首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The viability of 5 probiotic lactobacilli strains (Lactobacillus acidophilus LA-5, Lactobacillus casei L01, Lactobacillus casei LAFTI L26, Lactobacillus paracasei Lcp37, and Lactobacillus rhamnosus HN001) was assessed in 2 types of probiotic flavored drink based on fermented milk during 21 days of refrigerated storage (5°C). Also, changes in biochemical parameters (pH, titrable acidity, and redox potential) during fermentation as well as the sensory attributes of final product were determined. Among the probiotic strains, L. casei LAFTI L26 exhibited the highest retention of viability during refrigerated storage period, while L. acidophilus LA-5 showed the highest loss of viability during this period. The decline in cell count of probiotic bacteria in strawberry fermented milk was significantly greater compared to peach fermented milk. In an overall approach, peach fermented milk containing L. casei LAFTI L26 was selected as the optimal treatment in this study in both aspects of viability and sensory accpeptibility.  相似文献   

2.
The carbonation of pasteurised milk was evaluated as a method for improving bacterial viability in fermented milk added with probiotic bacteria (Lactobacillus acidophilus and/or Bifidobacterium bifidum). The behaviour of microorganisms during fermentation and cold storage, and the biochemical and sensory properties of the products were assessed. In AT (Streptococcus thermophilus/L. acidophilus) and ABT (S. thermophilus/L. acidophilus/B. bifidum) products, the fermentation times to decrease the pH to 5 were significantly lowered when CO2 or lactic acid was added to milk. The higher acidity levels of carbonated (as a result of production of carbonic acid) and lactic acidified samples enhanced growth and metabolic activity of the starter during fermentation and was the reason for this reduction in incubation time. Cell counts of S. thermophilus, L. acidophilus and B. bifidum gradually decreased through the cold storage of carbonated and non-acidified fermented milk, although the counts were always higher than 106 viable cells g−1. The CO2 did not exert any influence on the viability of S. thermophilus and L. acidophilus in AT fermented milk stored at 4°C but the presence of B. bifidum and CO2 in ABT-type products was associated with lower viability of L. acidophilus during the refrigerated storage. The higher acetate concentrations of ABT products made with non-acidified milk as compared with the carbonated products could have contributed to major survival of L. acidophilus in the former. The use of milk acidified with CO2 had no detrimental effects on the sensory properties of ABT fermented milk. Therefore, we concluded that the carbonation of pasteurised milk prior to the starter addition could be satisfactorily used to reduce the manufacture time of fermented milk.  相似文献   

3.
Lactobacillus rhamnosus GG (LGG) performs many physiological functions, but the fermentation time is long when fermented milk is prepared using LGG alone. To shorten the fermentation time, we analyzed the nutrient requirement profiles of LGG. Based on nutrient requirement profiles, we evaluated the effects on the fermentation time, quality, and sensory properties of unmodified cow's milk fermented by LGG alone. According to the consumption and necessary patterns of amino acids and those of purine, pyrimidine, vitamins, metal ions, and nutrients essential to LGG, we selected Cys, Ser, Arg, Pro, Asp, Glu, guanine, uracil, and xanthine with which to supplement milk. Compared with fermented milk prepared using LGG alone in unmodified milk, the fermentation time of supplemented milk was shortened by 5 h. Viable cell counts, titratable acidity, and water-retaining capability of the fermented milk were improved by addition of nutrient supplements. Supplementation with nutrients did not obviously change the sensory and textural characteristics of fermented milk.  相似文献   

4.
A set-type fermented milk manufactured from goat's milk was developed. Optimal curd tension was achieved by supplementation of milk with skim milk powder and whey protein concentrate (WPC). Milk was fermented employing a commercial probiotic starter culture (ABT-2), which contained Streptococcus thermophilus ST-20Y, Lactobacillus acidophilus LA-5, and Bifidobacterium BB-12. Supplementation of milk with 3% WPC reduced fermentation time by 2 h due to the increase in viable counts of S. thermophilus and Bifidobacterium by 0.3 and 0.7 log units, respectively. Addition of WPC increased the protein content (1%) as well as potassium and magnesium content (0.3 and 0.02 g kg−1, respectively). Increase of the protein content led to an increase in the apparent viscosity and gel firmness of the product, and at the same time whey syneresis was reduced. As a consequence, the product received a high score for appearance, taste, aroma, texture and overall acceptance.  相似文献   

5.
Enzyme activities (α- and β-glucosidases, α- and β-galactosidases and β-fructofuranosidase) and organic acid production of four strains of lactic acid bacteria (LAB; Streptococcus thermophilus STY-31, Lactobacillus delbrueckii subsp. bulgaricus LBY-27, Lactobacillus casei LC-01 and Lactobacillus acidophilus LA-5) and Bifidobacterium lactis BB-12 were tested on milk and MRS fermentation broth with glucose, lactose or fructooligosaccharides (FOS) as carbon source. The highest β-galactosidase activity was found in L. acidophilus growing on milk. As compared to milk, α-glucosidase activity was increased with FOS by B. lactis, L. acidophilus and L. casei. The analysis of organic acids and short-chain fatty acids in the medium growth showed that lactate and acetate were the major fermentation metabolites produced by LAB and bifidobacteria, respectively. However, a metabolic shift towards more acetate and formate production, at the expense of lactate production, was observed during growth of L. casei on FOS. When grown on FOS as sole carbon source, L. acidophilus showed the highest production of lactate among the species tested. In addition, L. acidophilus demonstrated resistance to colonization against the intestinal pathogens Escherichia coli and Salmonella enterica in competition assays.  相似文献   

6.
Lactulose can be considered as a prebiotic, which is able to stimulate healthy intestinal microflora. In the present work, the use of this ingredient in fermented milk improved quality of skim milk fermented by Lactobacillus acidophilus, Lactobacillus rhamnosus, Lactobacillus bulgaricus and Bifidobacterium lactis in co-culture with Streptococcus thermophilus. Compared to control fermentations without lactulose, the addition of such a prebiotic in skim milk increased the counts of all probiotics, with particular concern to B. lactis (bifidogenic effect), the acidification rate and the lactic acid acidity, and concurrently reduced the time to complete fermentation (tpH4.5) and the pH at the end of cold storage for 1 to 35 days.  相似文献   

7.
Currently, the food industry wants to expand the range of probiotic yogurts but each probiotic bacteria offers different and specific health benefits. Little information exists on the influence of probiotic strains on physicochemical properties and sensory characteristics of yogurts and fermented milks. Six probiotic yogurts or fermented milks and 1 control yogurt were prepared, and we evaluated several physicochemical properties (pH, titratable acidity, texture, color, and syneresis), microbial viability of starter cultures (Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus) and probiotics (Lactobacillus acidophilus, Lactobacillus casei, and Lactobacillus reuteri) during fermentation and storage (35 d at 5°C), as well as sensory preference among them. Decreases in pH (0.17 to 0.50 units) and increases in titratable acidity (0.09 to 0.29%) were observed during storage. Only the yogurt with S. thermophilus, L. delbrueckii ssp. bulgaricus, and L. reuteri differed in firmness. No differences in adhesiveness were determined among the tested yogurts, fermented milks, and the control. Syneresis was in the range of 45 to 58%. No changes in color during storage were observed and no color differences were detected among the evaluated fermented milk products. Counts of S. thermophilus decreased from 1.8 to 3.5 log during storage. Counts of L. delbrueckii ssp. bulgaricus also decreased in probiotic yogurts and varied from 30 to 50% of initial population. Probiotic bacteria also lost viability throughout storage, although the 3 probiotic fermented milks maintained counts ≥107 cfu/mL for 3 wk. Probiotic bacteria had variable viability in yogurts, maintaining counts of L. acidophilus ≥107 cfu/mL for 35 d, of L. casei for 7 d, and of L. reuteri for 14 d. We found no significant sensory preference among the 6 probiotic yogurts and fermented milks or the control. However, the yogurt and fermented milk made with L. casei were better accepted. This study presents relevant information on physicochemical, sensory, and microbial properties of probiotic yogurts and fermented milks, which could guide the dairy industry in developing new probiotic products.  相似文献   

8.
The objective of this study was to monitor the viability during storage of Lactobacillus acidophilus LA-5 (A), Bifidobacterium animalis ssp. lactis BB-12 (B), and Streptococcus thermophilus CHCC 742/2130 (T) in probiotic cultured dairy foods made from pasteurized camel, cow, goat, and sheep milks fermented by an ABT-type culture. The products manufactured were stored at 4°C for 42 d. Microbiological analyses were performed at weekly intervals. Streptococcus thermophilus CHCC 742/2130 was the most numerous culture component in all 4 products both at the beginning and at the end of storage. The viable counts of streptococci showed no significant decline in fermented camel milk throughout the entire storage period. The initial numbers of Lb. acidophilus LA-5 were over 2 orders of magnitude lower than those of Strep. thermophilus CHCC 742/2130. With the progress of time, a slow and constant decrease was observed in lactobacilli counts; however, the final viability percentages of this organism did not differ significantly in the probiotic fermented milks tested. The cultured dairy foods made from cow, sheep, and goat milks had comparable B. animalis ssp. lactis BB-12 counts on d 0, exceeding by approximately 0.5 log10 cycle those in the camel milk-based product. No significant losses occurred in viability of bifidobacteria in fermented camel, cow, and sheep milks during 6 wk of refrigerated storage. In conclusion, all 4 varieties of milk proved to be suitable raw materials for the manufacture of ABT-type fermented dairy products that were microbiologically safe and beneficial for human consumption. It was suggested that milk from small ruminants be increasingly used to produce probiotic fermented dairy foods. The development of camel milk-based probiotic cultured milks appears to be even more promising because new markets could thus be conquered. It must be emphasized, however, that further microbiological and sensory studies, technology development activities, and market research are needed before such food products can be successfully commercialized.  相似文献   

9.
In this study, the influence of tea extract (TE) on the growth of probiotics in skim milk was examined. Lactobacillus plantarum ST‐III, Bifidobacterium bifidum Bb02, Lactobacillus acidophilus NCFM, and Lactobacillus rhamnosus GG were used in this study. The introduction of TE in milk significantly stimulated the propagation and acidification of L. rhamnosus GG and L. acidophilus NCFM. The antioxidant capacities and the total free amino acid contents of all fermented milk products were enhanced by the addition of TE; however, there were different antioxidant properties and free amino acid contents of fermented milk samples fermented by different bacteria. With a 9% (w/w) level, the fermentation with L. rhamnosus GG and L. acidophilus NCFM showed larger numbers of viable cells and faster acidifying rates, as well as excellent antioxidant capacity and abundant free amino acids.  The stimulative effects of TE on probiotics can be considered for industrial purposes and has practical implications for commercial applications.  相似文献   

10.
The effects of reconstituted skim milk, and the same fermented by Lactobacillus acidophilus, were tested in rats. Rats were fed a stock diet and drinking water containing one of three milk treatments: (1) no supplementary milk; (2) 10% milk; or (3) 10% milk fermented by L. acidophilus. After 4 wk, rats receiving the fermented milk had lower (P < 0.05) serum cholesterol levels (65 mg/dl) than did the water-fed (78 mg/dl) or milk-fed (79 mg/dl) rats. Weight gain, feed intake, liver lipid contents and fecal lactobacilli counts were not different among treatment groups. Data indicate that factors influencing serum cholesterol levels were produced during fermentation of the milk.  相似文献   

11.
This study describes a procedure that allows specific detection and enumeration of viable bacteria in four species of lactic acid bacteria (Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, Lactobacillus casei subsp. casei and Lactobacillus acidophilus) and of Bifidobacterium lactis, mixed in fermented milk products. The procedure is based on the combined use of propidium monoazide (PMA), able to distinguish between viable and irreversibly damaged cells, with species-specific quantitative real-time PCR (RTi-PCR). Loss of viability of the species in a fermented milk through storage at 4 °C was similarly (P < 0.05) detected by PMA–RTi-PCR and selective plate counts. Furthermore, comparison of results obtained by both methods showed a Pearson linear correlation of 0.995. The enumeration of viable bacteria by PMA–RTi-PCR could be performed in 3 h, whereas enumeration by selective plate counts required three days. The procedure developed is a fast method for the identification, enumeration and discrimination of viability of lactic acid bacteria and bifidobacteria mixed in fermented milk products.  相似文献   

12.
《Journal of dairy science》2019,102(9):7773-7780
Acid whey is a byproduct of cheesemaking that is difficult to use because of its low pH and less-favorable processing properties compared with rennet whey. The aim of this study was to evaluate the qualities of fermented beverages made using acid whey. In manufacturing the beverages, we used probiotic cultures Lactobacillus acidophilus LA-5 or Bifidobacterium animalis ssp. lactis BB-12. The production process included combining pasteurized acid whey with UHT milk, unsweetened condensed milk, or skim milk powder. We introduced milk to enrich casein content and obtain a product with characteristics similar to that of fermented milk drinks. The products were stored under refrigerated conditions (5 ± 1°C) for 21 d. During storage, we assessed the beverages' physicochemical properties and organoleptic characteristics. The properties of the beverages depended on their composition, microbial culture, and storage time. Beverages containing L. acidophilus had higher acidity, which increased during storage; the acidity of samples containing B. animalis was more stable. Beverages made with skim milk powder (La1 and Bb1) had higher acetaldehyde content, but this parameter decreased in all samples during storage. The hardness of the samples did not change during storage and was highest in beverage La3, made from whey, condensed milk, and L. acidophilus. Beverage La2, made from whey, milk, condensed milk, and L. acidophilus, had the best sensory properties. The whey beverages we developed provided a good medium for the probiotic bacteria; bacteria count throughout the storage period exceeded 8 log cfu/mL, distinctly higher than the minimum therapeutic dose.  相似文献   

13.
《LWT》2005,38(1):73-75
Red beets were evaluated as a potential substrate for the production of probiotic beet juice by four species of lactic acid bacteria (Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus delbrueckii, Lactobacillus plantarum). All the lactic cultures were found capable of rapidly utilizing beet juice for cell synthesis and lactic acid production. However, L. acidophilus and L. plantarum produced a greater amount of lactic acid than other cultures and reduced the pH of fermented beet juice from an initial value of 6.3 to below 4.5 after 48 h of fermentation at 30°C. Although the lactic cultures in fermented beet juice gradually lost their viability during cold storage, the viable cell counts of these lactic acid bacteria except for L. acidophilus in the fermented beet juice still remained at 106–108 CFU/ml after 4 weeks of cold storage at 4°C.  相似文献   

14.
The growth of 24 strains of lactic acid starter bacteria (Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus and Lactococcus lactis) and 24 strains of probiotic bacteria (Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus paracasei, Lactobacillus rhamnosus and bifidobacteria) in liquid media containing different substances was assessed. The substances used were salts (NaCl and KCl); sugars (sucrose and lactose); sweeteners (acesulfame and aspartame); aroma compounds (diacetyl, acetaldehyde and acetoin); natural colorings for fermented milk (red, yellow and orange colorings); flavoring agents (strawberry, vanilla, peach and banana essences); flavoring–coloring agents (strawberry, vanilla and peach); nisin, natamycin and lysozyme. Bacterial growth in the presence of natural fruit juices (green apple, kiwi, pineapple, peach and strawberry) with or without neutralization and cell viability in lactic acid acidified (pH 4 and 5) milk for 4 weeks at 5°C were also studied.Some compounds (KCl, sweeteners, aroma compounds, natamycin, flavoring agents and the peach flavoring–coloring agent) did not influence the growth of the strains in the concentrations commonly used in the dairy industry. The effect of other substances (especially flavoring–coloring agents) on the growth of lactic acid starters and probiotic bacteria was strain-dependent. Natural fruit juices weakly inhibited mainly S. thermophilus strains. Cell viability during cold storage in acidified milk was satisfactory for L. delbrueckii subsp. bulgaricus and L. casei group strains. For L. acidophilus and Bifidobacterium, the decreases in cell counts at pH 5 were negligible. Nevertheless, decreases from 1.6 to 6.2 and from 0.1 to 7.6 log orders, respectively were observed at pH 4.  相似文献   

15.
The influence of several Chinese teas on the ability of Lactobacillus casei to ferment milk was assessed. The three kinds of tea significantly stimulated the growth and acidification of L. casei. The viable cell counts in tea-supplemented fermented milk were higher than those of the control and were maintained during cold storage. Flavour component content increased significantly, and an additional eight components were detected in fermented milk supplemented with 5% green tea infusion (GTI5%) compared with control fermented milk. Moreover, the increase in total free amino acids after fermentation in GTI5% was 2.5-fold higher than in the control, suggesting that tea stimulated the growth and metabolism of L. casei during milk fermentation. Higher cell numbers, reduced fermentation time, abundant flavour components and free amino acids were achieved during the tea-supplemented fermentation of L. casei. Green tea effectively enhances the growth of L. casei, therefore could be considered for industrial purposes.  相似文献   

16.
Milk was fermented with a total of 25 lactic acid bacteria to assay in vitro inhibitory activity towards angiotensin I converting enzyme (ACE). The tested strains belonged to Lactobacillus acidophilus, Lactobacillus casei, Lacobacillus helveticus, Lactobacillus jensenii, Lactobacillus reuteri, Lactobacillus rhamnosus, Lactococcus lactis ssp. lactis, Lactococcus. raffinolactis and Leuconostoc mesenteroides ssp. cremoris. The ACE inhibitory potencies of theses strains varied and seven of them showing the highest ACE inhibitory activity were selected for further studies. The development of ACE inhibitory activity during fermentation correlated with degree of hydrolysis. Modification of fermentation conditions or pH control did not affect the ACE inhibitory activity. ACE inhibitory compounds from Lb. jensenii fermented milk were isolated by reversed phase HPLC and identified by MS-analysis and amino acid sequencing. The active compounds were peptides from β-casein. The milk fermented with Lb. jensenii caused a transient reduction of blood pressure in spontaneously hypertensive rats.  相似文献   

17.
Preparation of yoghurt-like product from non-dairy raw material, such as soy with probiotic and prebiotic is a novel development in the field of fermented functional foods. This research work aimed at finding the new combinations of probiotics Lactobacillus acidophilus, Lactobacillus plantarum and Lactobacillus rhamnosus, which can give good product characteristics to fermented soy milk. Fructooligosaccharide was added in an attempt to reduce the after-taste of soymilk, improve acidification rates and growth of probiotics. Acidification rate was enhanced with L. acidophilusL. plantarum and L. acidophilusL. plantarumL. rhamnosus, resulting in a shorter time to reach pH 4.5. Hardness was significantly (P?<?0.05) higher for soy yoghurt fermented by binary co-culture followed by mixed cultures. All the samples showed higher G′ (1,279.70–1405 Pa) and lower tan δ (0.273–0.346) values which signifies firmer and solid-like character of the gel formed by probiotic bacteria. Soy yoghurt made with L. acidophilusL. plantarum resulted in improved product characteristics with shorter t pH 4.5 (4.28 h). Soy yoghurt fermented with L. acidophilusL. plantarum showed more than 9 log cfu/ml count which is required for probiotic functional food.  相似文献   

18.
The influence of the addition of raffinose family oligosaccharides (RFOs) extracted from lupin seeds on the survival of Bifidobacterium lactis Bb-12 and Lactobacillus acidophilus La-5 in fermented milk during 21 days of storage in refrigerated conditions was studied. For this purpose, viability and metabolic activity (expressed as pH, lactic and acetic acid production and utilization of soluble carbohydrates) of probiotic bacteria were determined. Retention of viability of B. lactis Bb-12 and L. acidophilus La-5 was greater in fermented milk with RFOs. The pH of probiotic fermented milk at 21 days of storage was lower (4.27) compared with probiotic fermented milk with RFOs (4.37). The highest levels of lactic and acetic acid were produced in probiotic fermented milk without RFOs compared with probiotic fermented milk with RFOs during storage at 4 °C. Soluble carbohydrates were utilised in fermented milk with and without RFOs, respectively, for maintaining B. lactis Bb-12 and L. acidophilus populations during refrigerated storage. In conclusion, all these experiments provide convincing evidence that RFOs have beneficial effects on the survival of these probiotic cultures in dairy products. As a result, such stored dairy products containing both probiotics and prebiotics have synergistic actions in the promotion of health.  相似文献   

19.
Microbiological attributes and biogenic amine content of Turkish fermented sausage manufactured by using probiotic starter cultures (Lactobacillus casei, L. acidophilus or their combination) were investigated before and after fermentation-drying period and during refrigerated storage at 4?±?1?°C for 8?months at 2?month intervals. As results of the study, during fermentation and storage biogenic amine content (histamine, putrescine, cadaverine and tyramine) of the samples were increased significantly. Salmonella, Staphylococcus aureus, coliform and fecal coliform microorganisms were not detected during fermentation and storage. Probiotic microorganism counts of all samples were higher than the lower limit of 6.0 log cfu/g which is requested for probiotic foods.  相似文献   

20.
益生菌的活菌数量是衡量益生菌产品及制剂的营养价值和保健功能的主要指标之一。本研究以嗜酸乳杆菌为发酵剂分析比较牛乳发酵奶和羊乳发酵奶中嗜酸乳杆菌增菌发酵的活力差异,及在冷藏期活菌数量的变化趋势,探讨了牛羊乳在促进嗜酸乳杆菌发酵方面的差异性及在冷藏期存活率变化规律。结果表明:嗜酸乳杆菌在羊乳基质中表现为较好的增菌发酵效能,总活菌数为1.66×1010CFU/mL,大于牛乳基质中的总活菌数3.02×109CFU/mL;羊乳发酵奶和牛乳发酵奶在21d贮藏期内嗜酸乳杆菌的活菌数均维持在较高活力水平,而在21~26d的贮藏期内,其存活性显著降低(p<0.05),存活率分别为84.15%和84.39%。由此说明羊乳基质促嗜酸乳杆菌增菌发酵效能更佳,牛、羊乳发酵奶在贮藏期活菌数变化规律基本一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号