首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Recognized to confer health benefits to consumers, probiotics such as Lactobacillus acidophilus are commonly incorporated into fermented dairy products worldwide; among which yogurt is a popular delivery vehicle. To materialize most of the putative health benefits associated with probiotics, an adequate amount of viable cells must be delivered at the time of consumption. However, the loss in their viabilities during refrigerated storage has been demonstrated previously. This study focused on the effects of yogurt starter cultures on the survival of five strains of L. acidophilus, with emphases on low pH and acid production. Differential survival behavior between L. acidophilus strains was further analyzed. To this end, viable cell counts of L. acidophilus were determined weekly during 4 °C storage in various types of yogurts made with Streptococcus thermophilus alone, L. delbrueckii ssp. bulgaricus alone, both species of the starter cultures, or glucono-delta-lactone (GDL). All yogurt types, except for pasteurized yogurts, were co-fermented with L. acidophilus. Yogurt filtrate was analyzed for the presence of any inhibitory substance and for the amount of hydrogen peroxide. Multiplication of L. acidophilus was not affected by the starter cultures as all strains reached high level on day 0 of the storage period. Throughout the 28-day storage period, cell counts of L. acidophilus PIM703 and SBT2062 remained steady (~ 6 × 107 CFU/g) in yogurts made with both starter cultures, whereas those of ATCC 700396 and NCFM were reduced by a maximum of 3 and 4.6 logs, respectively. When starter cultures were replaced by GDL, all strains survived well, suggesting that a low pH was not a critical factor dictating their survival. In addition, the filtrate collected from yogurts made with starter cultures appeared to have higher inhibitory activities against L. acidophilus than that made with GDL. The presence of viable starter cultures was necessary to adversely affect the survival of some strains, as pasteurized yogurts had no effect on their survival. In particular, the inhibitory effect exerted by L. delbrueckii ssp. bulgaricus on L. acidophilus NCFM was highly pronounced than by S. thermophilus, nevertheless, the same effect was not observed on SBT2062. The inhibition against stationary-phase NCFM cells might be caused by the elevated level of hydrogen peroxide produced by L. delbrueckii ssp. bulgaricus. Delineating factors driving the differences in survival trait among probiotic strains will lead to a more efficacious delivery of health benefits in fermented dairy products through targeted technological interventions.  相似文献   

2.
D.W. Olson 《LWT》2008,41(5):911-918
The effect of manufacturing yogurt with a wide variation in Lactobacillus acidophilus inoculation level while holding the yogurt culture inoculation level constant on the properties of the resulting yogurt was determined to find out if any problems can occur if an excessively high level of L. acidophilus is used in yogurt production. Four batches of plain, set-style yogurt were manufactured with skim milk, nonfat dry milk, yogurt cultures, and with or without L. acidophilus (0, 0.0239, 0.238, or 2.33 g/100 g). After homogenization, pasteurization, and cooling, yogurt mixes were inoculated, poured into containers, incubated to pH 4.5, and cooled. Lactobacilli and L. acidophilus counts, pH, amount of syneresis, color, apparent viscosities, and sensory scores were determined during storage. The yogurt inoculated with 0.238 g/100 g L. acidophilus had the highest L. acidophilus counts from 4 to 7 wk. Yogurts inoculated with 2.33 g/100 g L. acidophilus generally had lower lactobacilli counts, L* values, apparent viscosities, and sensory scores but more syneresis and higher a* and b* values than the remaining yogurts. An excessively high inoculated level of L. acidophilus (2.33 g/100 g) resulted in an inferior quality yogurt.  相似文献   

3.
The effect of four inoculation levels of Lactobacillus casei Zhang (0.001, 0.01, 0.1 and 1.0 g/100 g) on the fermentation characteristics of set-style yogurt, and the changes in viable counts of lactic acid bacteria, pH value, syneresis, apparent viscosity, sugar and organic acid contents were determined during fermentation and storage over 21 days. The presence of 0.001 to 0.01 g/100 g L. casei Zhang did not affect the growth of the yogurt strains, and the yogurt inoculated with 0.00 1 g/100 g of L. casei Zhang had the highest apparent viscosity among the samples. However, a high inoculated level of L. casei Zhang (1.0 g/100 g) resulted in yogurts with inferior quality.  相似文献   

4.
As a by-product of soybean processing, soybean hulls contain soybean hull polysaccharides (SHPS). This study aims to develop a plant-based yogurt with SHPS addition and assess the consequences of SHPS on the physicochemical properties and growth of lactic acid bacteria (LAB) in yogurts. The study investigated the water holding capacity (WHC), microstructure, rheological properties, texture, pH, organoleptic attributes, volatile compounds, flavor profile, and LAB population. The findings reveal that the addition of SHPS significantly impacted these properties. SHPS improved the physicochemical properties, increased the level of flavor compounds, and improved the organoleptic properties of yogurt. Yogurt with 0.6% SHPS demonstrated superior WHC, texture, rheological properties, and the highest organoleptic evaluation scores. However, when SHPS additions exceeded 0.6%, WHC, texture, and rheological properties of the yogurts decreased. Furthermore, SHPS-added yogurts contained more LAB compared to yogurt without SHPS. LAB grew better in media with SHPS than in media without glucose. Streptococcus thermophilus grew best among the LAB strains. This study highlights the potential of SHPS in yogurt production and its promising applications in fermented food products.  相似文献   

5.
In this study, we developed a high-throughput antifungal activity screening method using a cheese-mimicking matrix distributed in 24-well plates. This method allowed rapid screening of a large variety of antifungal agent candidates: bacterial fermented ingredients, bacterial isolates, and preservatives. Using the proposed method, we characterized the antifungal activity of 44 lactic acid bacteria (LAB) fermented milk-based ingredients and 23 LAB isolates used as protective cultures against 4 fungal targets (Mucor racemosus, Penicillium commune, Galactomyces geotrichum, and Yarrowia lipolytica). We also used this method to determine the minimum inhibitory concentration of a preservative, natamycin, against 9 fungal targets. The results underlined the strain-dependency of LAB antifungal activity, the strong effect of fermentation substrate on this activity, and the effect of the screening medium on natamycin minimum inhibitory concentration. Our method could achieved a screening rate of 1,600 assays per week and can be implemented to evaluate antifungal activity of microorganisms, fermentation products, or purified compounds compatible with dairy technology.  相似文献   

6.
This study aims to evaluate the antifungal activity of lactic acid bacteria (LAB) from some Cameroonian food commodities against mycotoxigenic and spoilage molds. Following LAB isolation, the antifungal activity of the isolates was assessed. The organic acids were quantified using high-performance liquid chromatography and the ability of the LAB to reduce mold biomass and aflatoxin production was evaluated. The LAB were identified and the biopreservative potential of strain LO3 was evaluated on tomato paste. Nine percent of the strains isolated showed broad antifungal activity. The activity was due to the effect of organic acids comprising lactic, acetic, 4-hydroxy-3-phenyllactic and 3-phenyllactic acids. Lactobacillus plantarum LO3 exhibiting the highest and broadest antifungal activity was selected and showed the capacity to inhibit fungal growth and aflatoxin production in vitro. Moreover, this strain and its cell-free supernatant showed the ability to prevent aflatoxigenic mold growth in tomato paste without altering its physico-chemical and organoleptic properties.  相似文献   

7.
Myrrh is an essential oil and natural flavoring approved by the US Food and Drug Administration, and it has antibacterial and antifungal activity against pathogens. Our objective was to determine the effect of an aqueous myrrh suspension on Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus counts in peptone solution and yogurt, as well as pH and titratable acidity of yogurt during 5 wk of storage at 1 to 4°C. The myrrh suspension (10% wt/vol) was prepared and incorporated into a pure culture dilution in peptone and into yogurt mix at a 1% (vol/vol) level. A control with no myrrh was also prepared, and 3 replications were conducted. Streptococcus thermophilus were enumerated using Streptococcus thermophilus agar with aerobic incubation at 37°C for 24 h, and Lactobacillus delbrueckii ssp. bulgaricus were enumerated using de Man, Rogosa, and Sharpe agar adjusted to pH 5.2, with anaerobic incubation at 43°C for 72 h. During the 8-h period after inoculation, S. thermophilus and L. delbrueckii ssp. bulgaricus counts in peptone solution at 37°C and 43°C, respectively, were not significantly different in the presence or absence of the aqueous myrrh suspension. Counts of S. thermophilus in yogurt containing myrrh (mean ± SD; 4.96 ± 0.58 log cfu/mL) were not significantly different from those in the control yogurt (4.87 ± 0.39 log cfu/mL). The log counts for L. delbrueckii ssp. bulgaricus in yogurt containing myrrh (5.04 ± 1.44 log cfu/mL) and those of the control (5.52 ± 1.81 log cfu/mL) did not differ, and the counts remained within 1 log of each other throughout 5 wk of storage. The pH of the yogurts containing the aqueous myrrh suspension was not significantly different from that of the control yogurts, and their pH values were within 0.1 pH unit of each other in any given week. Titratable acidity values remained steady around 1.1 to 1.2% lactic acid for both yogurt types throughout the storage period, with no significant differences between them. Yogurt culture bacteria can survive in the presence of a myrrh suspension in yogurt with no significant change in pH or titratable acidity. Therefore, it may be beneficial to add an aqueous myrrh suspension to yogurt.  相似文献   

8.
Dairy products, including cultured dairy products such as cheese and yogurt, are susceptible to fungal spoilage. Traditionally, additives such as potassium sorbate have been used to control fungal spoilage; however, with consumer demand for clean-label products, other strategies to control fungal spoilage (e.g., biopreservatives) are increasingly being used in dairy formulations. In order to help the dairy industry better evaluate biopreservatives for control of fungal spoilage, we developed a challenge study protocol, which was applied to evaluate 2 commercially available protective cultures for their ability to control yeast and mold spoilage of Greek yogurt. Greek yogurt formulated with and without protective cultures was inoculated with a cocktail consisting of 5 yeasts and 1 mold to yield inoculum levels of 101 and 103 cfu/g of yogurt. The inoculated yogurts were stored at 7°C and fungal counts as well as time to visible growth, on the yogurt surface, of mycelium mold colonies or yeast were determined over shelf-life. Whereas fungal concentrations increased to spoilage levels (≥105 cfu/g) in all yogurt formulations at both inoculum levels by d 23 of storage at 7°C, no surface mold was observed over 76 d in any of the products formulated with protective cultures. Control yogurts without biopreservatives all showed surface mold by d 23. In order to allow industry to better evaluate the business effects of improved control of surface mold growth that can be achieved with protective cultures, we developed a Monte Carlo simulation model to estimate consumer exposure to visible mold growth in yogurt formulated without fungal inhibitors. Our model showed that initial mold contamination rate has the largest effect on the model outcome, indicating that accurate data on contamination rates are important for use of these models. When air plates were used, in a proof-of-concept approach, to estimate initial contamination rates in a small yogurt manufacturing operation, our model predicted that 550 ± 25.2 consumers (±standard deviation) would be exposed to visible mold growth for every 1 million cups of yogurt produced. With initial contamination rate data for individual facilities, this model could be used by industry to estimate the number of consumers exposed to visible mold spoilage and could allow industry to better assess the value of mold-control strategies.  相似文献   

9.
Kayanush J. Aryana  Paula McGrew 《LWT》2007,40(10):1808-1814
The objective was to determine the effect of chain length of inulins on the characteristics of fat-free plain yogurt manufactured with Lactobacillus casei. Probiotic fat-free plain yogurts were manufactured using Streptococcus thermophilus, Lactobacillus bulgaricus and L. casei. The treatments were inulins of short (P95), medium (GR) and long (HP) chain lengths. The inulins were incorporated at a concentration of 1.5 g/100 g yogurt mix. Inulins of various chain lengths did not affect viscosity, L*, a*, b* and appearance of yogurts manufactured with L. casei. Yogurt with HP had less syneresis compared to the control, while yogurt with P95 had syneresis comparable to the control. Yogurt with P95 had a significantly lower pH than the control, while the pH of the yogurts with other treatments was not different from the control. Flavor scores of the control were comparable to yogurt with P95. The flavor scores for yogurts with P95 were significantly higher than for yogurts with HP. The yogurts with HP had better body and texture compared to the control and P95. Chain length of prebiotics affected some characteristics of the yogurts.  相似文献   

10.
《Journal of dairy science》2023,106(6):3868-3883
l-Glutamine, quercetin, slippery elm bark, marshmallow root, N-acetyl-d-glucosamine, licorice root, maitake mushrooms, and zinc orotate have been reported to help treat leaky gut. The purpose of this research was to explore the impact of these functional ingredients on the physico-chemical, microbiological, and sensory properties of yogurt. The milk from same source was equally divided into 9 pails and the 8 ingredients were randomly assigned to the 8 pails. The control had no ingredient. Milk was fermented to yogurt. The pH, titratable acidity, syneresis, viscosity, color (L*, a*, b*, C*, and h*), Streptococcus thermophilus counts, and Lactobacillus delbrueckii spp. bulgaricus counts of yogurts were determined on d 1, 7, 14, 21, 28, 35, and 42, whereas coliform counts, yeast and mold counts, and rheological characteristics were determined on d 1 and 42. The sensory study was performed on d 3 and particle size of the functional ingredients (powder form) was also determined. When compared with control, the incorporation of slippery elm bark into yogurts led to less syneresis. l-Glutamine increased pH and n′ values (relaxation exponent derived from G′) and lowered titratable acidity values. N-Acetyl-d-glucosamine incorporation resulted in higher n′ and lower titratable acidity values, whereas maitake mushroom led to lower n′ values. Incorporating quercetin increased the growth of L. bulgaricus. Adding maitake mushrooms increased the growth of S. thermophilus but lowered apparent viscosity values, whereas quercetin decreased its S. thermophilus counts. Quercetin decreased L* and a* values but increased b* values, and maitake mushroom increased a* values. Thixotropic behavior increased with the addition of licorice root and quercetin. Adding slippery elm bark, N-acetyl-d-glucosamine, licorice root, maitake mushrooms, and zinc orotate into yogurt did not affect the sensory properties, whereas yogurts with quercetin had the lowest sensory scores. Overall, most of these ingredients did not cause major changes to yogurt properties.  相似文献   

11.
ABSTRACT:  Inulin is a prebiotic food ingredient that increases the activity of Lactobacillus acidophilus , increases calcium absorption, and is a good source of dietary fiber. The objective was to determine the effect of short, medium, and long chain inulins on the physicochemical, sensory, and microbiological characteristics of fat-free plain yogurt containing L. acidophilus . Inulins of short (P95), medium (GR), and long (HP) chain lengths were incorporated at 1.5% w/w of the yogurt mix. Viscosity, pH, syneresis, sensory properties (flavor, body and texture, and appearance and color), L. acidophilus counts, and color ( L *, a *, and b *) of yogurts were determined at 1, 11, and 22 d after yogurt manufacture. The P95 containing yogurt had a significantly lower pH than the remaining yogurts, higher flavor scores than the yogurt containing HP, and comparable flavor scores with the control. The yogurts containing HP had less syneresis than the control and a better body and texture than the remaining yogurts. Yogurts containing prebiotics of different chain lengths had comparable L. acidophilus counts with each other but higher counts than the control. However, inulins of various chain lengths did not affect viscosity, color, and product appearance. Chain length of prebiotics affected some quality attributes of probiotic yogurts.  相似文献   

12.
The effect of commercial fruit preparations (mango, mixed berry, passion fruit and strawberry) on the viability of probiotic bacteria, Lactobacillus acidophilus LAFTI® L10 and Bifidobacterium animalis ssp. lactis LAFTI® B94 in stirred yogurts during storage (35 days) at refrigerated temperature (4 °C) was evaluated. The results showed that addition of either 5 or 10 g/100 g fruit preparations had no significant (p>0.05) effect on the viability of the two probiotic strains except on L. acidophilus LAFTI L10 yogurt with 10 g/100 g passion fruit or mixed berry. After the addition of fruit preparation, 96% of the yogurts incorporated with fruit preparation did not exhibit a greater loss in the viability of probiotic bacteria compared to plain yogurt during the storage period. A correlation between the post-storage pH in yogurts and the survival of probiotic bacteria was observed. All the yogurts, however, contained the recommended levels of (106-107 cfu/g) probiotic bacteria at the end of 35-day shelf life.  相似文献   

13.
Camel milk, similar to cow milk, contains all of the essential nutrients as well as potentially health-beneficial compounds with anticarcinogenic, antihypertensive, and antioxidant properties. Camel milk has been used for the treatment of allergies to cow milk, diabetes, and autism. Camel milk helps decrease cholesterol levels in blood and improves metabolism. One of the most desirable food tastes is sweetness. However, the excessive ingestion of sugar negatively affects human health. Monk fruit sweetener is a natural, 0-calorie sweetener with many health-beneficial functions. Monk fruit sweetener helps decrease symptoms of asthma and diabetes, prevents oxidation and cancer, protects the liver, regulates immune function, and lowers glucose levels. Monk fruit sweetener is 100 to 250 times sweeter than sucrose. The objective of this study was to examine the influence of different concentrations of monk fruit sweetener on the physicochemical properties and microbiological counts of drinking yogurt made from camel milk. Camel milk drinking yogurt was produced with 0, 0.42, 1.27, and 2.54 g/L of monk fruit sweetener and stored for 42 d. The physicochemical characteristics and microbiological counts of yogurts were measured at d 1, 7, 14, 21, 28, 35, and 42. For the physicochemical characteristics, pH, titratable acidity, viscosity, and color [lightness-darkness (L*), red-green axis (a*), yellow-blue axis (b*), chroma (C*), and hue angle (h*)] values were evaluated. The counts of Streptococcus thermophilus, Lactobacillus bulgaricus, Lactobacillus acidophilus, coliforms, and yeast and mold were determined. Three replications were conducted. The sweetener addition significantly influenced pH, viscosity, and color (a*, b*, C*, and h*) values. Control samples had significantly higher pH values, lower viscosity, lower b* and C* values, and higher h* values than the samples with 1.27 and 2.54 g/L of monk fruit sweetener. Growth of S. thermophilus, L. bulgaricus, and probiotic culture L. acidophilus was not affected by the incorporation of monk fruit sweetener. Monk fruit sweetener can be added in camel milk yogurts as a health-beneficial 0-calorie sweetener.  相似文献   

14.
Four strains and 2 strains of lactic acid bacteria (LAB) were isolated from the commercial yogurt and kimchi products in Korea, respectively. Based on the 16S rRNA sequencing data, strain A from a drink-type yogurt manufactured by dairy company S, was a Gram-positive, rod-shaped Lactobacillus helveticus, and both strain B (company N) and D (company H) were identified as L. casei ssp. casei, and strain C (company L) as L. paracasei. None of yogurt strain B and D was recovered from the samples exposed to the simulated gastric juice, pH 2.0 for 1.5 hr. Of the 6 isolates tested, strain YS93 from kimchi was the most resistant to acidic condition using the simulated gastric juice, pH 2.0. Moreover, it was shown that 2 kimchi isolates and yogurt strain D produced antibacterial substances, probably bacteriocin-like peptide, which was inhibitory against Staphylococcus aureus as an indicator. In an adhesion assay using a Caco-2 cell, the adherence activity of kimchi strains YS29 and YS93 was significantly higher than those of 4 yogurt starter strains tested.  相似文献   

15.
Yogurt is a health food with notable market production and demand. Because of this, we conducted a study on prominent commercial brands of yogurts in Pakistan for microbial content and the probiotic potential of the contained lactic acid bacteria (LAB), in the context of their label claims. All contained viable LAB, but the numbers (cfu g−1) varied considerably. Three of the products made explicit probiotic claims, but LAB from these displayed no probiotic attributes per WHO-FAO guidelines. The yogurt starter and nonstarter Lactobacillus strains had no gelatinase or hemolytic activity and exhibited significant antibacterial activity against some human pathogens. One brand with a probiotic claim contained an L. acidophilus strain that showed cholesterol assimilation activity in vitro. Some potential human pathogens that were hemolytic and resistance to β-lactam antibiotics were also detected in the products. The findings demonstrate a need for better quality control and regulation to ensure safety and efficacy of yogurt products.  相似文献   

16.
Currently, the food industry wants to expand the range of probiotic yogurts but each probiotic bacteria offers different and specific health benefits. Little information exists on the influence of probiotic strains on physicochemical properties and sensory characteristics of yogurts and fermented milks. Six probiotic yogurts or fermented milks and 1 control yogurt were prepared, and we evaluated several physicochemical properties (pH, titratable acidity, texture, color, and syneresis), microbial viability of starter cultures (Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus) and probiotics (Lactobacillus acidophilus, Lactobacillus casei, and Lactobacillus reuteri) during fermentation and storage (35 d at 5°C), as well as sensory preference among them. Decreases in pH (0.17 to 0.50 units) and increases in titratable acidity (0.09 to 0.29%) were observed during storage. Only the yogurt with S. thermophilus, L. delbrueckii ssp. bulgaricus, and L. reuteri differed in firmness. No differences in adhesiveness were determined among the tested yogurts, fermented milks, and the control. Syneresis was in the range of 45 to 58%. No changes in color during storage were observed and no color differences were detected among the evaluated fermented milk products. Counts of S. thermophilus decreased from 1.8 to 3.5 log during storage. Counts of L. delbrueckii ssp. bulgaricus also decreased in probiotic yogurts and varied from 30 to 50% of initial population. Probiotic bacteria also lost viability throughout storage, although the 3 probiotic fermented milks maintained counts ≥107 cfu/mL for 3 wk. Probiotic bacteria had variable viability in yogurts, maintaining counts of L. acidophilus ≥107 cfu/mL for 35 d, of L. casei for 7 d, and of L. reuteri for 14 d. We found no significant sensory preference among the 6 probiotic yogurts and fermented milks or the control. However, the yogurt and fermented milk made with L. casei were better accepted. This study presents relevant information on physicochemical, sensory, and microbial properties of probiotic yogurts and fermented milks, which could guide the dairy industry in developing new probiotic products.  相似文献   

17.
ABSTRACT:  The impact of various levels of lutein on the physicochemical, microbiological, and sensory characteristics of yogurt over its shelf life was determined. Nonfat strawberry yogurts were prepared with 0, 0.5, 1.5, and 3.0 mg lutein per 170 g serving (20% overages were included to account for processing losses). The lutein was incorporated prior to homogenization of the yogurt mix. Stability of lutein, viscosity, pH, syneresis, standard plate counts, coliform counts, color (L*, a*, b*), and sensory evaluation (flavor, body and texture, and appearance and color) were measured at weeks 0, 1, 3, and 5 after product manufacture. The interaction effect between levels of lutein and storage time was significant for a* (redness-greenness) values. Lutein levels remained above target throughout the 5-wk storage study. Lutein did not affect viscosity, pH, syneresis, L* (lightness) and b* (yellowness-blueness) values, standard plate counts, coliform counts, flavor, body, texture, appearance, and color scores. These results suggested that lutein was suitable for inclusion in functional yogurts. The skin and eye health benefits provided by lutein can easily be incorporated into yogurt to complement inherent nutritional properties.  相似文献   

18.
During the processing of dry-cured meat products, sarcoplasmic and myofibrillar proteins undergo proteolysis, which has a marked effect on product flavor. Microbial proteolytic activity is due to the action of mostly lactic acid bacteria (LAB) and to a lesser extent micrococci. The proteolytic capacity of molds in various meat products is of interest to meat processors in the Mediterranean area. Eleven LAB and mold strains from different commercial origins were tested for proteolytic activity against pork myosin, with a view to possible use of these strains as starter cultures for Iberian dry-cured ham. Proteolytic activity was tested by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The LAB strains with the highest proteolytic activity were Lactobacillus plantarum (L115), Pediococcus pentosaceus (Saga P TM), and Lactobacillus acidophilus (FARGO 606 TM). The best fungal candidate was Penicillium nalgiovense LEM 50I followed by Penicillium digitatum, Debaryomyces hansenii, and Penicillium chrysogenum.  相似文献   

19.
Probiotic plain and stirred fruit yogurts were made from goat's milk using bacterial cultures comprising, Lactobacillus acidophilus LA-5, Bifidobacterium animalis subsp. lactis BB-12 and Propionibacterium jensenii 702. The products were stored at 4°C for 4weeks, during which time the viability of the yogurt starter culture and probiotic bacteria was analysed weekly. P. jensenii 702 demonstrated the highest viability (10(8)cfu/g) in all types of yogurt throughout the storage period, while the viability of the bifidobacteria (~10(7)cfu/g) also remained above the minimum therapeutic level. The viability of L. acidophilus LA-5 fell below 10(6)cfu/g in yogurts, however, the addition of fruit juice appeared to support the viability of lactobacilli, with higher microorganism numbers observed in fruit yogurts than in plain yogurt throughout the shelf life. Addition of fruit juice significantly increased the syneresis, and decreased viscosity and water holding capacity of yogurts (p<0.05), and also enhanced their sensory acceptability.  相似文献   

20.
Fifty-six dairy bacteria belonging to the genera Lactococcus, Lactobacillus, Pediococcus, Propionibacterium, Streptococcus, Enterococcus, Leuconostoc, and Brevibacterium were screened for antifungal activity against four species of fungi relevant to the cheese industry (Penicillium discolor, Penicillium commune, Penicillium roqueforti, and Aspergillus vesicolor). Most of the active strains belonged to the genus Lactobacillus, whereas Penicillium discolor was found to be the most sensitive of the four fungi investigated. Further studies on P. discolor showed antifungal activity only below pH 5. This effect of pH suggests that organic acids present in the culture could be involved in the detected activity. Determination of acid composition revealed lactic acid production for active dairy strains and the presence of acetic acid in active as well as inactive strains. It was demonstrated that the undissociated acetic acid originates from the bacterial growth medium. The synergistic effect of the acetic acid present and the lactic acid produced was likely the main factor responsible for the antifungal properties of the selected bacteria. These results could explain some discrepancies in reports of the antifungal properties of lactic acid bacteria, since the role of acetic acid has not been considered in previous studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号