages, and changing G, whereas only the inverses of those matrices are needed in the mixed model equations. Therefore, the compatibility process can add extra computing burden. In the single-step Bayesian regression, the scaling is done by including a mean (μg) as a fixed effect in the model. The parameter μg can be interpreted as the average of the breeding values of the genotyped animals. In this study, such scaling, called automatic, was implemented in ssGBLUP via Quaas-Pollak transformation of the inverse of the relationship matrix used in ssGBLUP (H), which combines the inverses of the pedigree and genomic relationship matrices. Comparisons involved a simulated data set, and the genomic relationship matrix was computed using different allele frequencies either from the current population (i.e., realized allele frequencies), equal among all the loci, or from the base population. For all of the scenarios, we computed bias [defined as the average difference between true breeding values (TBV) and genomic estimated breeding values (GEBV)], accuracy (defined as the correlation between TBV and GEBV), and dispersion (defined as the regression coefficient of GEBV on TBV). With no scaling, the bias expressed in terms of genetic standard deviations was 0.86, 0.64, and 0.58 with realized, equal, and base population allele frequencies, respectively. With scaling by averages, which is currently used in ssGBLUP, bias was 0.07, 0.08, and 0.03, respectively. With automatic scaling, bias was 0.18 regardless of allele frequencies. Accuracies were similar among scaling methods, but about 0.1 lower in the scenario without scaling. The GEBV were more inflated without any scaling, whereas the automatic scaling performed similarly to the scaling by averages. The average dispersion for those methods was 0.94. When μg was treated as random, with the variance equal to differences between pedigree and genomic relationships, the bias was the same as with the scaling by averages. The automatic scaling is biased, especially when μg is treated as a fixed effect. The bias may be small in real data with fewer generations, when traits are undergoing weak selection, or when the number of genotyped animals is large.  相似文献   

17.
This study investigated the accuracy of direct genomic breeding values (DGV) using a genomic BLUP model, genomic enhanced breeding values (GEBV) using a one-step blending approach, and GEBV using a selection index blending approach for 15 traits of Nordic Red Cattle. The data comprised 6,631 bulls of which 4,408 bulls were genotyped using Illumina Bovine SNP50 BeadChip (Illumina, San Diego, CA). To validate reliability of genomic predictions, about 20% of the youngest genotyped bulls were taken as test data set. Deregressed proofs (DRP) were used as response variables for genomic predictions. Reliabilities of genomic predictions in the validation analyses were measured as squared correlations between DRP and genomic predictions corrected for reliability of DRP, based on the bulls in the test data sets. A set of weighting (scaling) factors was used to construct the combined relationship matrix among genotyped and nongenotyped bulls for one-step blending, and to scale DGV and its expected reliability in the selection index blending. Weighting (scaling) factors had a small influence on reliabilities of GEBV, but a large influence on the variation of GEBV. Based on the validation analyses, averaged over the 15 traits, the reliability of DGV for bulls without daughter records was 11.0 percentage points higher than the reliability of conventional pedigree index. Further gain of 0.9 percentage points was achieved by combining information from conventional pedigree index using the selection index blending, and gain of 1.3 percentage points was achieved by combining information of genotyped and nongenotyped bulls simultaneously applying the one-step blending. These results indicate that genomic selection can greatly improve the accuracy of preselection for young bulls in Nordic Red population, and the one-step blending approach is a good alternative to predict GEBV in practical genetic evaluation program.  相似文献   

18.
《Journal of dairy science》2017,100(7):5479-5490
Genomic selection may accelerate genetic progress in breeding programs of indicine breeds when compared with traditional selection methods. We present results of genomic predictions in Gyr (Bos indicus) dairy cattle of Brazil for milk yield (MY), fat yield (FY), protein yield (PY), and age at first calving using information from bulls and cows. Four different single nucleotide polymorphism (SNP) chips were studied. Additionally, the effect of the use of imputed data on genomic prediction accuracy was studied. A total of 474 bulls and 1,688 cows were genotyped with the Illumina BovineHD (HD; San Diego, CA) and BovineSNP50 (50K) chip, respectively. Genotypes of cows were imputed to HD using FImpute v2.2. After quality check of data, 496,606 markers remained. The HD markers present on the GeneSeek SGGP-20Ki (15,727; Lincoln, NE), 50K (22,152), and GeneSeek GGP-75Ki (65,018) were subset and used to assess the effect of lower SNP density on accuracy of prediction. Deregressed breeding values were used as pseudophenotypes for model training. Data were split into reference and validation to mimic a forward prediction scheme. The reference population consisted of animals whose birth year was ≤2004 and consisted of either only bulls (TR1) or a combination of bulls and dams (TR2), whereas the validation set consisted of younger bulls (born after 2004). Genomic BLUP was used to estimate genomic breeding values (GEBV) and reliability of GEBV (R2PEV) was based on the prediction error variance approach. Reliability of GEBV ranged from ∼0.46 (FY and PY) to 0.56 (MY) with TR1 and from 0.51 (PY) to 0.65 (MY) with TR2. When averaged across all traits, R2PEV were substantially higher (R2PEV of TR1 = 0.50 and TR2 = 0.57) compared with reliabilities of parent averages (0.35) computed from pedigree data and based on diagonals of the coefficient matrix (prediction error variance approach). Reliability was similar for all the 4 marker panels using either TR1 or TR2, except that imputed HD cow data set led to an inflation of reliability. Reliability of GEBV could be increased by enlarging the limited bull reference population with cow information. A reduced panel of ∼15K markers resulted in reliabilities similar to using HD markers. Reliability of GEBV could be increased by enlarging the limited bull reference population with cow information.  相似文献   

19.
Data collected from Australian Holstein cows that calved between 1995 and 2016 were used for estimating genetic parameters and genetic evaluation of gestation length (GL). Genetic parameters were estimated using a sire maternal grandsire model considering GL in heifers as correlated, but a different trait to adult cows and animal repeatability model. The key objective of this study was to assess if selective mating of bulls with short GL estimated breeding values (EBV) can help to modify calving patterns in predominantly pasture-based production systems and thereby contribute to the reduction of calving induction. The mean GL in heifers and adult cows was 280 and 281 d, respectively. The heritability of direct GL was 0.28 in heifers, which is slightly lower than in adult cows (0.36). The maternal heritability of GL was close to 0.04 in both heifer and adult cows. The genetic correlation between direct effects in heifers and adult cows was lower (0.88) than between maternal effects (0.94). A genetic evaluation model that considered heifer and adult cow data as the same trait in a repeatability animal model showed adequate variability in EBV for both direct and maternal GL. The genetic trend in direct GL EBV declined from 2005 in bulls and from 2006 in cows. Selective mating of bulls with short direct GL EBV showed that the GL and calving interval of their mates can be modified by up to 3.5 d for GL and 2.0 d for calving interval. Relative to parent average, the use of genotype data to calculate genomic EBV increased the reliability of EBV by up to 11% in validation bulls when daughter trait deviation of bulls with trait deviation of cows (11%) and deregressed breeding values (8%) were used as response variables. On average, for animals with only genotype data, the GL EBV can be predicted with about 50 to 60% reliability (expected) depending on the response variable (deregressed breeding values or daughter trait deviation and trait deviation) and the size of reference set. Overall, the results of this study show that calving patterns can be made tighter by selectively mating short GL EBV bulls to cows that do not become pregnant early in the mating season. Additionally, better reproductive management and the use of bulls with high female fertility EBV are still crucial for the success of a pasture-based dairy production system.  相似文献   

20.
The large number of markers available compared with phenotypes represents one of the main issues in genomic selection. In this work, principal component analysis was used to reduce the number of predictors for calculating genomic breeding values (GEBV). Bulls of 2 cattle breeds farmed in Italy (634 Brown and 469 Simmental) were genotyped with the 54K Illumina beadchip (Illumina Inc., San Diego, CA). After data editing, 37,254 and 40,179 single nucleotide polymorphisms (SNP) were retained for Brown and Simmental, respectively. Principal component analysis carried out on the SNP genotype matrix extracted 2,257 and 3,596 new variables in the 2 breeds, respectively. Bulls were sorted by birth year to create reference and prediction populations. The effect of principal components on deregressed proofs in reference animals was estimated with a BLUP model. Results were compared with those obtained by using SNP genotypes as predictors with either the BLUP or Bayes_A method. Traits considered were milk, fat, and protein yields, fat and protein percentages, and somatic cell score. The GEBV were obtained for prediction population by blending direct genomic prediction and pedigree indexes. No substantial differences were observed in squared correlations between GEBV and EBV in prediction animals between the 3 methods in the 2 breeds. The principal component analysis method allowed for a reduction of about 90% in the number of independent variables when predicting direct genomic values, with a substantial decrease in calculation time and without loss of accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号