首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
《Journal of dairy science》2022,105(2):940-949
β-Galactosidase is one of the most important enzymes used in dairy processing. It converts lactose into glucose and galactose, and also catalyzes galactose to form galactooligosaccharides (GOS), so-called prebiotics. However, most of the β-galactosidases from the starter cultures have low transgalactosylation activities, the process that results in galactose accumulation in yogurt. Here, a site-directed mutation strategy was attempted, to genetically modify β-galactosidase from Streptococcus thermophilus. Out of 28 Strep. thermophilus strains, a β-galactosidase gene named bgaQ, encoded for high β-galactosidase hydrolysis activity (BgaQ), was cloned from the strain Strep. thermophilus SDMCC050237. It was 3,081 bp in size, with 1,027 deduced amino acid residuals, which belonged to the GH2 family. After replacing the Tyr801 and Pro802 around the active sites of BgaQ with His801 and Gly802, the GOS synthesis of the generated mutant protein BgaQ-8012 increased from 20.5% to 26.7% at 5% lactose, and no hydrolysis activity altered obviously. Subsequently, the purified BgaQ or BgaQ-8012 was added to sterilized milk inoculated with 2 starters from Strep. thermophilus SDMCC050237 and Lactobacillus delbrueckii ssp. bulgaricus ATCC11842. The GOS yields with added BgaQ or BgaQ-8012 increased to 5.8 and 8.3 g/L, respectively, compared with a yield of 3.7 g/L without enzymes added. Meanwhile, the addition of the BgaQ or BgaQ-8012 reduced the lactose content by 49.3% and 54.4% in the fermented yogurt and shortened the curd time. Therefore, this study provided a site-directed mutation strategy for improvement of the transgalactosylation activity of β-galactosidase from Strep. thermophilus for GOS-enriched yogurt making.  相似文献   

2.
Streptococcus thermophilus can grow in the presence of oxygen and survive at low concentrations of H2O2. Glutathione (GSH) plays an important role in living cells, but its protective roles against oxidative stress in S. thermophilus remain unclear. We assessed intracellular GSH accumulation under both anaerobic and aerobic growth conditions in 40 S. thermophilus strains. The GSH level in different strains was found to be strain-specific. A gshF gene, encoding the GSH synthesis, was inactivated in the genome of strain SDMCC18. The growth and survival of the resulting mutant SDMCC18ΔgshF were significantly reduced after exposure to oxygen and H2O2. However, the oxidative tolerance of the mutant strain was restored by exogenous GSH. Our findings provide a new strategy to improve the robustness of S. thermophilus in starter manufacture and industrial applications. We, for the first time, demonstrated the GSH synthesis and its transport from the culture medium in S. thermophilus.  相似文献   

3.
The protocooperation between Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus relies on metabolite exchanges that accelerate acidification during yogurt fermentation. Conflicting results have been obtained in terms of the effect of the Strep. thermophilus urease and the NH3 and CO2 that it generates on the rate of acidification in yogurt fermentation. It is difficult to perform a systematic study of the effects of urease on protocooperation because it is necessary to distinguish among the direct, indirect, and strain-specific effects resulting from the combination of the strains of both species. To evaluate the direct effects of urease on protocooperation, we generated 3 urease-deficient mutants (ΔureC) of fast- and slow-acidifying Strep. thermophilus strains and observed the effects of NH3 or CO2 supplementation on acidification by the ΔureC strains. Further, we examined 5 combinations of 3 urease-deficient ΔureC strains with 2 CO2-responsive or CO2-unresponsive strains of L. bulgaricus. Urease deficiency induced a shortage of ammonia nitrogen and CO2 for the fast- and slow-acidifying Strep. thermophilus and for the CO2-responsive L. bulgaricus, respectively. Notably, the shortage of ammonia nitrogen had more severe effects than that of CO2 on yogurt fermentation, even if coculture with L. bulgaricus masked the effect of urease deficiency. Our work established (1) that urease deficiency inhibits the fermentative acceleration of protocooperation regardless of the Strep. thermophilus and L. bulgaricus strain combinations, and (2) that urease is an essential factor for effective yogurt acidification.  相似文献   

4.
5.
Streptococcus thermophilus SDMCC18 contains a novel bi-functional glutathione synthetase gene gshF, and it can produce glutathione (GSH). In the present study, we demonstrated that the produced GSH by S. thermophilus SDMCC18 could protect cells against acid challenge and be secreted into the medium. Moreover, using a gshF-defective mutant strain as the control, we found that the GSH conferred a protective role against acid stress to Lactobacillus delbrueckii subsp. bulgaricus ATCC11842. In addition, L. bulgaricus ATCC11842 could import the exogenous GSH into the cytoplasm, leading to an improved growth of strain ATCC11842. Taken together, our study reported a novel proto-cooperation relationship between S. thermophilus and L. bulgaricus in yoghurt fermentation.  相似文献   

6.
Yogurt is a well-known nutritious and probiotic food and is traditionally fermented from milk using the symbiotic starter culture of Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus. However, yogurt consumption may cause health problems in lactose-intolerant individuals, and the demand for lactose-free yogurt has been increasing. The standard method to prepare lactose-free yogurt is to hydrolyze milk by lactase; however, this process has been reported to influence the fermentation properties of starter strains. This study aimed to investigate the fermentation properties of an industrial starter culture of L. bulgaricus 2038 and S. thermophilus 1131 in lactose-hydrolyzed milk and to examine the metabolic changes induced by glucose utilization. We found that the cell number of L. bulgaricus 2038, exopolysaccharide concentration, and viscosity in the coculture of L. bulgaricus 2038 and S. thermophilus 1131 was significantly increased in lactose-hydrolyzed milk compared with that in unhydrolyzed milk. Although the cell number of S. thermophilus 1131 showed no difference, production of formic acid and reduction of dissolved oxygen were enhanced in lactose-hydrolyzed milk. Further, in lactose-hydrolyzed milk, S. thermophilus 1131 was found to have increased the expression of NADH oxidase, which is responsible for oxygen reduction. These results indicated that glucose utilization promoted S. thermophilus 1131 to rapidly reduce the dissolved oxygen amount and produce a high concentration of formic acid, presumably resulting in the increased cell number of L. bulgaricus 2038 in the coculture. Our study provides basic information on the metabolic changes in starter strains in lactose-hydrolyzed milk, and demonstrates that lactose-free yogurt with increased cell number of L. bulgaricus can be prepared without delay in fermentation and decrease in the cell number of S. thermophilus.  相似文献   

7.
Lactose is an energy source for culture bacteria. Bile tolerance is an important probiotic property. Our aim was to elucidate the effect of lactose on bile tolerance of yogurt starter culture Lactobacillus bulgaricus LB-12 and Streptococcus thermophilus ST-M5. Bile tolerance of pure cultures was determined using 0.3% oxgall in MRS THIO broth (Difco, Becton Dickinson, Sparks, MD) for L. bulgaricus and 0.3% oxgall in M17 broth (Oxoid, Basingstoke, UK) for Strep. thermophilus. Lactose was added to both broths at 0 (control), 1, 3, and 5% (wt/vol) broth. Dilutions were plated hourly for 12 h. Experiments were replicated 3 times. At 2, 4, and 12 h of incubation, lactose incorporated at all amounts, 1, 3, and 5% (wt/vol), showed higher counts of Strep. thermophilus ST-M5 compared with the control. Lactose use at 5% (wt/vol) significantly enhanced bile tolerance of both L. bulgaricus and Strep. thermophilus compared with control.  相似文献   

8.
The capsule-producing, galactose-negative Streptococcus thermophilus MR-1C strain was first transformed with a low-copy plasmid containing a functional galK gene from Streptococcus salivarius to generate a recombinant galactose-fermenting Strep. thermophilus strain named MR-AAC. Then, we compared the functional properties of Strep. thermophilus MR-AAC with those of the parent MR-1C strain when used as starter for fermented products and cheese. In lactose-supplemented laboratory medium, MR-AAC metabolized galactose, but only when the amount of lactose was less than 0.1% (wt/vol). After 7 h of fermentation, the medium was almost depleted of galactose. The parent strain, MR-1C, showed the same pattern, except that the concentration of galactose decreased by only 25% during the same period. It was found that, during milk fermentation and Mozzarella cheese production, the galactose-fermenting phenotype was not expressed by MR-AAC and this strain expelled galactose into the medium at a level similar to the parent MR-1C strain. In milk and in lactose-supplemented medium, capsular exopolysaccharide production occurred mainly during the late exponential phase and the stationary growth phase with similar kinetics between MR-1C and MR-AAC.  相似文献   

9.
《Journal of dairy science》2022,105(3):2025-2037
Lactobacillus fermentum HY01 is a probiotic strain screened from traditional yak yogurt, which can effectively relieve enteritis and constipation. This study aimed to evaluate the effects of HY01 as an adjunct starter on the quality and storage of yak yogurt. A total of 36 main volatile flavor substances were detected in all samples. In particular, more aldehydes, esters, and alcohols were detected in yak yogurt prepared by mixed fermentation of L. fermentum HY01 and starter MY105 (including Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus). The rheological results showed that the yak yogurt prepared by mixed fermentation of L. fermentum HY01 and starter MY105 had higher apparent viscosity and lower tan δ value compared with compared with traditional yak yogurt, yak yogurt with only L. fermentum HY01, and cow yogurt with L. fermentum HY01 and starter MY105. Meanwhile, the conjugated linoleic acid in the yak yogurt prepared by mixed fermentation of L. fermentum HY01 and starter was significantly higher than those in the HY01 group or the yogurt starter group alone. After 28 d of storage at 4°C, the number of HY01 in the yak yogurt prepared by mixed fermentation of L. fermentum HY01 and starter was still higher than 107 cfu/mL, its acidity was lower than 110°T, and its syneresis was the lowest. The results indicated that L. fermentum HY01 could improve the flavor, texture, and storage properties of yak yogurt.  相似文献   

10.
To prevent textural defects in low-fat and fat-free yogurts, fat substitutes are routinely added to milk. In situ production of exopolysaccharides (EPS) by starter cultures is an acknowledged alternative to the addition of biothickeners. With the aim of increasing in situ EPS production, a recombinant galactose-positive EPS+Streptococcus thermophilus strain, RD-534-S1, was generated and compared with the parent galactose-negative EPS+ strain RD-534. The RD-534-S1 strain produced up to 84 mg/L of EPS during a single-strain milk fermentation process, which represented 1.3 times more than the EPS produced by strain RD-534. Under conditions that mimic industrial yogurt production, the starter culture consisting of RD-534-S1 and (EPS) Lactobacillus bulgaricus L210R strain (RD-534-S1/L210R) led to an EPS production increase of 1.65-fold as compared with RD-534-S1 alone. However, the amount of EPS produced did not differ from that found in yogurts produced using an isogenic starter culture that included the parent S. thermophilus strain RD-534 and Lb. bulgaricus L210R (RD-534/L210R). Moreover, the gel characteristics of set-style yogurt and the rheological properties of stirred-style yogurt produced using RD-534-S1/L210R were similar to the values obtained for yogurts made with RD-534/L210R. In conclusion, it is possible to increase the production of EPS by ropy S. thermophilus strains through genetic engineering of galactose metabolism. However, when used in combination with Lb. bulgaricus for yogurt manufacture, the EPS overproduction of recombinant strain is not significant.  相似文献   

11.
This study addresses the hypothesis that the extracellular cell-associated X-prolyl dipeptidyl-peptidase activity initially described in Streptococcus thermophilus could be attributable to the intracellular X-prolyl dipeptidyl-peptidase PepX. For this purpose, a PepX-negative mutant of S. thermophilus LMD-9 was constructed by interrupting the pepX gene and named LMD-9-ΔpepX. When cultivated, the S. thermophilus LMD-9 wild type strain grew more rapidly than its ΔpepX mutant counterpart. Thus, the growth rate of the LMD-9-ΔpepX strain was reduced by a factor of 1.5 and 1.6 in milk and LM17 medium (M17 medium supplemented with 2% lactose), respectively. The negative effect of the PepX inactivation on the hydrolysis of β-casomorphin-7 was also observed. Indeed, when incubated with this peptide, the LMD-9-ΔpepX mutant cells were unable to hydrolyze it, whereas this peptide was completely degraded by the S. thermophilus LMD-9 wild type cells. This hydrolysis was not due to leakage of intracellular PepX, as no peptide hydrolysis was highlighted in cell-free filtrate of wild type strain. Therefore, based on these results, it can be presumed that though lacking an export signal, the intracellular PepX might have accessed the β-casomorphin-7 externally, perhaps via its galactose-binding domain-like fold, this domain being known to help enzymes bind to several proteins and substrates. Therefore, the identification of novel distinctive features of the proteolytic system of S. thermophilus will further enhance its credibility as a starter in milk fermentation.  相似文献   

12.
13.
Phage infections still represent a serious risk to the dairy industry, in which Streptococcus thermophilus is used in starter cultures for the manufacture of yogurt and cheese. The goal of the present study was to analyze the biodiversity of the virulent S. thermophilus phage population in one Argentinean cheese plant. Ten distinct S. thermophilus phages were isolated from cheese whey samples collected in a 2-mo survey. They were then characterized by their morphology, host range, and restriction patterns. These phages were also classified within the 2 main groups of S. thermophilus phages (cos- and pac-type) using a newly adapted multiplex PCR method. Six phages were classified as cos-type phages, whereas the 4 others belonged to the pac-type group. This study illustrates the phage diversity that can be found in one factory that rotates several cultures of S. thermophilus. Limiting the number of starter cultures is likely to reduce phage biodiversity within a fermentation facility.  相似文献   

14.
The yogurt starters Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus are well-known facultatively anaerobic bacteria that can grow in oxygenated environments. We found that they removed dissolved oxygen (DO) in a yogurt mix as the fermentation progressed and that they began to produce acid actively after the DO concentration in the yogurt mix was reduced to 0 mg/kg, suggesting that the DO retarded the production of acid. Yogurt fermentation was carried out at 43 or 37°C both after the DO reduction treatment and without prior treatment. Nitrogen gas was mixed and dispersed into the yogurt mix after inoculation with yogurt starter culture to reduce the DO concentration in the yogurt mix. The treatment that reduced DO concentration in the yogurt mix to approximately 0 mg/kg beforehand caused the starter culture LB81 used in this study to enter into the exponential growth phase earlier. Furthermore, the combination of reduced DO concentration in the yogurt mix beforehand and incubation at a lower temperature (37°C) resulted in a superior set yogurt with a smooth texture and strong curd structure.  相似文献   

15.
Twelve different biogenic amines formation in 58 isolates of Streptococcus thermophilus from home-made natural yogurt were investigated in histidine (HDB) and lysine decarboxylase broth (LDB). All S. thermophilus isolates had an ability to produce twelve different biogenic amines in HDB and LDB. Most of the S. thermophilus isolates formed low amounts of histamine (1–50 mg/L) from histidine. Apart from one isolate, S. thermophilus produced tyramine at low (47 isolates) and medium (10 isolates) levels. The amount of each specific biogenic amine produced by S. thermophilus was generally lower than 100 mg L−1. Also, the presence of hdcA gene was investigated using PCR technique and relation between gene and histamine production was conducted in S. thermophilus isolates. This study showed that most of the S. thermophilus isolates have the ability to form biogenic amines, especially histamine, and tyramine, which is an important consideration when selecting strains as starter cultures.  相似文献   

16.
The aim of this work was to study the effect of the oxidoreduction potential, modified using gas, on the growth and survival of a probiotic strain, Bifidobacterium bifidum, and 2 yogurt strains, Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus. Three fermented milks were manufactured with an initial oxidoreduction potential value adjusted to +440 mV (control milk), +350 mV (milk gassed with N2), and −300 mV [milk gassed with N2 plus 4% (vol/vol) H2 (N2-H2)]. Acidification profiles, growth during milk fermentation and survival during storage at 4°C for 28 d were determined. This study showed that fermented probiotic dairy products made from milk gassed with N2 and, more particularly, those made from milk gassed with N2H2 were characterized by a significant increase in B. bifidum survival during storage without affecting the fermentation kinetics and the survival of Strep. thermophilus and L. delbrueckii ssp. bulgaricus.  相似文献   

17.
《Journal of dairy science》2019,102(11):9651-9662
Streptococcus thermophilus is an important bacterium used in the production of fermented dairy products. Yogurt with good flavor is preferred by consumers; thus, variation in flavor-formation characteristics among isolates is attracting attention. Here, acetaldehyde production characteristics of 30 isolates were evaluated in parallel with genotyping and multilocus sequence typing of key functional genes involved in acetaldehyde production. The results showed that isolates could be divided into 3 phenotypically distinct groups: high-acetaldehyde-yielding isolates (>10 mg/L), medium-acetaldehyde-yielding isolates (5–10 mg/L) and low-acetaldehyde-yielding (<5 mg/L) based on evaluation of acetaldehyde production during yogurt storage. These groups, distinguishable by phenotypic characteristics, were clustered in corresponding groups based on functional gene multilocus sequence typing analysis. Combining functional gene sequence analysis of 30 Strep. thermophilus isolates with phenotypic evaluation of their flavor-related characteristics (specifically acetaldehyde production) demonstrated that groups of isolates established using genotype data analysis corresponded with groups identified based on their phenotypic traits. Interestingly, the 30 isolates of Strep. thermophilus showed significant phylogenetic clustering in acetaldehyde content by functional gene and acetaldehyde content analysis. A corresponding relationship exists between functional gene phylogenetic clustering and acetaldehyde content variation.  相似文献   

18.
《Journal of dairy science》2022,105(7):5641-5653
Streptococcus thermophilus is a common yogurt starter that consumes lactose as its primary carbon source. The enzyme β-galactosidase is essential for the lactose metabolism and the growth of this species. Streptococcus thermophilus appears to be a promising cell factory. Food-grade vectors have advantages in heterologous protein expression. This study aimed to determine whether the β-galactosidase of S. thermophilus has the α-complementary characteristic and to develop a novel food-grade vector based on this phenomenon. The N-terminal 7 to 36 AA residues of the β-galactosidase in S. thermophilus were deleted. The obtained mutant S. thermophilus Δα lost β-galactosidase activity and growth ability in the lactose medium. Subsequently, plasmids expressing α-fragments with different lengths of 1 to 36 (Sα1), 1 to 53 (Sα2), and 1 to 88 (Sα3) AA were constructed and transformed into S. thermophilus Δα. Recombinant S. thermophilus Δα expressing Sα2 or Sα3 recovered the ability to grow in the lactose medium, and their β-galactosidase activity accounted for 24.5% or 11.5% of the wild strain, respectively. These results indicated that the α-complementation system of β-galactosidase existed in S. thermophilus. Based on the characteristic, a food-grade vector pSEα was constructed. Except for Sα2, vector pSEα expressed the α-donor derived from E. coli β-galactosidase. This facilitated the construction of recombinant plasmids in E. coli DH5α and thus improved the transformation efficiency of S. thermophilus. Green fluorescent protein as a reporter protein could be highly expressed in S. thermophilus using this vector. As a result, pSEα is an efficient and safe vector for S. thermophilus with potential food applications.  相似文献   

19.
《Journal of dairy science》2022,105(9):7322-7333
Yogurt, a traditional fermented dairy product, is made with a starter that contains Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus. The aim of this study was to investigate the effects of different concentrations of epigallocatechin gallate (EGCG; 0, 0.5, 1.0, 3.0, and 5.0 mg/mL) on the growth, metabolism, and acid production of lactic acid bacteria, as well as the texture, stability, and antioxidant activity of fermented milk (yogurt). The results showed that a low concentration of EGCG had no significant effect on the acid production capacity of the starter or on the water-holding capacity of the yogurt but did increase its viscosity. A high concentration (5.0 mg/mL) of EGCG delayed the acid production rate of the starter and decreased the water-holding capacity, but significantly increased the antioxidant activity of yogurt. The addition of EGCG significantly increased the hardness of yogurt. Therefore, EGCG can improve the texture of fermented milk and enhance its antioxidant activity and stability, thus improving the overall quality of yogurt.  相似文献   

20.
Effect of Mixing During Fermentation in Yogurt Manufacturing   总被引:1,自引:0,他引:1  
In traditional yogurt manufacturing, the yogurt is not agitated during fermentation. However, stirring could be beneficial, particularly for improving heat and mass transport across the fermentation tank. In this contribution, we studied the effect of low-speed agitation during fermentation on process time, acidity profile, and microbial dynamics during yogurt fermentation in 2 laboratory-scale fermenters (3 and 5 L) with different heat-transfer characteristics. Lactobacillus bulgaricus and Streptococcus thermophilus were used as fermenting bacteria. Curves of pH, lactic acid concentration, lactose concentration, and bacterial population profiles during fermentation are presented for static and low-agitation conditions during fermentation. At low-inoculum conditions, agitation reduced the processing time by shortening the lag phase. However, mixing did not modify the duration or the shape of the pH profiles during the exponential phase. In fermentors with poor heat-transfer characteristics, important differences in microbial dynamics were observed between the agitated and nonagitated fermentation experiments; that is, agitation significantly increased the observable specific growth rate and the final microbial count of L. bulgaricus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号