首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
《Journal of dairy science》2022,105(6):4804-4817
Antibiotic resistance genes, as newly emerging contaminants, have become a serious challenge to public health through the food chain. The gut of humans and animals is an important reservoir for the development and dissemination of antibiotic resistance genes because of the great abundance and diversity of intestinal microbiota. In the present study, we evaluated the influence of goat milk on the diversity and abundance of antibiotic resistance genes and gut microbial communities, especially pathogenic bacteria. Male mice were used, 12 for each of the 2 groups: a control group that received sterile distilled water and a treated group that received goat milk, and gut microbiota and antibiotic resistance genes were compared in these groups using metagenomic analysis. The results revealed that ingestion of goat milk decreased the diversity and abundance of antibiotic resistance genes in the mice gut. The relative abundance of fluoroquinolone, peptide, macrolide, and β-lactam resistance genes in the total microbial genes significantly decreased after the intervention. Goat milk intake also significantly reduced the abundance of pathogenic bacteria, such as Clostridium bolteae, Clostridium symbiosum, Helicobacter cinaedi, and Helicobacter bilis. Therefore, goat milk intake might decrease the transfer potential of antibiotic resistance gene to pathogenic bacteria in the gut. In addition, bacteria with multiple resistance mechanisms accounted for approximately 4.5% of total microbial communities in the control group, whereas it was not detectable in the goat milk group, indicating the total inhibition by goat milk intake. This study highlights the influence of goat milk on antibiotic resistome and microbial communities in the gut, and provides a new insight into the function of goat milk for further study.  相似文献   

2.
《Journal of dairy science》2022,105(5):3782-3793
Camel milk is a nutritionally rich food that shows anti-inflammatory, immune regulation, and gut microbiota maintenance properties. However, the relationship between camel milk and the intestinal microbiota during colitis is unclear. Herein, we evaluated the protective effect of camel milk in mice with colitis induced using dextran sodium sulfate. Our results showed that camel milk can prevent body weight loss and colon shortening, reduce the disease activity index, and attenuate colon tissue damage. Additionally, camel milk could reduce the overexpression of inflammatory factors, inhibit the apoptosis of intestinal epithelial cells, and promote the expression of claudin-1, occludin, and zonula occludens-1 proteins. Moreover, camel milk effectively regulated intestinal microbiota in mice with colitis by increasing the gut microbiota diversity, increasing the abundance of beneficial bacteria (such as g_norank_f_Muribaculaceae, and Lachnospiraceae_NK4A136_group), and reducing the number of harmful bacteria (Bacteroides, Escherichia-Shigella). In addition, camel milk increased the levels of intestinal short-chain fatty acids. The results of the present study demonstrated that via regulating the intestinal microbiota, maintaining intestinal barrier function, and inhibiting proinflammatory cytokines, camel milk can ameliorate dextran sodium sulfate–induced colitis.  相似文献   

3.
《Journal of dairy science》2022,105(8):6405-6421
Infant formula is currently an important food to cope with insufficient breastfeeding. Although 1,3-olein-2-palmitin (OPO) has been used in infant formula, its effects on the immune system, gut microbiota, and metabolites for infants remain unclear. This study constructed a mouse model of colonizing healthy infant feces using antibiotic treatment and fecal microbial transplantation. Thus, the gap between the infant formula supplemented with OPO and human milk in mouse serum biochemistry, immune system, intestinal microbiota, short-chain fatty acid production, and metabolites was evaluated. Our results showed that regarding IL-9, IL-10 levels, fecal secretory IgA, and endotoxin, formula supplemented with OPO and human milk types had comparable levels. Additionally, OPO slightly increased the content of short-chain fatty acids. The 16S rRNA gene sequence analysis and metabonomics analysis demonstrated that feeding different foods affects the gut microbiota of mice; in particular, supplementing formula feeding with OPO enriched the abundance of bifidobacteria. Furthermore, feeding different foods leads to unique intestinal content of metabolites, and the gut microbiota regulates the metabolites' differences. Our results reveal a brand new perspective of OPO regarding gut microbiota and metabolites.  相似文献   

4.
膳食纤维是一种不可被消化和吸收的碳水化合物聚合物,能够通过调节肠道微生物群的生长,促进肠道微生物区系的动态平衡,进而影响肠道微生物代谢产物如脂多糖、三甲胺N-氧化物、短链脂肪酸和胆汁酸的产生,达到调节宿主生理健康的目的.动脉粥样硬化是一种慢性炎症性疾病,其发生发展与脂质代谢紊乱和炎症反应关系密切.而肠道微生物及其代谢产...  相似文献   

5.
肠道是人体内代谢的重要场所,肠道内寄居的大量细菌在代谢过程中起到至关重要的作用。亚麻籽富含人体必需不饱和脂肪酸、膳食纤维、木酚素等多种营养成分,具有预防心脑血管疾病、改善肠功能、调节雌激素等功效。本实验旨在探究亚麻籽对人体肠道菌群的影响。通过招募健康成年志愿者,进行为期21 d的亚麻籽饮食干预(亚麻籽摄入量为0.6 g/(kg·d)),收集亚麻籽摄入前后健康成年人粪便样品,进行16S rRNA高通量测序和高通量气相色谱分析。结果显示,志愿者在摄入亚麻籽后,肠道微生物多样性指标Shannon指数升高,同时肥胖群体中高比例厚壁菌门的占比下调,所有粪便样本中短链脂肪酸含量上升。本研究证明,亚麻籽的摄入可以改变健康成年人肠道菌群结构,增加肠道微生物菌群多样性,同时可以促进肠道内短链脂肪酸的产生,从而维持肠道微环境,抑制肠道疾病的发生;并且其部分菌群结构的改变可能有利于预防肥胖症的风险。  相似文献   

6.
《Journal of dairy science》2022,105(10):7865-7877
The by-products of milk fermentation by lactic acid bacteria provide potential health benefits to the balance of host intestinal microflora. In this study, the anti-inflammatory properties of fatty acids from monoculture-strain (Lactiplantibacillus plantarum A3) and multiple-strain (Streptococcus thermophilus, Lactobacillus bulgaricus, and L. plantarum A3 1:1:2) fermented milk were evaluated in a mouse model of dextran sulfate sodium-induced colitis, and the gut microbiota regulation properties of the fatty acids were also investigated. Results showed that fatty acids can attenuate the inflammatory response by inhibiting the expression of inflammatory factors IL-6 and tumor necrosis factor-α, and blocking the phosphorylation of the JNK in MAPK signal pathway. In addition, the relative abundance of the taxa Akkermansia and Lactobacillus were both enriched after the fatty acid intervention. This finding suggests that fatty acids from the milk fermentation with mixed lactic acid bacteria starters can reduce the severity of dextran sulfate sodium-induced colitis and enhance the abundance of the probiotics in the mice intestinal tract.  相似文献   

7.
ABSTRACT

The current knowledge about early-life nutrition and environmental factors that affect the interaction between the symbiotic microbiota and the host immune system has demonstrated novel regulatory target for treating allergic diseases, autoimmune disorders and metabolic syndrome. Various kinds of food nutrients (such as dietary fiber, starch, polyphenols and proteins) can provide energy resources for both intestinal microbiota and the host. The indigestible food components are fermented by the indigenous gut microbiota to produce diverse metabolites, including short-chain fatty acids, bile acids and trimethylamine-N-oxide, which can regulate the host metabolized physiology, immunity homeostasis and health state. Therefore it is commonly believed early-life perturbation of the microbial community structure and the dietary nutrition interference on the child mucosal immunity contribute to the whole life susceptibility to chronic diseases. In all, the combined interrelationship between food ingredients nutrition, intestinal microbiota configurations and host system immunity provides new therapeutic targets to treat various kinds of pathogenic inflammations and chronic diseases.  相似文献   

8.
The objective of this study was to compare the in vitro fermentability of xylo-oligosaccharides (XOS) with different degrees of polymerisation (DP) by the intestinal digesta collected in three distinct intestinal sections of the porcine intestinal tract: ileum, caecum, and distal colon. The studied oligosaccharides included commercial short-chain XOS (DP 2-5), and medium-chain (DP 2-14) and long-chain (DP 2-25) XOS obtained by autohydrolysis of brewery's spent grain (BSG), corn cobs (CC) and Eucalyptus globulus wood (EUC). The oligosaccharide and monosaccharide consumption, lactate and short-chain fatty acids concentrations were correlated with shifts on PCR titres of Bacteroides/Prevotella, Bifidobacterium and Lactobacillus/Pediococcus populations, by using group- and genus-specific primers.All tested XOS were extensively fermented by the piglet ileal, caecal and colonic microbiota. The rate of consumption of medium- and long-chain XOS was notably reduced in the fermentations by the ileal inoculum as compared to commercial XOS. EUC XOS, CC XOS and commercial XOS supported an enhancement of bifidobacteria and lactobacilli replication in a first stage of the fermentations. Apparently this stimulation was not selective, because Bacteroides/Prevotella replication increased in a second stage of the fermentations, coincident in time with the highest consumption rates of some XOS mixtures tested. Mostly due to the slow fermentability by the ileal microbiota, medium-chain and long-chain XOS mixtures can be regarded as promising functional candidates suitable to act as distally fermentable substrates.  相似文献   

9.
This research was aimed to construct the nanoparticles based on Hohenbuehelia serotina polysaccharides for encapsulation of quercetin (QC-HSP NPs), and investigate their effects on intestinal function and gut microbiota in mice. Results showed that in comparison with HSP and control, QC-HSP NPs significantly improved immune organ indexes, colon length, fecal moisture content and intestinal peristalsis capacity of mice. The productions of short-chain fatty acids (SCFAs) in colon were also increased after treatment with QC-HSP NPs, while the colonic fecal pH was decreased and defecation time was shortened. Through analysis of 16S rRNA sequencing, QC-HSP NPs could increase α and β diversities of gut microbiota, modulate their structure and composition, and increase the relative abundance of beneficial bacteria together with reducing the richness of harmful bacteria. In addition, QC-HSP NPs ameliorated the metabolic functions of gut microbiota by modulating metabolic pathways. This study suggested that QC-HSP NPs might be served as a prebiotic for protecting intestinal health.  相似文献   

10.
This study investigated the effect of exopolysaccharide (EPS) produced by Lactobacillus plantarum YW11 on the oxidative status and gut microbiota in an aging mouse model induced with d-galactose. The in vitro assay of the antioxidant activity of the EPS showed concentration-dependent (0.25–3.0 mg/mL) activities. At 3.0 mg/mL, the EPS reached the highest scavenging activities with half maximal inhibitory concentration values against hydroxyl radicals at 75.10% and 1.22 mg/mL, superoxide anion at 62.71% and 1.54 mg/mL, 2, 2-diphenyl-1-picrylhydrazyl at 35.11% and 0.63 mg/mL, and the maximal chelating rate on ferrous ion and the half-maximal chelating concentration of the EPS at 41.09% and 1.07 mg/mL, respectively. High doses of EPS (50 mg/kg per day) effectively relieved the oxidative stress in the aging mice with increased levels of glutathione peroxidase, superoxide dismutase, catalase, and total antioxidant capacity in mice serum by 21.55, 33.14, 61.09, and 38.18%, respectively, and decreased malondialdehyde level from 11.69 to 5.89 mmol/mL compared with those in the untreated aging mice model. The analysis of pyrosequencing sequence data from the gut microbiota revealed that the EPS could recover the microbiota diversity and phylotypes decreased or eliminated by the d-galactose treatment. The EPS could selectively decrease the abundance of Flexispira (37.5 fold), and increase the abundance of Blautia (36.5 fold) and Butyricicoccus (9.5 fold), which correspondingly decreased the content of nitrogen oxides to 9.87% and increased the content of short-chain fatty acids by 2.23 fold, thereby improving the oxidative and health conditions of the host intestinal tract. Further correlation analysis of core-microbiota variation induced by different treatments showed a strong correlation with oxidative phenotypes [catalase, goodness of prediction (Q2) = 0.49; total antioxidant capacity, Q2 = 0.45; nitrogen oxides, Q2 = 0.67; short-chain fatty acids, Q2 = 0.55]. The fermented milk with L. plantarum YW11 containing EPS also showed favorable antioxidant and gut microbiota regulating activities. The present finding provided new insights into the functional mechanism of probiotics bioactivity.  相似文献   

11.
邵帅  赵晶  张岚  王瑞雪  张筠  初众 《食品工业科技》2022,43(24):377-385
仙人掌果中富含多种活性物质,其中含有的花色苷在调节肠道菌群中起着重要作用,为了进一步探讨仙人掌果实中花色苷与人体肠道内菌群的关系,本文研究了仙人掌果实花色苷体外模拟消化和体外厌氧发酵K组(空白)、花色苷H组(高剂量15 mg/mL)、M组(中剂量10 mg/mL)、L组(低剂量5 mg/mL)对人体肠道微生物和代谢物短链脂肪酸(SCFAs)的影响。结果表明:采用pH示差法,以消化率为指标,仙人掌果实花色苷(10 mg/mL),经胃消化3 h后消化率为11.4%;经肠消化4 h后消化率为23.5%;剩余65.1%的花色苷未经胃肠道消化。采用高通量测序方法,通过α多样性和β多样性分析,与K组相比,花色苷H、M、L组均能显著提高肠道菌群多样性(P<0.05)。在菌群组成上,基于门水平分析,与空白组比较,花色苷各剂量组,变形菌门(Proteobacteria)相对丰度显著降低(P<0.05),厚壁菌门/拟干菌门(Firmicutes/Bacteroidetes,F/B值)的比例均显著减少(P<0.05);基于属水平中,与K组相比H、M、L组均能显著降低大肠杆菌志贺属(Esch...  相似文献   

12.
Enzyme activities (α- and β-glucosidases, α- and β-galactosidases and β-fructofuranosidase) and organic acid production of four strains of lactic acid bacteria (LAB; Streptococcus thermophilus STY-31, Lactobacillus delbrueckii subsp. bulgaricus LBY-27, Lactobacillus casei LC-01 and Lactobacillus acidophilus LA-5) and Bifidobacterium lactis BB-12 were tested on milk and MRS fermentation broth with glucose, lactose or fructooligosaccharides (FOS) as carbon source. The highest β-galactosidase activity was found in L. acidophilus growing on milk. As compared to milk, α-glucosidase activity was increased with FOS by B. lactis, L. acidophilus and L. casei. The analysis of organic acids and short-chain fatty acids in the medium growth showed that lactate and acetate were the major fermentation metabolites produced by LAB and bifidobacteria, respectively. However, a metabolic shift towards more acetate and formate production, at the expense of lactate production, was observed during growth of L. casei on FOS. When grown on FOS as sole carbon source, L. acidophilus showed the highest production of lactate among the species tested. In addition, L. acidophilus demonstrated resistance to colonization against the intestinal pathogens Escherichia coli and Salmonella enterica in competition assays.  相似文献   

13.
抗性淀粉(resistant starch,RS)在小肠内不易消化吸收,但可被大肠肠道菌群利用产生短链脂肪酸等代谢物并调节肠道菌群平衡,促进短链脂肪酸的产生及调节胆汁酸代谢。因此,本文构建“RS-肠道菌群-代谢产物”营养轴系统,概述RS调控肠道菌群介导代谢物产生的作用机制,比较菌群发酵对RS表观结构、晶体结构和分子结构产生的影响,阐述RS结构特性与肠道菌群群落结构、短链脂肪酸产量和胆汁酸排泄之间的关系,总结RS通过调节肠道菌群及肠道代谢物改善代谢性疾病的作用机制。此外,进一步展望RS-肠道菌群-胆汁酸之间的作用途径以及RS在代谢性疾病中与胆汁酸和短链脂肪酸的作用机制。  相似文献   

14.
It is difficult for polysaccharides to be directly absorbed through the intestine, which implies other utilization mechanisms involved in the bioactivity performance of polysaccharide. In this study, the multi‐omics approach was applied to investigate the impacts of longan polysaccharide on mouse intestinal microbiome and the interaction between the polysaccharide‐derived microbiome and host immune system. According to the result, the longan polysaccharide showed a significant improvement in the typical intestinal immunity index of mice. Meanwhile, at the taxonomy level, the intestinal microbiota from the control group and polysaccharide group were highly distinct in organismal structure. At the functional level, a significant decline in the microbial metabolites of pyruvate, butanoate fructose and mannose in the control group was found. Additionally, a significant increase was observed in the succinic acid and the short‐chain fatty acid, including acetic acid, propionic acid and butyric acid, in the polysaccharide group. Furthermore, the multi‐omic based network analysis indicated that the intake of longan polysaccharide resulted in the changes of the intestinal microbiota as well as the gut metabolites, which led to the enhancement of host's immune function under the stress conditions. These results indicated the polysaccharide‐derived changes in intestinal microbiota were involved in the immunomodulatory activities.  相似文献   

15.
为分析2株不同来源的短双歧杆菌对脑部微注射Aβ;蛋白导致的阿尔兹海默症小鼠肠道菌群及其代谢物的影响,给小鼠海马区注射Aβ;蛋白建立阿尔兹海默症小鼠模型,连续灌胃6周2株不同来源的短双歧杆菌,收集小鼠粪便,采用Illumina MiSeq高通量测序技术分析菌群的多样性及物种组成,并采用GC-MS技术检测小鼠粪便中短链脂肪酸的含量。菌群多样性分析发现,Aβ;蛋白注射改变了小鼠的菌群多样性及物种结构,灌胃短双歧杆菌可一定程度上改善菌群紊乱。进一步在属水平和种水平分析各组菌群差异,发现灌胃短双歧杆菌MY显著提高了大鼠肠道中产短链脂肪酸菌Coprococcus spp.、Lactobacillus reuteri和Akkermansia muciniphila的相对丰度,且有效调控了肠道内3种短链脂肪酸的水平。短双歧杆菌MY可能通过调节肠道菌群及其代谢物短链脂肪酸的水平缓解小鼠的认知障碍。  相似文献   

16.
通过在体外模拟构建消化和发酵体系,研究不同来源的三种麸皮(小麦麸皮、黑小麦麸皮和燕麦麸皮)配制成的粗粮粉对肠道菌群调节作用的影响。采用高通量测序技术16S rRNA对肠道菌群的多样性和组成进行分析,结果表明,粗粮粉发酵后微生物多样性降低,肠道菌群组成发生了较大变化,拟杆菌门比例下降,厚壁菌门比例升高,代谢产生的短链脂肪酸含量显著增多(p<0.05);其中,燕麦粗粮粉促进双歧杆菌体外增殖的效果优于其他两组粗粮粉,分别是小麦粗粮粉和黑小麦粗粮粉的1.45和2.14倍。本研究为调制加工性能好、保健价值高的粗粮粉配方提供了理论依据。  相似文献   

17.
The disruption of the milk fat globule membrane can lead to an excessive accumulation of free fatty acids in milk, which is frequently associated with the appearance of rancid flavors. Solid-phase microextraction and gas chromatography techniques have been shown to be useful tools in the quantification of individual free fatty acids in dairy products providing enough sensitivity to detect levels of rancidity in milk. Therefore, the aim of this study was to characterize the short-chain and medium-chain free fatty acid profile in i) raw untreated goat milk; ii) raw goat milk passing through pumps and heating units (plate-and-frame heat exchanger and ohmic heater); and iii) processed goat milk by conventional and ohmic pasteurization to determine the influence of each treatment in the final quality of the milk. Multivariate statistical analysis has shown that the treatments studied were not responsible for the variability found on free fatty acid contents. In particular, it was possible to conclude that ohmic pasteurization at 72°C for 15 s did not promote an extended modification of free fatty acid contents in goat milk when compared with that of conventional pasteurization. Furthermore, principal component analysis showed that the capric acid can be used to discriminate goat's milk with different free fatty acid concentrations. Hierarchical cluster analysis showed evidence of the existence of correlations between contents of short and medium chain free fatty acids in goat milk.  相似文献   

18.
《Journal of dairy science》2022,105(12):9426-9438
The addition of Bifidobacterium to goat milk has dual effects on health, for which various inherent nutrients of goat milk are retained and live probiotics are provided. We explored the effect of Bifidobacterium animalis ssp. lactis Probio-M8 (Probio-M8) on fermentation characteristics, formation of organic acid, sensory properties, and storage characteristics of fermented goat milk (with added 4.0% sucrose). Addition of Probio-M8 decreased the fermentation time and significantly increased the content of functional organic acids, such as acetic acid, and functional long-chain unsaturated fatty acids, including linoleic acid, α-linolenic acid, and docosahexaenoic acid. Furthermore, the contents of medium-chain and short-chain fatty acids, which are related to “goaty” flavor, were significantly lower in the Probio-M8 treatment compared with the control. The number of living Probio-M8 decreased from 8.27 log cfu/mL (1.80 × 108 cfu/mL) to 7.94 log cfu/mL (0.79 × 108 cfu/mL) after 28 d of storage. Titratable acidity and pH value did not differ between the control group and experimental group (containing Probio-M8). Sensory evaluation indicated a lower goaty flavor and odor in the Probio-M8 fermented milk. Our results suggest that the addition of the probiotic Probio-M8 could improve the sensory, physicochemical, and functional properties of fermented goat milk.  相似文献   

19.
The changes in polyphenol fractions after in vitro fermentation of apple peel polyphenol (APP) by gut microbiota as well as the effects of APP on the growth, pH value, short-chain fatty acids (SCFAs) production and intestinal flora composition of gut microbiota fermentation were firstly explored in this study. The relative abundance of Lactobacillus in the APP group was 49.55% with an increment of 49.40% compared with the blank group, while that of Bifidobacterium was 13.32%. Moreover, the flora produced 37.093 ± 0.478 mM of SCFAs including acetic acid, propionic acid, butyric acid and valeric acid during the process of fermentation, thus reduced the environmental pH value. In addition, polyphenol fractions in APP were altered by gut microbiota fermentation to some extent, for example, glycosides were hydrolysed to aglycones. These findings suggested APP as a potential prebiotic agent to alleviate the disorder of intestinal flora.  相似文献   

20.
Feeding grain-rich diets often results in subacute ruminal acidosis (SARA), a condition associated with ruminal dysbiosis and systemic inflammation. Yet, the effect of SARA on hindgut microbiota, and whether this condition is aggravated by exogenous immune stimuli, is less understood. Therefore, the aims of this study were to determine the effects of an intermittent high-grain SARA model on the hindgut microbial community, and to evaluate whether the effects of SARA on the fecal microbiome and fermentation were further affected by an intramammary lipopolysaccharide (LPS) challenge. A total of 18 early-lactating Simmental cows were divided into 3 groups (n = 6); 2 were fed a SARA-inducing feeding regimen (60% concentrate), 1 was fed a control (CON) diet (40% concentrate). On d 30, 1 SARA group (SARA-LPS) and the CON group (CON-LPS) were intramammarily challenged with a single dose of 50 µg of LPS from Escherichia coli O26:B6, whereas the remaining 6 SARA cows (SARA-PLA) received a placebo. Using a longitudinal randomized controlled design, with grouping according to parity and days in milk), statistical analysis was performed with baseline measurements used as a covariate in a mixed model procedure. The SARA-inducing feeding challenge resulted in decreased fecal pH and increased butyrate as a proportion of total short-chain fatty acids in the feces. On d 30, SARA-challenged cows had decreased fecal diversity as shown by the Shannon and Chao1 indices and a decrease in the relative abundance of Euryarchaeota and cellulolytic genera, and numerical increases in the relative abundance of several Firmicutes associated with starch and secondary fermentation. The LPS challenge did not affect the fecal pH and short-chain fatty acids, but increased the Chao1 richness index in an interaction with the SARA challenge, and affected the relative abundance of Verrucomicrobia (1.13%), Actinobacteria (0.19%), and Spirochaetes (0.002%), suggesting an effect on the microbial ecology of the hindgut during SARA conditions. In conclusion, the SARA-inducing feeding regimen promoted important microbial changes at d 30, including reduced diversity and evenness compared with CON, whereas the external LPS challenge led to changes in the microbial community without affecting fecal fermentation properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号